INTERNET SYSTEMS

WEB SERVICES

F TECHNOLOGY, INSTITUTE OF COMPUTING SCIENCE

History & Motivation
What are web services?

Big web services:
Brief history of web services: RPC, XML-RPC
Web services protocol stack: SOAP, WSDL
Java APl for Web Services (JAX-WS)
NET API for Web Services (WCF)

RESTtul web services:

REST — Representational State Transter
RESTTul web APl in practice

Richardson Maturity Model

Java APl for RESTTul Services (JAX-RS)
NET API for RESTful Services (WCF)

WEB DEVELOPMENT APPROACHES
BEFORE WEB APPS — STATIC
WEBSITES

HTTP REQUEST

//VJ‘, - A3
‘ B A0
\ 8-
‘% . \ A

HTML
STATIC HTTP CLIENT

CSS
CONTENT SERVER JAVASCRIPT

WEB DEVELOPMENT APPROACHES
CLASSIC WEB APPLICATIONS

GENERATE
RESPONSE

HTTP REQUEST

DATABASE APPLICATION HTML CLIENT
SERVER

Web services have existed for years, but the shift to
using them as a foundational design element of web
applications did not occur immediately.

Evolution of web application architecture:

classic web applications
server-side MVC
client-side MVC

Web services tollow the web apps evolution:
shift of responsibility from the server to the client,

trend towards separating content from presentation.

Programmatic (code-centric) approaches:

Generating response by executing application written in a
scripting or high-level programming language.

HTML and other formatting constructs are embedded within
the application logic and produced using output statements.

Template (document-centric) approaches:

Generating response by interpreting a template file.

Templates are essentially HTML files with additional ‘tags’ that
allow tor inserting dynamically generated content.

The inverse of programmatic approaches — application logic
is embedded within page formatting structures.

PROGRAMMATIC APPROACHES
JAVA SERVLET EXAMPLE

A servlet is a Java class used to extend the capabilities of servers that host
applications accessed by means of a request-response programming
model (Java Servlet technology defines HTTP-specific servlet classes).

1

P

3

4 try {

5

6

/ out.
3 out.
9 out.
10 out.
11 out.
12 out.
13 out.
14 } catch
15 5

16 5

public class Hello extends HttpServlet {
public void doGet(HttpServletRequest rq, HttpServletResponse rsp) {
rsp.setContentType("text/html");

PrintWriter out = rsp.getWriter();
String user = rqg.getParameter("user");

"<HTML>") ;
"<HEAD><TITLE>Welcome</TITLE></HEAD>"):
"<BODY>");
"<H3>Welcome "+((user==null) ? "" : user)+"!</H3>");
println("<P>Today is "+new Date()+".</P>");
println("</BODY>");
println("</HTML>");
(I0OException ioe) {// (error processing)

println
println
println
println

AN AN AN AN AN AN

TEMPLATE APPROACHES
JAVA SERVER PAGES EXAMPLE

» JavaServer Pages (JSP)

* Built on top of the Servlet API

» JSP pages are translated into servlets at runtime

* A more natural approach with support of all the capabilities of Java Servlets
» A JSP page is a text document that contains two types of text:

» Static data — any text-based format (such as HTML),

» JSP elements, which construct dynamic content.

1 <HTML>

2 <HEAD><TITLE>Welcome</TITLE></HEAD>

3 <BODY>

4 <% String user=request.getParameter("user"); %

5 <H3>Welcome <%= (user==null) ? "" : user %>!</H3>
6 <P>Today is <%= new Date() %>.</P>

/ </BODY>

8 </HTML>

WEB DEVELOPMENT APPROACHES
SERVER-SIDE MVC

Model-View-Controller — software

architecture used by modern web

frameworks (but not limited to web):

. : : . Servlet/Filte JSP pages
Model: encapsulating application data,

data access, business logic;

View: output representation of data,
generating user interface (in HTML);

Controller: handling user interactions,

: URT Data Sources/
processing user requests, building Databace

model and passing it to the view.

Apache Struts

o |
@ @users HTML @
'

Java Server Faces |

4 ™
‘:* e
Spring MVC .

@findexf,r"" @
. Rails 4 HIML @ Database
R U by on Ra | |S router #
/
P
@ /users F,a"#
y

Django N

ASP.NET MVC G

MODERN WEB APPLICATION
CLIENT-SIDE MVC + WEB API

DATABASE SERVER CLIENT

SERVICES

Heterogeneous clients using the same back-end code.

Loose coupling between back-end and front-end:

The back-end is completely unaware on what consumes its
service as long as it sends valid requests.

As long as the response is valid, and the service does as
oromised, the front-end doesn’t care what the back-end is.

Improving web development productivity.

More responsive, rich Web applications.

Single Page Applications (SPA) — a web application
that requires only a single page load in a web browser;
the goal is to provide a more tluid user experience.

Thin Server Architecture — SPA moves logic from
the server to the client; the role of the web server is
imited to a pure data API (i.e. a web service).

JavaScript frameworks for SPA development:
AngulardS

Ember js AT
Backbone.js » g >,

PRESENTATION OUTLIN

e History & Motivation
» What are web services?

e Big web services:
e Brief history of web services: RPC, XML-RPC
 Web services protocol stack: SOAP, WSDL
e Java APl for Web Services (JAX-WS)
e NET API for Web Services (WCF)

e RESTful web services:
e REST — Representational State Transfer
e RESTful web APl in practice
e Richardson Maturity Model
e Java APl for RESTtul Services (JAX-RS)
 NET API for RESTful Services (WCF)

Web services are client and server applications that
communicate over the HyperText Transter Protocol and
provide a standard means of interoperating between
applications running on a variety of platforms.

A Web service is a collection of functions that are
published to the network for use by other programs.

The aim of web services is to provide a way for non-
human clients to interact with your web application.

WHAT ARE WEB SERVICES?

Web service — a network accessible interface to
application functionality that can be invoked remotely

using existing web infrastructure (over HTTP) and
supports machine-to-machine interaction.

BUSINESS WEB
DL B LOGIC SERVICE

Web services are platform independent — they are based on a
concise set of open standards (HTTP, XML, JSON) designed to
promote interoperability between a Web service and clients across
a variety of computing platforms and programming languages.

Web services are self-contained — no additional software is
required, a programming language with XML/JSON and HTTP client
support is enough to get started.

Web services are self-describing — a public interface to the service
is available; definitions of message format travel with the messages.

Web services are modular — simple web services can be
aggregated to form more complex Web services (e.g. mashups), e.g.
https://www.programmableweb.com/category/all/apis

https://www.programmableweb.com/category/all/apis

Big web services:
Simple Object Access Protocol (SOAP)
Web Service Description Language (WSDL)
Service-Oriented Architecture (SOA)
JAX-WS (JSR 224) — Metro is the reference implementation

RESTful web services:

_ightweight infrastructure that require minimal tooling.
Representational State Transter — HTTP as an AP|
Resource-Oriented Architecture (ROA)

JAX-RS (JSR 339) — Jersey is the reference implementation

PRESENTATION OUTLIN

e Motivation
e \What are web services?

» Big web services:
* Brief history of web services: RPC, XML-RPC
* Web services protocol stack: SOAP, WSDL
e Java APl for XML Web Services (JAX-WS)
e NET API for Web Services (WCF)

e RESTful web services:
e REST — Representational State Transfer
e RESTful web APl in practice
e Richardson Maturity Model
e Java APl for RESTtul Services (JAX-RS)
 NET API for RESTful Services (WCF)

1976: Description of the RPC principle in RFC 707
1986: RPC/XDR by Sun (RFC 1057)

1997 Java RM| — object-oriented RPC

1998: XML-RPC — the birth of web services

1998: SOAP — turning point when web services
started to become more prevalent among enterprises

2001: WSDL & UDDI

-EMOT

PROC

DURE CALL

RPC — inter-process communication mechanism that allows a client
applications to call procedures in another address space without
the programmer explicitly coding the details for this remote
interaction, just as it were a local procedure (location transparency).

Generating client and server artifacts (stubs and skeletons) from an
IDL (Intertace Detfinition Language) document.

[uuid(), version(1.0)]
interface 1

const long int ECHO_SIZE = 512;

void echo(

[in] handle_t h,
[in, stringl idl char from_client[1,
lout, string] idl_char from_server[ECHO_SIZE]

REMOTE PROCEDURE CALL

SERVER CLIENT

o

(

. MARSHALED B
N DATA

—

—
e

REMOTE OS LOCAL OS

XML-RPC — a very lightweight RPC protocol with support
for elementary data types.

XML marshaling to achieve language neutrality — messages are
easy to inspect and process with standard tools.

HTTP for transport, instead of proprietary system — alleviates the
traditional firewall issues of having to open additional ports for RPC.

Request-response paradigm:

The client sends a HTTP request — the body is an XML document
specifying a single call to a method (method name + parameters).

The server replies with a response — body also contains XML.

E.g. http://codex.wordpress.org/XML-RPC WordPress API

http://codex.wordpress.org/XML-RPC_WordPress_API

XML-RPC EXAMPLE

POST /xmlrpc HTTP/1.1
Content-Type: text/xml

<?xml version="1.0"7>
<methodCall>
<methodName>countCharacters</methodName>
<params>
<param>
<value><string>test</string></value>
</param>
</params>
</methodCall>

HTTP/1.1 200 OK
Content-Type: text/xml

[T gy
P NPV NOUTDE WN -

<?xml version="1.0"7>
<methodResponse>
<params>
<param>
<value><int>4</int></value>
</param>
</params>
</methodResponse>

PO OWOLONOUILSL,WN

=

XML-RPC FAULT EXAMPL

1 HTTP/1.1 200 OK

2 Content-Type: text/xml
3

4 <?xml version="1.0"7>
5 <methodResponse>

6 <fault>

7 <value>

3 <struct>

0 <member>

10 <name>faultCode</name>
11 <value>

12 <int>4</int>

13 </value>

14 </member>

15 <member>

16 <name>faultString</name>
17 <value>

18 <string>Too many parameters.</string>
19 </value>

20 </member>

21 </struct>

22 </value>

23 </fault>
24 </methodResponse>

XML-RPC is a simple specification without ambitious

goals — stub generation, interface description and
service lookup are not in the protocol.

We wanted a clean, extensible format that's very
simple. It should be possible for an HTML coder to be
able to look at a file containing an XML-RPC procedure
call, understand what it's doing, and be able to modify
it and have it work on the first or second try.

PRESENTATION OUTLIN

e Motivation
e \What are web services?

» Big web services:
e Brief history of web services: RPC, XML-RPC
* Web services protocol stack: SOAP, WSDL
e Java APl for XML Web Services (JAX-WS)
e NET API for Web Services (WCF)

e RESTful web services:
e REST — Representational State Transfer
e RESTful web APl in practice
e Richardson Maturity Model
e Java APl for RESTtul Services (JAX-RS)
 NET API for RESTful Services (WCF)

A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network. It
has an interface described in a machine-processable format (WSDL).

Other systems interact with the Web service in a manner prescribed
by its description using SOAP-messages, typically conveyed using
HTTP with an XML serialization in conjunction with other Web-
related standards.

Web services protocol stack:
messaging protocol — XML, SOAP
transport protocol — HTTP, SMTP, JMS
service description protocol — WSDL

service discovery protocol — UDDI

SOAP-BAS

- RVICES

put
“““
Y
e®
e®
“
L
L
L 3
L
L
*
L
‘0
*

SERVICE REGISTRY
(UDDI)

3. SOAP REQUEST

% .

4. SOAP RESPONSE SERVICE

SERVICE CONSUMER
PROVIDER

SOAP is a XML-based protocol for exchange of information in
a decentralized, distributed environment.

SOAP — foundation ot the web services protocol stack,
oroviding a basic messaging framework:

XML-based structure of SOAP messages.
processing model for transferring messages.

guidance on how to transport SOAP messages.

SOAP has three major characteristics:
extensibility — multiple WS-* standards built on top of
neutrality — SOAP can operate over any transport protocol

independence — SOAP allows for any programming model

SOAP MESSAG

STRUCTUR

* A SOAP message is an XML document that consists of an
envelope, an optional header, a body and optional fault.

HTTP ENVELOPE

SOAP ENVELOPE

SOAP MESSAG

Ooco~NJOUTE, WNE

POST /InStock HTTP/1.1
Host: www.example.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: 299

SOAPAction: "http://www.w3.0rg/2003/05/soap—envelope"

<?xXml version="1.0"7?>
<soap:Envelope

xmlns:soap="http://www.w3.0rg/2003/05/soap—-envelope'>

<soap:Header>
</soap:Header>
<soap:Body>

<m:GetStockPrice xmlns:m="http://www.example.org/stock">

EXAMPL

<m:StockName>IBM</m:StockName>

</m:GetStockPrice>
</soap:Body>
</soap:Envelope>

SOAP RESPONSE EXAMPL

OCoo~NOULE, WN -

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"7>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap—enve lope">

<soap:Body xmlns:m="http://www.example.org/stock'>
<m:GetStockPriceResponse>
<m:Price>34.5</m:Price>
</m:GetStockPriceResponse>
</soap:Body>
</soap:Envelope>

WSDL — an XML-based interface definition language
used for describing the functionality of a web service.

WSDL provides a machine-readable description of:
what operations are available in the service,

what data are required and returned by service operations,

what message-exchange pattern is employed,
how to connect to the service provider,

where to find the service endpoint.

WSDL acts as a service contract that users should observe
and the web service promises to abide by.

WEB SERVICE DESCRIPTION
LANGUAGE

WSDL 1.1 document WSDL 2.0 document
™ -

Service interface types Service interface
"What" "What"
>‘ (abstract definition) } (abstract definition)
interfaces

| operations

binding binding

Service

service implementation service implementation
"How" + "Where" "How" + "Where"

(concrete definition) (concrete definition)

port endpoint

4 4

Address book service example: http://goo.gl/aBiM T/

http://goo.gl/aBiMTZ

Many frameworks ship with built-in support
wsimport in JDK 1.6
IntelliJ IDEA Ultimate
wsld.exe in .NET Framework Tools

Visual Studio

WSDL documents, as service contracts, should be publishable and
discoverable, as are the services that they describe.

Universal Description Discovery and Integration (UDDI) registry
Stores published WSDL

Clients can discover the document and consume the web service
that it describes

Public UDDIs have not been as widely adopted — Microsoft, IBM and
SAP shut down their UDDI servers in 2006

Private UDDIs are still in use

PRESENTATION OUTLIN

e History & Motivation
e \What are web services?

» Big web services:
» Brief history of web services: RPC, XML-RPC
* Web services protocol stack: SOAP, WSDL
» Java API for XML Web Services (JAX-WS)
e NET API tor Web Services (WCF)

e RESTful web services:
e REST — Representational State Transfer
e RESTful web APl in practice
e Richardson Maturity Model
e Java APl for RESTtul Services (JAX-RS)
 NET API for RESTful Services (WCF)

JAX-WS is a standard (part of the Java EE plattorm) for
building web services and clients that communicate using

SOAP

JAX-WS is the successor to JAX-RPC derived from XML-RPC

JAX-WS specitication (JSR 229) defines the mapping
between WSDL 1.1 and Java:

defines how different WSDL constructs are mapped to Java.

defines how Java packages, classes, interfaces, methods, parameters,
and other parts of a web service endpoint are mapped to WSDL

JAX-WS ON TH

SERVER SID

» On the server side, the web service methods are defined by an
interface or a class written in Java

* JAX-WS relies on simple annotations added to plain Java
classes to define service endpoint interfaces:

1 @WebService
2 public class Hello {

3 private final String message = "Hello, ";

4

5 public Hello() {

6 }

7

3 @WebMethod

9 public String sayHello(@WebParam(name = "name") String name) {
10 return message + name + ".";

11 }

A client creates a proxy (a local object representing the
service) and then simply invokes methods on the proxy

Client proxies can be automatically generated from
WSDL using the wsimport tool which follows the WSDL-
to-Java mapping

The JAX-WS runtime system converts the API calls and
responses to and from SOAP messages

JAX-WS IN AC
CODE FIRST D

SERVER

¢

(

TION

EVELOPMENT

CLIENT

-(|
AR

SOAP OVER HTTP

JAVA EE

JAVA SE

JAX-WS delegates the mapping of Java types to and from XML definitions
to JAXB — annotations can be used to customize the mapping.

Business methods that are exposed to web service clients must have
JAXB-compatible parameters and return types.

JAXB
mapped
classes

‘ instances of

follows]

unmarshal
(validate)

A —
marshal

(validate)

JAX-WS IN ACTION
CONTRACT FIRST DEVELOPMENT

SERVER

CLIENT

>

SOAP OVER HTTP

-< |
AR

JAVA EE JAVA SE

Code-first approach is dominant beacause it is easier.

However, it has some drawbacks, including:

fragility — implementation code typically changes at a faster
rate than the interface (or a formal service contract); changes
in the back-end can break any existing clients

tight-coupling — interfaces are not separated from
implementations, internal models are exposed

language-dependence — different WS stacks generate
different service contract; Object/XML impedance mismatch

performance — automatically generated XMLs can be bloated

Metro — a high-performance, extensible, easy-to-use
web service stack which is developed as a part of the

open source GlassFish project. ‘

Components of Metro include:
JAX-WS RI — reference implementation of the JAX-WS
JAXB Rl — data binding used in every Java WS framework

WSIT — support for quality of service features (reliability,
security, transactions) and interoperability with .NET

Metro is bundled with Java SE and GlassFish server.

Apache Axis2 — Apache Extensible Interaction System

support for wide range ot XML-Java binding frameworks (XMLBeans,
JiXB) and transport protocols (Jabber, UDP)

not fully compliant with JAX-WS

Apache CXF — Celtix + XFire

simple to integrate CXF into existing systems, intuitive, easy to use
fully compliant with JAX-WS and JAX-RS specifications

Spring Web Services:

emphasis on contract-first development

best aligned with Spring technology stack (Spring Annotations,
Spring Security), does not implement JAX-WS.

PRESENTATION OUTLIN

e History & Motivation
e \What are web services?

» Big web services:
e Brief history of web services: RPC, XML-RPC
* Web services protocol stack: SOAP, WSDL
e Java APl for XML Web Services (JAX-WS)
» .NET API for Web Services (WCF)

e RESTful web services:
e REST — Representational State Transfer
e RESTful web APl in practice
e Richardson Maturity Model
e Java APl for RESTtul Services (JAX-RS)
 NET API for RESTful Services (WCF)

WCF

Infrastructure
Set of APIs for SOA applications

Uniform interfaces for multiple communication technologies
Code development is separated from how communication is performed

A mode of communication is fully configurable

Support for
SOAP
N= 1
MSMQ

Named pipes

Define data contract

[DataContract]

public class StringData

{
[DataMember]

public string OriginalString;

[DataMember]
public string FlippedCaseString;

Define service contract

[ServiceContract]

public interface IFlipCaseService

{

[OperationContract]

StringData FlipTheCase(StringData sd);

Intertaces does not change with implementation

Intertfaces can be deployed as separate assembly and
shared

Intertace is a minimal amount of knowledge required
to use a service

CONFIGURATION OF

Endpoint
Address of service
Binding of service (e.g., protocol)
Contract of service

Behavior of service (e.g., RPC style)

DPOINTS

MULTIPLE ENDPOINTS OF A
SERVICE

<system.serviceModel>
<behaviors>
<serviceBehaviors>
<behavior>
<I-
To avoid disclosing metadata information, set the values below to false before deployment
-->
<serviceMetadata httpGetEnabled="true" httpsGetEnabled="true"/>
<!— To receive exception details in faults for debugging purposes, set the value below to
true. Set to false before deployment to avoid disclosing exception information -->
<serviceDebug includeExceptionDetailInFaults="false"/>
</behavior>
</serviceBehaviors>
</behaviors>
<protocolMapping>
<add binding="basicHttpsBinding" scheme="https" />
</protocolMapping>
<serviceHostingEnvironment aspNetCompatibilityEnabled="true" multipleSiteBindingsEnabled="true" />
</system.serviceModel>

WS-* — standards associated with big web services
that extend the basic WS protocol stack, including:

WS-Security — specifies how integrity and confidentiality can
be enforced on messages.

WS-ReliableMessaging — allows SOAP messages to be
reliably delivered between distributed applications in the
presence of software component, system, or network failures.

WS-Addressing — a standardized way of including message
routing data within SOAP headers.

WS-Transaction — defines protocols to achieve transactional
behavior

P Interoperability P Business Process Specifications » Management Specifications P Presentation

Issues Basines Process Exeeution Web Service Chorcopeany Specifications
e for Web Services 1.1 s :I'"D“'"!M'”mh' Interface - Ilus;i mﬂmieungmphg p
1. - BEA Syatern, B, vty QST - 1.0- W3t ST

- = = = ==

& Bt Procru Excratios Lusguage for Ock Srrwees & WS-Chavermgeaghy Matel v e A Wk Service Crareegraphy Iatzrfsce WAL ceves e Chareagraphy Drcrpscn Largusge A& Ve Seriee 5 Varazemert OF Srcriz 5 gerers 040 et
1LIHFILSNS) o T Semicr opETatom on b chormagaphedl nprer) & dedaatre,

anz atrarmaes ol the BOAM mewag)

L e B nguagr W S WAL ATLE] e ren v i s Wi S VLN VSRV Bk raragie ot Froizea or manag g e huch o P wven,

mﬂulmu’nmnma\dw 5 and The soq) con teat ol & messge enchange in which T Weh Seniee that defines fram a ghosal viewpoi et Tae coer e and el ﬁ((‘tﬂm‘t\"sll\ll‘w\'\'i'le'c.-o'l.ll\ltw’tikﬁlrs dewioes, WD servioes and oy apa At and prher
pecTiaton o uses pre e " el el - e Cabymite g e proarts bl
SEABRHS B S0 e T8 62y e e T B 1 54 Y B ORI
T — riere iy - - “ » e [———
PRSI G e R for Bow elaned 61 of Bae- Baiel [. Baiel A k.“l’ﬂﬂmaﬂlli.wwﬂ(s-l(lﬂﬂ =13
Veopreary Ut Eemio shoeSousens SLAS I s Process Process XML Process Definition ecrecimms vt cormporares prve

e o o epresele Language for Web Services 2.0 Language @=vu Langusge pwos R] 7 pvears b A

mmmuumw BFM
Siehed Systerm - Committes Final Final
- Hasiacn Frocos Exerstios Laaguage for Werh Soreon & Buninon Frecou: aragemeet Lasgusge (26401 on Lasguage (X0} proscrsn
L0 [BFELUNT] promcities 3 Lpuage 10 the iparal e) meldLnguage W eapessing v Wl. Iell'nm-alca-wamw-m-cmoelﬁm ak Servce Miadling Langeage SMU o aind o roed
SRTTHANA B s P e DRSS EE IR [P L FRRbel e T, svmolo T seviccysod s, iclieg o stvenie.
protzosi aning Wk Seneon waeatrs s plicies,

& B Profike - Tnr Basic Pt 1.3 builcs oo i Profile
1.1 By incoeporating Baske Patle 1 evata. eadswents
from Serpic 04 Binging Profic 1.0, 3nc sdding 137 pert
For WS- Addresging deal MTOM

- P Metadata Specifications P Reliability » Security Specifications P Transaction P Resource

AR e W-PollqAstrions Specifications Specifications Specifications
L EEA Systems, SErvies
asls 12

‘x Poliey feMFibes the Capatdies 3od aoaemain of ‘Mﬁ‘ﬂ*mw#m%‘:ﬁ? 161 0 HHETHS A WSSty i & 007 #0 ST S PR eveReg A WE-SenstyPulny i now 1 fesine piloe reated firie.y

BRSBTS 30 3 R Bre w. et ol o :J far t W Sevno L \1| erfirnd in the Wi-Seoun: fraat

L It T e e ey i e Compistee Deaft i i b by b o e tar e it et ol . et e et o it A rmnrd

akpieithe, pewacy sl mﬁ.i:lmﬁmun—nnam S & Wich Sevviery firwer | erbnes o famiy =t
e

Anlunnnu ke - ke Attchoeen) Profi 12

T
ﬁtilm‘t&tﬂwﬁl TR
A 5 Eati e g fte ol St a0 - o
r wksn»uma;s Wick wrvicrs s pammar atr reeble n the avener
[ty ST T, ERER 1 A OO S W5-BaseFaults iwees)
3 S0P b tha i reuimd T P8 Iesgmeaainy 12
WS5-PolicyAttachment 'lls-llsmvux DAz
1.2 Mnm N 8 W ninen Ay e 5 e e Wiorking Braft
wir Inied and W5-Reliable Messaging coeedieaton tvpe 14 310 be aped wi . enirsitie cosede o PR T ————
WIC Meshier Ssbmbsion Oralt Policy Assertion (ws-am posc] i ke Cecmcmtion sclicatiom

Sk sy e bkt i Bty e

11 l"iﬁﬁf"lm“!wkl"'!dﬁ(w BIL e By o i (3h, 3k milh s A P
T o0 e S e o e et b W e
b WIS -PoibeyhTiachmetent gl et g eeersl-parposs & WS-Biscumery defes 3 st daogery proomos! oo TASIS T e ey Syl perTaation mﬂuwwww-u.w-n.mum s
Potche sises for mraciabing pririry with the sjerss ty ynamic dicomryof wraiees - her 1t rmsngerl Comsittee Deatt g (2 ot p sccurity ke form ! optemdyum WS-ServiceGro
e they BREY I8 0 Py b BH%ED B gan [X et e e WA St ks U (WSRF]
A Simalc SUAF Birding P ~ [he Sme S080 Bindirg : - - g tac arr 1)
et e trough g Py i

8 Services RelablcMc:

w Awcriian
Frofibe conséss.of hese Binie Profie §) mgevents b =raderety .
rrabed i thr el sasen o the ervecpe s el badag o the Subyelt ﬁs,"s“n:,"hﬂ;m',{; “mm"&‘,‘;‘f;j‘,‘ A Wi-Rtorui Traraarbon Srie prinech hal crase Fasny
rezseenbation in the meuage. mnmm'nmm IAEHIHN [RHEHES RHEW I W dad :-w-elwo-««w
sl ekroprais acroen il barcheare avd s e npp——rry
WS-Metadatabxchange Universal Description, e e e
11 Di and lnt ti For 3 corman aznciic purpE.
BEA Sysberm, Compuber Ao afcs, Lt H
A Mirosalt, SAR Sun Micrusystrs sedd 202 WS-Reliability WS-ResourceProperties
DASIS 11 L2
Fuhilic Draft DASS-Standard DASIS SIS
(ASIS-Saandaed ‘Working Draft
.tm.u:i ie1 2 aervier 2 proves 4 Usiveraal Dewerighiss, wam'xdhl:v:‘mﬂlm A Wi-Frécrafien risritr how [z manag o T IMEWMTMIWW"“
e T AT D 8 Ml s Tt s GeTes 8001 e uppeen Kefbres i o Smach e 10 SIAP memaes s s slaoRerip 3 heleenesus Fr = three apecticatorn airees o kg prazieTa .- ReipemaPrgerts i he eati o i e
Security Proie det m.!:lﬁSlBastS«wl- by 3 etereaie 10 3 WD L2 RAOE 3 L8 CBR S0RE 3 ST g Faagery o‘m<mu9uma.-\‘-&mo] P T — | & yzed o1 b 42 58 ugrata, srelsremphon da the peatent reudeg e for fedeute: rige swhe s madple Wl Services e scd in coring. f:nwwmb.mm ey e drcan
e 1L based o @ sen il of WOL (AP azrratiam o e e rctadats that .m—mpm- nr Wi wwrars they rubr swslsbln, mw-m;wma««lwwlwom swm o mnetarce wit WSSeraring whicy i st ity W rogchissbirss 34 paitar the Wen Sesviee inmestote. meaec.»-mcr .
eI TR e To Techvoal el erlaces wven Py B vsed 10 ARCESE el gaaramsres enage srren rg. WE-RA SEEEy 1 a0 s relerenon the Kerbero soers. A SRR Lo WW‘!'M“MP‘W WA-HrLrer prTperey TR 3 progrcton of o 8 v
o arvicr. e a1 S04 header eatrrua and n depETEERL 3 i, e A B ThE WS- ReSinsite Sealk

e andery: mn-uwo This specfecation cheairs 3

Btimgn
w:hmneﬂpun- Web Service Description it b
Language 2.0 Core [
o ‘wiorking Drart
Wit wakiog st Conddte tmmendation e ——— AU Ao e st o bbby
o allgmiag e e e o shae & coewron conneat -t e

& Wers Serder Deieriation Largusge S04 Brdeg & Wi Serviee Deserigton Langaage 20 Core 4 57 0L nn.-mmrmun-umn-r-mwmr & WE-Trunt deverises s barmswsat 12t il rsdch that pasbie

: . : 11
A L Tokea e s b sna ey e e m.(,m.;urc. ety WSIL 240 bated 1asgua Fo 0ESCNA] Wel SErviced 46w 10 Seary Aeriun WrkyaLaeasge ML vt Vet Serates Thseraeh IR, B aes WS Senusity sk :',”n;-“;m v ‘,"J:“.;.‘,"..:“'
Wirs sersines spesificat o, 3o erizeyand Copunctior waih Sout e P T i the eontra: of P4: YOAF Nrmsg n«umnma mrcharanms 17 r s P AT 3% PeE Lo
amerer et e s e DpecTFac i methick] e servioe ExpInt i Toe oAt st) SONF et 104 S04 SEVAY RN ENTAGE ID EAE The SRANE 00
Froage cahange. dmacmiration 3! cedmaat witea ditfert fnt demaie WS=Transfer
W
W3 Member Subreission

A SAL Toiven Prafie Lmomanmm)'ew

ey
Wi Service Description A W~ Cosnlinriion Feamentel I e e i PR — T ———
: i & A B S R R 1 3 Mul ap, BOOEAY VL FEEETLTAL OF VLD HTVOE-t AT
war Resource Representation
Mate SDAP Henkr Block (rrsHay

ek meralons: gy il A Ve Seevice Dot Lampaage °.1 i 0 301 daned .nwsdseowg.:l S8 Certitoate Toen Profie fesites & WSS Corwes1a lim s Srm 1 mmge 381 M

it st whi Langaage lr deacribing Wk wTvor 1n naw 5 ancru e e 2 S50 A0 aut sovtication frmrwert Wit e rECIGE FTurgrL et prtn cusing
aresdrons i ai spec o whi proee thers speriesthe curonal e s e the WS- Senusy: SOAF Message Soinity sperifation ot Eiange Vo8 s it By & Ressarne Repescetaton SOAP Hoader Back [FSHE
Inropribiiey. epertons ko e the sowan by & Wo-Tronncton Wetagement W10 defves s v il complererTi MW by Srfinng recharm

servos corading of a Temastion Sy b ek Ser TS 4 Doty e ml%oewwm
0 S 1.3 g

R e e P Messaging Specifications

WS=Notification
- i
04515
ASIS-Standard

A Felisie fapcheances Memaging rrul-DlAl-l'Juu
peulle. askion of the WS-l o

* Wa-Brokomeh ol ficaton P WA-Bachctificsion P Wa-bverieg sofne

fefines the imerface boe SR T RITEs gy, baselinn se1 of apeat

Ihe e <a: et WS-BaseNotification Saeghs et W Ihat e e e 42
- ‘WS5-Eventing

e A

Wi
parties
s Pubtlic Deaft

pubd g

T BTSN B8 P

ety e rudzent dentitrasonin
g,

mong sther Tngs, baic #38 intog: :nl:rmll'nuu prwiten.
W reruom Irshciogia.

F Wi-Topn defi o theer P WE-Addnonng - SOAF
Bindiog pomwidcf Duregest
“rata’ mezhuran b Fucnege et rizreaton
b Wey servioes ol ¥

oty

%-m

10
WIC
Candidate Beoom mendation

‘WS-Enumeration
Systinet, Micsott, Sonic Software, SEA
Sypsaems and

diriauicd ewmamert

0ASIE
S 0ASS-Seandard [

Standards Bodies

OASIS [DxOmprarmata e Atmacsroat f strciarcd iformation

Staratirli (DNIS] 5 § At foa faaiL IEesitins st
s e beiars sundves The
oM L P T o e T a3 o " 3wt atarm
T St b, 8 SRR i 1 fu e 304 ot B
tior-gectic Tasro. Founerd i1 190, GASS, S me thay 4000 I o s, NpsrTe
e 65 axgur atiorn ard incivicial remben in 100 cuntie,.

T3 g The T Wide Wk Conuortiam (W) wascratre n etz 1304 0 bead the

W3 muu*mm.-bunk-wh-awn-? s s o . .
T b b i b, W2 i 250 Mt i
et e worlt 353 PaL s er Tt o
et e WL e o e
izersiego oy | el i 308 FOC i th ML Rabee ity a6
the o o LS pr ol ot applca g aticr T rvag g |2 Liraa 5L, +e
e e o T Bk Pttt Aoty o [r————

Witk Sorviiis WcitOy. Ovinlithes IS0 o 1% i Sdalry "

NS e Forot b i b e e XML 1.1 i, e XML 1.0
DRTIING IXTE 3% PG Ting awuege. T orariution deene ey ot Wi 0
vt ks bk B I Sk ORI ek ek by e feiiee TN (s S HBIE 125 Wil

oo Tmerd puesm and wegarting mcarm Sem fraky Wa-l oo aorcen axd
WEgr gk prisE b o imeispeatic eactangs of mevages betwren 'Wra wovon Recmmendition :"M“ o irrocrin] i Fecommendation

4.&“‘ o et Legioresing ik P [ET] s e ze wherst i el

(T e S e ftwoxn

Wit the €voit 27 of the 1T T SIcharTuT 3nd e wwe i1 .
fhisy

o - hlmlucunm I Ramcizacn in XML B XML infarmation St o B XML Schema - WL I EML binany Optimire rib Co I Dencribing e sia Content

Larguage i . prisites 3 Livpie weihod ., 0 AT 3 545 1 era e s XML binary Optimized varkagieg Gi0r o0 | Deseribing Med nbent | o R Do XL

Ngmm im XML Tor qanfying creTE and XML Information Set prowvee 3 cormatert et of XML Schema I XML rguage for I‘! For dremizing and " | IMICHZR] e bz b2

= atrinne s v AL i euitoes o v it N sk Pack H0F) e et of of Binary Data in XML e

sprnficaicn Tut st 10 - e comere: of XML Tt e [OMCED mmaciased Wiy

W3t - WL i e nfpmates Wit e, ‘;‘épe WiC & et sorecan 1 0L

Recommesdation Recammendation Weeking Draft dznurreet and ko asrcy, in

Fecom mendation Mote WM Scherua, the eapected

sweeated

with by sevest
sortere

1 E T Fion

SOAP

veroosity

overhead

Fragility

Complexity DeathStar

Let's Pretend The Web Never Happened

O'REILLY Lockin & Vendor Thinking

But.. WS-* are still heavily used in the B2B integration.

PRESENTATION OUTLIN

e Motivation
e \What are web services?

e Big web services:
e Brief history of web services: RPC, XML-RPC
* Web services protocol stack: SOAP, WSDL
e Java APl for XML Web Services (JAX-WS)
e NET API for Web Services (WCF)

» RESTful web services:
» REST — Representational State Transfer
o RESTful web APl in practice
e Richardson Maturity Model
e Java APl for RESTtul Services (JAX-RS)
e NET API for RESTful Services (WCF)

Why is the Web such a successful information-sharing
platform?

How has it grown from a simple network of researchers
and academics to an interconnected worldwide
community?

What makes the Web scale?

Can we follow the same principles driving the human-
centric Web for computer-to-computer scenarios?

Architectural Styles and the Design of Network-based
Software Architectures, Roy Fielding, 2000
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Web architecture is based on three technologies URL,
HTTP, and HTML — the Fielding dissertation explains
the principles behind the design of these technologies.

Underlying the three web technologies are two
essential concepts: resources and representations.

Understanding web technologies on a deep level is the
key to understanding the REST constraints, how those
constraints drive the success of the Web, and how you
can exploit those constraints in your own APls.

Resources are the fundamental building blocks of web-
based systems, to the extent that the Web is often referrea

to as being resource-oriented.

A resource is anything we expose to the Web, from
a document or video clip to a business processor device.

A resource is anything with which a consumer interacts
while progressing toward some goal.

To use a resource we need to:
identify it on the network — the Web provides UR]
have some means of manipulating it — the Web employs HTTP

URI

http://weather.example.com/ocaxaca l

Resource

: e®
Representation b

Metadata:
Content-type:

application/xhtml+xml

Data:

<1DOCTYPE html PUBLIC "...
“hettp://www.wld.org/...

<html xmlns="http://www...

<head>

<title>5 Day Forecaste for

Oaxaca</title>

</html>

HTTP.//WWW. W3 ORG/TR/WEBARCH/

http://www.w3.org/TR/webarch/

A representation is a view on the state of the
resource at an instant in time, e.g. JSON, PDF.

A resource can be represented in multiple formats,
defined by a media types; client and server employ
content negotiation to agree on the transter format.

Clients and servers exchange representations:

GET — retrieves a representation of the current state of the
addressed resource; the client never sees a resource directly.

POST — passes a representation of the resource to the server
so that the underlying resource’s state can change.

REST is a set of architectural principles (design
constraints) describing how to build distributed systems
(e.g. web apps) to achieve scalability and reliability:

Client-Server

Statelessness

Caching

Uniform Interface:
|dentification of resources — addressability
Manipulation of resources through representations
Selt-descriptive messages

Hypermedia As The Engine Of Application State — HATEOAS
Layered System

Code-On-Demand

REST ARCHITECTURAL PRINCIPLES
7. CLIENT-SERVER

s @

DATA USER
STORAGE SERVICES INTERFACE

Immediate separation of concerns:
Simplifying the server component in order to improve scalability.
Moving all of the user interface functionality to the client.

Independent development and evolution of components.

REST ARCHITECTURAL PRINCIPLES
2. STATELESSNESS

s @
\

DATA

T SERVICES
STATE OF STATE OF
RESOURCES APPLICATION

Each request must be context-free and self-contained
Increased:
» Visibility — work to be done can be determined based on a single request

» Reliability — it eases the task of recovering from partial failures

» Scalability — no session means that the server may free up once a request is responded

Decreased network performance by sending repetitive data

REST ARCHITECTURAL PRINCIPLES
3. CACHING

s @
——_

DATA
STORAGE

SERVICES

Server's responses should be labeled as cacheable or non-cacheable.

It a response is cacheable, then a client cache is given the right to
reuse that response data for later, equivalent requests.

Caching may increase performance but also introduces the standard
complexities associated with proper cache invalidation.

Addressability — every resource in the system is
reachable through a unique identifier

the Web provides addressability by using URI.

:// [] [?query-string][
unigue URIs make the available resources linkable.

]

Manipulation of resources through representations — clients

and servers manipulate resources by sending representations
back and forth using HTTP methods

HTTP has a fixed number of methods with well-defined semantics that are

sufficient to meet the requirements of most distributed applications:
GET
PUT
DELETE
POST
PATCH
HEAD
OPTIONS

HTTP defines a set of response codes that specity semantics of the result of
the requested method, e.g., 200 OK, 201 Created, 404 Not Found

HTTP methods and response codes mean the same for all resources (universal
semantics).

Self-Descriptive Messages:

Interaction is stateless between requests — in a stateless
system, a server can handle a client’s request without having to
remember how it handled all that client’s previous requests.

Standard methods and media types are used to indicate

semantics and exchange information — an HTTP response
includes the Content-Type header to inform the client how
to parse the bodly.

Responses explicitly indicate cacheability — the server
conveys caching information by adding a header to the very
HTTP response that might be cached.

HATEOAS
— Hypermedia As The Engine Of Application State

All application state is kept on the client side. Changes to
application state are the client’s responsibility.

The client can only change its application state by making an
HTTP request and processing the response.

How does the client know which requests it can make next?
— by looking at the hypermedia controls in the representations
it has received so far.

Therefore, hypermedia controls are the driving force behind
changes in application state.

1
2
3

4
5
6
7/
3
9

REST ARCHITECTURAL PRINCIPLES
HATEOAS EXAMPLE

GET /account/12345 HTTP/1.1
HTTP/1.1 200 OK

<?xml version="1.0"7>

<account>
<account _number>12345</account_number>
<balance currency="usd">100.00</balance>
<link rel="deposit" href="/account/12345/deposit"/>
<link rel="withdraw" href="/account/12345/withdraw"/>
<link rel="transfer" href="/account/12345/transfer'/>
<link rel="close" href="/account/12345"/>

</account>

REST ARCHITECTURAL PRINCIPLES
HATEOAS EXAMPLE

GET /account/12345 HTTP/1.1
HTTP/1.1 200 OK

1 <?xml version="1.0"7>

2 <account>

3 <account_number>12345</account_number>

4 <balance currency="usd">-25.00</balance>

5 <link rel="deposit" href="/account/12345/deposit"/>
6 </account>

HATEOAS:

HATEOAS improves discoverability, providing a way of making
the application more self-documenting.

A REST client needs no prior knowledge about how to interact
with any particular application or server beyond a generic
understanding ot hypermedia (in contrast to knowing the IDL)

HATEOAS allows a client to automatically adapt to changes on
the server side.

HATEOAS allows a server to change its underlying implementation
without breaking all of its clients.

Familiarity — no need for interface description
language to describe which methods are available.

Interoperability — with RES

over H

P there is

usually no need to install vendor-specitic libraries.

Scalability — predictable behavior of interface
methods can bring large pertormance benetits.

method properties (sate and idempotent)

caching semantics

statelessness

Layered-client-server adds proxy and gateway components to the
client-server style... These additional mediator components can be
added in multiple layers to add features like load balancing and

security checking to the system.

Layered systems reduce coupling across multiple layers by hiding the
inner layers from all except the adjacent outer layer, thus improving

extensibility and reusability.

A client cannot tell whether it is connected directly to the end server, or
to an intermediary along the way — transparency.

Optional constraint — may be disabled within some contexts.

Client functionality to be extended by downloading anc
executing code in the form of applets or scripts.

This simplifies clients by reducing the number of features
required to be pre-implemented.

Allowing teatures to be downloaded after deployment
improves system extensibility and configurability, and
orovides for better user-perceived performance.

PRESENTATION OUTLIN

e Motivation
e \What are web services?

e Big web services:
e Brief history of web services: RPC, XML-RPC
* Web services protocol stack: SOAP, WSDL
e Java APl for XML Web Services (JAX-WS)
e NET API for Web Services (WCF)

» RESTful web services:
e REST — Representational State Transfer
» RESTful web API in practice
e Richardson Maturity Model
e Java APl for RESTtul Services (JAX-RS)
 NET API for RESTful Services (WCF)

REST captures the fundamental principles of the Web.

REST constraints provide abstract guidance on how
modern web applications should be designed to
oromote their longevity and independent evolution.

In particular, REST focuses on the interface between
the server and the client — RESTful web services.

HATEOAS, while theoretically compelling, has proved
ditficult to implement consistently (e.g. in JSON APIs).

Web APl — web services with emphasis on RES
orinciples (in contrast to SOAP-based WS).

=
#)

RESTtul
Web APIs

Web Services

O'REILLY"

The key abstraction of information in REST is a resource. Any
information that can be named can be a resource: a document
or image, a temporal service (e.g. "weather in Los Angeles”"),

a collection of other resources, and so on.

|dentity and model the resources exposed by the service:

name resources as houns as opposed to verbs or actions

each resource has at least one URI, which should follow a predictable,
hierarchical structure to enhance understandability and usability.

a resource can be a singleton / instance or a collection, e.g.

a user of the system — https://api.github.com/users/mszubert

repositories — https://api.github.com/users/mszubert/repos

repo contents — https://api.github.com/repos/mszubert/2048/contents

https://api.github.com/users/mszubert
https://api.github.com/users/mszubert/repos
https://api.github.com/repos/mszubert/2048/contents

Use HTTP verbs and response codes to model
interactions with resources:

GET = read a representation of a specific resource (by an
identifier) or a collection of resources without side-effects, e.qg.
GET /users/mszubert/repos

DELETE = delete a specific resource by an identifier e.g.
DELETE /repos/mszubert/2048

POST = create a new resource by appending to the existing

collection resource — server generates URIs
POST /repos/mszubert/2048/forks

PUT = update an existing resource or create a new one by
sending its complete representation — client specities URIs
PUT /repos/mszubert/2048/contents/:path

RESTFUL WEB APl GUIDELINES
HTTP VERBS PROPERTIES

HTTP METHOD SAFE IDEMPOTENT

GET
POST
PUT
DELETE
PATCH
HEAD

OPTIONS

Specity possible representations of resources:

As the default representation, the recommendation is JSON,
but services should allow clients to get alternatives (e.g. XML)

= GoogleTrends Poréwnaj < B R

® XML API ® JSON API

Weazukiwane hask Wyszukiwane haska + Dodaj poréwnanie
Wyszukiwane hasto Wyszukiwane hasto

Caty swiat - 2004 - dzis Wszystko « Wyszukiwarka Google «

Zainteresowanie w ujeciu czasowym

Source: Google Trends,

https://trends.google.com/

JSON (RFC 4627) — a data interchange text-based format
derived from JavaScript (a leightweight alternative to
XML):

easy for humans to read and write

easy for machines to parse and generate

good interoperability with the client (browser)

Commonly used in RESTtul Web API as a resource
representation format.

JSON Schema specifies a JSON-based tormat to define
the structure of JSON data for validation, documentation,
and interaction control.

JSON EXAMPL

1 {

2 "firstName": "John",

3 "lastName': "Smith",

4 "isAlive": true,

5 "age': 25,

o6 "height_cm": 167.6,

7 "address": {

8 "streetAddress": "21 2nd Street",
9 "city": "New York",

10 },

11 "phoneNumbers": [

12 {

13 "type": "home",

14 "number": "212 555-1234"
15 },

16 {

17 "type": "office",

18 "number": "646 555-4567"
19 s

20 1,

21 "children": T[],

22 "spouse": null

BASIC TYPES

Number — a signed decimal number that
may contain a fractional part.

String — a sequence of zero or more
Unicode characters.

Boolean — either of the values true or false.

Array — an ordered list of zero or more
values, each of which may be of any type.

Object — an unordered collection of
key/value pairs where the keys are strings.

null — An empty value, using the word null

JSON is not a hyroermedia format — there is no predefined
way to deal with link discovery in JSON.

Although a browser running JavaScript is consistent with the
design of the Web and the tormal definition of REST, the use
ot JSON as a data interchange format is not.

JSON-LD, a W3C Recommendation, is a specification for

encoding meaning into otherwise meaningless JSON
documents:

{
"@Qcontext": "https://json-1ld.org/contexts/person.jsonld",
"@id": "http://dbpedia.org/resource/John_Lennon",
Ilnamell: 11 II’
Ilbornll: 11 II’
"spouse": "http://dbpedia.org/resource/Cynthia_Lennon"
s

Hypertext Application Language (HAL) is another
standard for storing links in JSON

https://json-ld.org/contexts/person.jsonld
http://dbpedia.org/resource/John_Lennon
http://dbpedia.org/resource/Cynthia_Lennon

PRESENTATION OUTLIN

e Motivation
e \What are web services?

e Big web services:
e Brief history of web services: RPC, XML-RPC
* Web services protocol stack: SOAP, WSDL
e Java APl for XML Web Services (JAX-WS)
e NET API for Web Services (WCF)

» RESTful web services:
e REST — Representational State Transfer
e RESTful web APl in practice
» Richardson Maturity Model
e Java APl for RESTtul Services (JAX-RS)
 NET API for RESTful Services (WCF)

RICHAR

"Steps toward the
glory of REST”

DSON MATURITY MOD

HTTP://MARTINFOWLER.COM/ARTICLES/
RICHARDSONMATURITYMODEL.HTML

POX — Plain Old XML over HTTP.

Services use a single URI, single a HTTP verb (typically
POST) and a single response status code (ct. XML-RPC)

HTTP is used only as a synchronous, firewall-triendly
transport system for remote interactions (remote
procedure calls) based on transferring XML.

POX-based approach ignores the web as a platform.

RICHARDSON MATURITY MODEL
_EVEL O EXAMPLE

1 POST /appointmentService HTTP/1.1

2 Content-Type: application/xml

3 [various other headers]

4

5 <openSlotRequest date = "2010-01-04" doctor = "mjones"/>
1 HTTP/1.1 200 OK

2 Content-Type: application/xml

3 [various other headers]

4

5 <openSlotList>

6 <slot start = "1400" end = "1450">
7 <doctor 1d = "mjones'/>

8 </slot>

9 <slot start = "1600" end = "1650">
10 <doctor 1d = "mjones'/>

11 </slot>

12 </openSlotList>

RICHARDSON MATURITY MODEL

_EVEL O EXAMPLE

POST /appointmentService HTTP/1.
[various other headers]

<appointmentRequest>
<slot doctor = "mjones" start
<patient 1id = "jsmith"/>
</appointmentRequest>

NOUSs, WNE

HTTP/1.1 200 OK
[various headers]

<appointmentRequestFailure>
<slot doctor = "mjones" start
<patient id = "jsmith"/>

ooNNOOUT A WDN -

</appointmentRequestFailure>

1

"1400" end

'"1400" end

</appaintménbt not available</reason>

u145@u/>

u145®u/>

Rather than making all requests to a singular service
endpoint, retference specific individual resources.

URI templates (e.g. /doctors/{name}}):

provide a way to parameterize URIs with variables that can be
substituted at runtime,

allow to automate the way clients bind to services,

porovide human- and machine-readable service
documentation.

~ WN -

NOUR,WNER

Ol WN -

RICHARDSON MATURITY MODEL

_EVEL 1T EXAMPLE

POST /doctors/mjones HTTP/1.1

[various other headers]

<openSlotRequest date = "2010-01-04"/>

HTTP/1.1 200 OK
[various headers]

<openSlotList>
<slot 1d = "1234" doctor
<slot 1d = "5678" doctor
</openSlotList>

POST /slots/1234 HTTP/1.1
[various other headers]

<appointmentRequest>
<patient id = "jsmith"/>
</appointmentRequest>

"mjones” start
"mjones” start

"1400"
"1600"

end
end

||145®||/>
"165®"/>

Level 2 introduces a standard set of verbs to handle similar situations
in the same way, removing unnecessary variation.

GET is crucial to support caching and improve web performance.

POST and PUT are not strict equivalent of create and update:
PUT — create or overwrite a resource completely through client-generated URI.

POST — create a resource identitied by a service-generated URI.
— append a resource to a collection identitied by service-generated URI.

PATCH (RFC 5789) can be used to partial update of resources.

Use response status codes to indicate the status.

N =

NOUR,WNER

Ol WN -

RICHARDSON MATURITY MODEL

_EVEL 2 EXAMPLE

GET /doctors/mjones/slots?date=20100104&status=open HTTP/1.

[various other headers]

HTTP/1.1 200 OK

[various headers]

<openSlotList>
<slot 1d = "1234" doctor = "mjones" start = "1400" end =
<slot i1d = "5678" doctor = "mjones" start = "1600" end =

</openSlotList>

POST /slots/1234 HTTP/1.1
[various other headers]

<appointmentRequest>
<patient id = "jsmith"/>
</appointmentRequest>

||145®||/>
"165®"/>

ooONdNO UL, WN K

Ol WN -

RICHARDSON MATURITY MODEL

_EVEL 2 EXAMPLE

HTTP/1.1 201 Created

Location: /slots/1234/appointment

[various headers]

<appointment>
<slot 1id = "1234"

doctor

<patient id = "jsmith"/>

</appointment>

HTTP/1.1 409 Conflic
[various headers]

<openSlotList>
<slot id = "5678"
</openSlotList>

T

doctor

"'mjones" start

"mjones” start

"1400"

"1600"

end

end

u1450u/>

"165@"/>

Level 3 introduces discoverability, providing a way of
making a service more self-documenting.

Hypermedia controls tell us what we can do next, and the
URI of the resource we need to manipulate to do it.

No need to know where to post our appointment request —
the hypermedia controls in the response describes it.

One obvious benefit of hypermedia controls is that it allows
the server to change its URI scheme without breaking clients.

Ooo~NJNOoOuUTpr, WN - N =

RICHARDSON MATURITY MODEL

_EVEL 3 EXAMPLE

GET /doctors/mjones/slots?date=20100104&status=open HTTP/1.1
[various other headers]
HTTP/1.1 200 OK
[various headers]
<openSlotList>

<slot i1d = "1234" doctor = "mjones" start = "1400" end = "1450">

<link rel = "/linkrels/slot/book"
uri = "/slots/1234" />
</slot>
<slot i1d = "5678" doctor = "mjones" start = "1600" end = "1650">

<link rel = "/linkrels/slot/book"
uri "/slots/5678" />

</slot>
</openSlotList>
POST /slots/1234 HTTP/1.1
[various other headers]

<appointmentRequest>
<patient id = "jsmith"/>
</appointmentRequest>

RI1C

ARDSON MATURITY MODEL
_EVEL 3 EXAMPLE

1 HTTP/1.1 201 Created
2 Location: /slots/1234/appointment
3 [various headers]

17
18
19

20 </appolintment>

<appointment>
<slot id = "1234" doctor = "mjones" start = "1400" end = "1450"/>
<patient 1id

<link

<link

<link

<link

<link

<link

rel
uri
rel
uri
rel
uri
rel
uri
rel
uri
rel
uri

= "jsmith"/>
"/linkrels/appointment/cancel"”
"/slots/1234/appointment" />
"/linkrels/appointment/addTest"
"/slots/1234/appointment/tests" />

"self"

"/slots/1234/appointment" />
"/linkrels/appointment/changeTime"
"/doctors/mjones/slots?date=20100104&status=open" />
"/linkrels/appointment/updateContactInfo"
"/patients/jsmith/contactInfo"/>
"/linkrels/help"

"/help/appointment"/>

PRESENTATION OUTLIN

e Motivation

e What are web services?

e Big web services:
* Brief history of web services: RPC, XML-RPC
 Web services protocol stack: SOAP, WSDL
e Java APl for XML Web Services (JAX-WS)

» RESTful web services:
e REST — Representational State Transfer
e RESTful web APl in practice
e Richardson Maturity Model
» Java API for RESTful Services (JAX-RS)
e .NET API for RESTful Services (WCF)

Servlets and JSP

uncomplicated but powerful

porovide convenient wrappers around HTTP requests and
responses; allow for filtering of requests by HTTP verb

JAX-RS (Java APl for RESTtul Web Services)

takes full advantage of annotations to advertise the RESTTul
aspects of implemented services

integrates well with JAXB technologies to automate the conversion
of Java types into XML and JSON documents.

mimics the routing idioms of Rails and Sinatra

JAX-WS (Java API tor XML Web Services)
@WebServiceProvider annotation provides lower-level API

JAX-RS — SERVICE-SIDE API

* Annotating plain Java classes allow to implement the
standard principles of REST:

» identitying a resource as a URI,
» exposing a well-defined set of methods to access the resource,

» providing multiple representation formats of a resource.

1 @Path("hello/{name}")
2 public class HelloResource {

private final String message = "Hello, “;

@GET

@Produces (MediaType.TEXT_PLAIN)

public String sayHello(@PathParam('"name") String name) {
return message + name + ".";

s

=
S OO NO U1 A~ W

11 }

JAX-RS — CLIENT-SIDE AP

JAX-RS Client APl makes it easy to consume a RESTTul
Web service exposed over HT TP by encapsulating the
key REST constraint — Uniform Interface:

every resource is identified by a URI;
clients interact with the resource using a fixed set of HTTP verbs

different representations (media types) can be returned

String entity = client.target("http://example.com/rest")
.path("resource/helloworld")
.queryParam("greeting", "Hi World!")

. request (MediaType.TEXT_PLAIN_TYPE)
.header("some-header", "true")
.get(String.class);

OuUThr, WN -

PRESENTATION OUTLIN

e Motivation
e \What are web services?

e Big web services:
e Brief history of web services: RPC, XML-RPC
* Web services protocol stack: SOAP, WSDL
e Java APl for XML Web Services (JAX-WS)
e NET API for Web Services (WCF)

» RESTful web services:
e REST — Representational State Transfer
e RESTful web APl in practice
e Richardson Maturity Model
e Java APl for RESTtul Services (JAX-RS)
 .NET API for RESTful Services (WCF)

[ServiceContract]
IService

{

[OperationContract]
[WebGet]
EchoWithGet(S);

[OperationContract]
[WebInvoke(Method = "POST",
RequestFormat = WebMessageFormat.Json,
ResponseFormat = WebMessageFormat.Json,
UriTemplate = "OverwrittenUri")]
EchoWithPost(S);

RESTService : IService

EchoWithGet(S)

EchoWithPost(

<system.serviceModel>
<services>
<service name="WcfService2.RESTService">
<endpoint binding="webHttpBinding" contract="WcfService2.IService" behaviorConfiguration="REST"/>
</service>
</services>
<behaviors>
<endpointBehaviors>
<behavior name="REST">
<webHttp/>
</behavior>
</endpointBehaviors>
<serviceBehaviors>
<behavior>
<I-
To avoid disclosing metadata information, set the values below to false before deployment
-=>
<serviceMetadata httpGetEnabled="true" httpsGetEnabled="true"/>
<!-- To receive exception details in faults for debugging purposes, set the value below to
true. Set to false before deployment to avoid disclosing exception information -->
<serviceDebug includeExceptionDetailInFaults="false"/>
</behavior>
</serviceBehaviors>
</behaviors>
<serviceHostingEnvironment aspNetCompatibilityEnabled="true" multipleSiteBindingsEnabled="true"/>
</system.serviceModel>

RESTClient : ClientBase<IService>, IService
EchoWithGet(S)

.Channel.EchoWithGet(s);

EchoWithPost(S)

.Channel.EchoWithPost(s);

<system.serviceModel>
<behaviors>
<endpointBehaviors>
<behavior name="REST">
<webHttp/>
</behavior>
</endpointBehaviors>
</behaviors>
<client>
<endpoint address="http://localhost:8088/RESTService.svc"
name="RESTService"
binding="webHttpBinding"
contract="WcfService2.IService"
behaviorConfiguration="REST"/>
</client>
</system.serviceModel>

client = RESTClient();
client.EchoWithPost("abc");

WADL — WEB APPLICATION
DESCRIPTION LANGUAGE

*» WADL — machine-readable XML description of HTTP-based
web applications (typically REST web services).

» REST equivalent of WSDL used mainly in big web services.
* WADL is not widely adopted (alternative: swagger.io).

1 <?xml version="1.0"7>
2 <application xmlns="http://wadl.dev.java.net/2009/02">
<resources base="http://localhost:8080/myapp/">
<resource path="hello/{name}">
<param xmlns:xs="http://www.w3.0rqg/2001/XMLSchema" name="name"
style="template" type='"xs:string"/>
<method 1d="sayHello" name="GET">

OCoOoONO UL B~ W

<response>
<representation mediaType="text/plain'/>

10 </response>

11 </method>

12 </resource>

13 </resources>
14 </application>

REST-STYL
(MICRO)FR

DropWizard
Jetty for HTTP ¢
Jersey for JAX-RS ¢

Jackson for JSON) ¢ :

T> [T
<

- WORKS

RestEasy
N Restlet
Spark
Sinatra

Express.js

Flask

web development,
one drop at a time

Two types of web services:
SOAP-based
REST-style / RESTtul

SOAP-based web services are one approach to provide
data API for heterogeneous clients.

JAX-WS and WCF are programmer-friendly web service
technologies.

WS-* standards make big web services suitable for
enterprise application—integration scenarios that have
advanced quality-of-service requirements

Web API| form a foundation of modern web applications —
next step towards separating content from presentation.

REST vs SOAP:

REST is minimalistic, SOAP needs a stack of protocols
SOAP is out of sync with web architecture
neither Android nor iOS support SOAP natively

WS-* standards make SOAP services suitable for enterprise application—
Integration scenarios

Advances requirements for quality-of-service, distributed transactions,
reliability, discoverability etc.

REFERENC

[11
N

RESTful Service Best Practices: Recommendations for Creating Web
Services — Todd Fredrich, Pearson eCollege, 2013, available at:
http://www.restapitutorial.com/resources.html|

RESTful Web Services — Leonard Richardson and Sam Ruby,
O'Reilly Inc., 2007, available at: http://restfulwebapis.org/rws.html

Richardson Maturity Model — Martin Fowler, 2010
http://martinfowler.com/articles/richardsonMaturityModel.htm|

Architectural Styles and the Design of Network-based Software
Architectures — Roy Fielding, PhD thesis,

University of Calitornia, Irvine, 2000
http://www.ics.uci.edu/~tielding/pulbs/dissertation/

http://www.restapitutorial.com/resources.html
http://restfulwebapis.org/rws.html
http://martinfowler.com/articles/richardsonMaturityModel.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/

REST in Practice — Jim Webber, Savas Parastatidis, and lan
Robinson, O'Reilly Media, Inc., 2010

Java Web Services: Up and Running — Martin Kalin, O'Reilly
Media, Inc., 2013

RESTful Java with JAX-RS 2.0 — Bill Burke,
O'Reilly Media, Inc., 2014

Client-Server Web Apps with JavaScript and Java — Casimir
Saternos, O'Reilly Media, Inc., 2014

Java Platform, Enterprise Edition: The Java EE Tutorial
https://docs.oracle.com/javaee///tutorial

Microsoft Virtual Academy, Web Services and Windows Azure

https://docs.oracle.com/javaee/7/tutorial

