
W E B  S E R V I C E S
I N T E R N E T  S Y S T E M S

T O M A S Z  P A W L A K ,  P H D
M A R C I N  S Z U B E R T ,  P H D
P O Z N A N U N I V E R S I T Y  O F  T E C H N O L O G Y ,  I N S T I T U T E O F  C O M P U T I N G  S C I E N C E



P R E S E N T A T I O N  O U T L I N E

• History & Motivation

• What are web services?

• Big web services:
• Brief history of web services: RPC, XML-RPC
• Web services protocol stack: SOAP, WSDL
• Java API for Web Services (JAX-WS)
• .NET API for Web Services (WCF)

• RESTful web services:
• REST — Representational State Transfer
• RESTful web API in practice
• Richardson Maturity Model
• Java API for RESTful Services (JAX-RS)
• .NET API for RESTful Services (WCF)



W E B  D E V E L O P M E N T  A P P R O A C H E S
B E F O R E  W E B  A P P S  — S T A T I C  
W E B S I T E S

C L I E N TH T T P
S E R V E R

S T A T I C  
C O N T E N T

H T T P  R E Q U E S T

H T M L
C S S  

J A V A S C R I P T



W E B  D E V E L O P M E N T  A P P R O A C H E S
C L A S S I C  W E B  A P P L I C A T I O N S

C L I E N TA P P L I C A T I O N
S E R V E R

D A T A B A S E

H T T P  R E Q U E S T

H T M L

U I  L O G I CB U S I N E S S  
L O G I C

D A T A  
A C C E S S

G E N E R A T E  
R E S P O N S E



M O T I V A T I O N

• Web services have existed for years, but the shift to 
using them as a foundational design element of web 
applications did not occur immediately.

• Evolution of web application architecture:
• classic web applications
• server-side MVC
• client-side MVC

• Web services follow the web apps evolution:
• shift of responsibility from the server to the client, 
• trend towards separating content from presentation.



W E B  D E V E L O P M E N T  A P P R O A C H E S
C L A S S I C  W E B  A P P L I C A T I O N S

• Programmatic (code-centric) approaches:
• Generating response by executing application written in a 

scripting or high-level programming language.
• HTML and other formatting constructs are embedded within 

the application logic and produced using output statements.

• Template (document-centric) approaches:
• Generating response by interpreting a template file.
• Templates are essentially HTML files with additional ‘tags’ that 

allow for inserting dynamically generated content.
• The inverse of programmatic approaches — application logic 

is embedded within page formatting structures.



P R O G R A M M A T I C  A P P R O A C H E S
J A V A  S E R V L E T  E X A M P L E

A servlet is a Java class used to extend the capabilities of servers that host 
applications accessed by means of a request-response programming 
model (Java Servlet technology defines HTTP-specific servlet classes).

1 public class Hello extends HttpServlet {
2 public void doGet(HttpServletRequest rq, HttpServletResponse rsp) {
3 rsp.setContentType("text/html");
4 try {
5 PrintWriter out = rsp.getWriter();
6 String user = rq.getParameter("user");
7 out.println("<HTML>");
8 out.println("<HEAD><TITLE>Welcome</TITLE></HEAD>");
9 out.println("<BODY>");
10 out.println("<H3>Welcome "+((user==null) ? "" : user)+"!</H3>");
11 out.println("<P>Today is "+new Date()+".</P>");
12 out.println("</BODY>");
13 out.println("</HTML>");
14 } catch (IOException ioe) {// (error processing) 
15 }
16 }
17 }



T E M P L A T E  A P P R O A C H E S
J A V A  S E R V E R  P A G E S  E X A M P L E

• JavaServer Pages (JSP) 

• Built on top of the Servlet API

• JSP pages are translated into servlets at runtime

• A more natural approach with support of all the capabilities of Java Servlets

• A JSP page is a text document that contains two types of text: 

• Static data – any text-based format (such as HTML), 

• JSP elements, which construct dynamic content.

1 <HTML>
2 <HEAD><TITLE>Welcome</TITLE></HEAD>
3 <BODY>
4 <% String user=request.getParameter("user"); %>
5 <H3>Welcome <%= (user==null) ? "" : user %>!</H3>
6 <P>Today is <%= new Date() %>.</P>
7 </BODY>
8 </HTML>



W E B  D E V E L O P M E N T  A P P R O A C H E S
S E R V E R - S I D E  M V C

• Model-View-Controller — software 
architecture used by modern web 
frameworks (but not limited to web):
• Model: encapsulating application data, 

data access, business logic;
• View: output representation of data, 

generating user interface (in HTML);
• Controller: handling user interactions, 

processing user requests, building 
model and passing it to the view.



W E B  D E V E L O P M E N T  A P P R O A C H E S
S E R V E R - S I D E  M V C  F R A M E W O R K S

• Apache Struts

• Java Server Faces

• Spring MVC

• Ruby on Rails

• Django

• ASP.NET MVC



M O D E R N  W E B  A P P L I C A T I O N
C L I E N T - S I D E  M V C  +  W E B  A P I

W E B  
S E R V I C E S

U I  L O G I C

S E R V E RD A T A B A S E

B U S I N E S S  
L O G I C

D A T A  
A C C E S S

C L I E N T



M O D E R N  W E B  A P P L I C A T I O N
C L I E N T - S I D E  M V C  +  W E B  A P I

• Heterogeneous clients using the same back-end code.

• Loose coupling between back-end and front-end:
• The back-end is completely unaware on what consumes its 

service as long as it sends valid requests.
• As long as the response is valid, and the service does as 

promised, the front-end doesn’t care what the back-end is.

• Improving web development productivity.

• More responsive, rich Web applications.



S I N G L E  P A G E  A P P L I C A T I O N S

• Single Page Applications (SPA) — a web application 
that requires only a single page load in a web browser; 
the goal is to provide a more fluid user experience.

• Thin Server Architecture — SPA moves logic from 
the server to the client; the role of the web server is 
limited to a pure data API (i.e. a web service).

• JavaScript frameworks for SPA development:
• AngularJS
• Ember.js
• Backbone.js



P R E S E N T A T I O N  O U T L I N E

•

• What are web services?

•
•
•
•
•

•
•
•
•
•
•



W H A T  A R E  W E B  S E R V I C E S ?

• Web services are client and server applications that 
communicate over the HyperText Transfer Protocol and 
provide a standard means of interoperating between 
applications running on a variety of platforms.

• A Web service is a collection of functions that are 
published to the network for use by other programs. 

• The aim of web services is to provide a way for non-
human clients to interact with your web application.

— J A V A  P L A T F O R M ,  E N T E R P R I S E  E D I T I O N :  T H E  J A V A  E E  T U T O R I A L

— T H E  W E B  S E R V I C E S  ( R ) E V O L U T I O N ,  G R A H A M G L A S S



W H A T  A R E  W E B  S E R V I C E S ?

• Web service — a network accessible interface to 
application functionality that can be invoked remotely 
using existing web infrastructure (over HTTP) and 
supports machine-to-machine interaction.

W E B  
S E R V I C ED A T A B A S E B U S I N E S S  

L O G I C



K E Y  F E A T U R E S  O F  W E B  S E R V I C E S

• Web services are platform independent — they are based on a 
concise set of open standards (HTTP, XML, JSON) designed to 
promote interoperability between a Web service and clients across 
a variety of computing platforms and programming languages.

• Web services are self-contained — no additional software is 
required, a programming language with XML/JSON and HTTP client 
support is enough to get started.

• Web services are self-describing — a public interface to the service 
is available; definitions of message format travel with the messages.

• Web services are modular — simple web services can be 
aggregated to form more complex Web services (e.g. mashups), e.g.
https://www.programmableweb.com/category/all/apis

https://www.programmableweb.com/category/all/apis


T W O  T Y P E S  O F  W E B  S E R V I C E S

• Big web services:
• Simple Object Access Protocol (SOAP)
• Web Service Description Language (WSDL)
• Service-Oriented Architecture (SOA)
• JAX-WS (JSR 224) — Metro is the reference implementation

• RESTful web services:
• Lightweight infrastructure that require minimal tooling.
• Representational State Transfer — HTTP as an API
• Resource-Oriented Architecture (ROA)
• JAX-RS (JSR 339) — Jersey is the reference implementation



P R E S E N T A T I O N  O U T L I N E

•

•

• Big web services:
• Brief history of web services: RPC, XML-RPC
•
•
•

•
•
•
•
•
•



H I S T O R I C A L  P E R S P E C T I V E

• 1976: Description of the RPC principle in RFC 707

• 1986: RPC/XDR by Sun (RFC 1057)

• 1997: Java RMI — object-oriented RPC

• 1998: XML-RPC — the birth of web services

• 1998: SOAP — turning point when web services 
started to become more prevalent among enterprises

• 2001: WSDL & UDDI



• RPC — inter-process communication mechanism that allows a client 
applications to call procedures in another address space without 
the programmer explicitly coding the details for this remote 
interaction, just as it were a local procedure (location transparency).

• Generating client and server artifacts (stubs and skeletons) from an 
IDL (Interface Definition Language) document.

R E M O T E  P R O C E D U R E  C A L L

1 [uuid(2d6ead46-05e3-11ca-7dd1-426909beabcd), version(1.0)]
3 interface echo {
4 const long int ECHO_SIZE = 512;
5 void echo(
6 [in] handle_t h,
7 [in, string] idl_char from_client[ ],
8 [out, string] idl_char from_server[ECHO_SIZE]
9 );

10 }



R E M O T E  P R O C E D U R E  C A L L

C L I E N T

C L I E N T  S T U B

S E R V E R

N E T W O R K  
R O U T I N E S

N E T W O R K  
R O U T I N E S

S E R V E R  S T U B
( S K E L E T O N )

L O C A L  O SR E M O T E  O S

I D L

R P C  
C O M P I L E R

M A R S H A L E D
D A T A



X M L - R P C

• XML-RPC — a very lightweight RPC protocol with support 
for elementary data types.
• XML marshaling to achieve language neutrality — messages are 

easy to inspect and process with standard tools.
• HTTP for transport, instead of proprietary system — alleviates the 

traditional firewall issues of having to open additional ports for RPC.

• Request-response paradigm:
• The client sends a HTTP request — the body is an XML document 

specifying a single call to a method (method name + parameters). 
• The server replies with a response — body also contains XML.

• E.g. http://codex.wordpress.org/XML-RPC_WordPress_API

http://codex.wordpress.org/XML-RPC_WordPress_API


X M L - R P C  E X A M P L E
1 POST /xmlrpc HTTP/1.1
2 Content-Type: text/xml
3 
4 <?xml version="1.0"?>
5 <methodCall>
6 <methodName>countCharacters</methodName>
7 <params>
8 <param>
9 <value><string>test</string></value>
10 </param>
11 </params>
12 </methodCall>

1 HTTP/1.1 200 OK
2 Content-Type: text/xml
3 
4 <?xml version="1.0"?>
5 <methodResponse>
6 <params>
7 <param>
8 <value><int>4</int></value>
9 </param>
10 </params>
11 </methodResponse>



X M L - R P C  F A U L T  E X A M P L E
1 HTTP/1.1 200 OK
2 Content-Type: text/xml
3 
4 <?xml version="1.0"?>
5 <methodResponse>
6 <fault>
7 <value>
8 <struct>
9 <member>
10 <name>faultCode</name>
11 <value>
12 <int>4</int>
13 </value>
14 </member>
15 <member>
16 <name>faultString</name>
17 <value>
18 <string>Too many parameters.</string>
19 </value>
20 </member>
21 </struct>
22 </value>
23 </fault>
24 </methodResponse>



X M L - R P C  S P E C I F I C A T I O N

• XML-RPC is a simple specification without ambitious 
goals — stub generation, interface description and 
service lookup are not in the protocol.

• We wanted a clean, extensible format that's very 
simple. It should be possible for an HTML coder to be 
able to look at a file containing an XML-RPC procedure 
call, understand what it's doing, and be able to modify
it and have it work on the first or second try. 

— H T T P : / / X M L R P C . S C R I P T I N G . C O M / S P E C



P R E S E N T A T I O N  O U T L I N E

•

•

• Big web services:
•
• Web services protocol stack: SOAP, WSDL
•
•

•
•
•
•
•
•



S O A P - B A S E D  W E B  S E R V I C E S

• A Web service is a software system designed to support 
interoperable machine-to-machine interaction over a network. It 
has an interface described in a machine-processable format (WSDL).

• Other systems interact with the Web service in a manner prescribed 
by its description using SOAP-messages, typically conveyed using 
HTTP with an XML serialization in conjunction with other Web-
related standards.

• Web services protocol stack:
• messaging protocol — XML, SOAP
• transport protocol — HTTP, SMTP, JMS
• service description protocol — WSDL
• service discovery protocol — UDDI

— W E B  S E R V I C E S  G L O S S A R Y ,  W W W . W 3 . O R G ,  2 0 0 4



S O A P - B A S E D  W E B  S E R V I C E S

S E R V I C E  
C O N S U M E RS E R V I C E  

P R O V I D E R

S E R V I C E  R E G I S T R Y
( U D D I )

2 .  W S D L1 .  W S D L

3 .  S O A P R E Q U E S T

4 .  S O A P R E S P O N S E



S O A P  P R O T O C O L

• SOAP is a XML-based protocol for exchange of information in 
a decentralized, distributed environment.

• SOAP — foundation of the web services protocol stack, 
providing a basic messaging framework:
• XML-based structure of SOAP messages.
• processing model for transferring messages.
• guidance on how to transport SOAP messages.

• SOAP has three major characteristics:
• extensibility — multiple WS-* standards built on top of
• neutrality — SOAP can operate over any transport protocol
• independence — SOAP allows for any programming model



H T T P  E N V E L O P E

S O A P  M E S S A G E  S T R U C T U R E

• A SOAP message is an XML document that consists of an 
envelope, an optional header, a body and optional fault.

S O A P  E N V E L O P E

S O A P  B O D Y

S O A P  H E A D E R



S O A P  M E S S A G E  E X A M P L E

1 POST /InStock HTTP/1.1
2 Host: www.example.org
3 Content-Type: application/soap+xml; charset=utf-8
4 Content-Length: 299
5 SOAPAction: "http://www.w3.org/2003/05/soap-envelope"
6 
7 <?xml version="1.0"?>
8 <soap:Envelope
9 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
10 <soap:Header>
11 </soap:Header>
12 <soap:Body>
13 <m:GetStockPrice xmlns:m="http://www.example.org/stock">
14 <m:StockName>IBM</m:StockName>
15 </m:GetStockPrice>
16 </soap:Body>
17 </soap:Envelope>



S O A P  R E S P O N S E  E X A M P L E

1 HTTP/1.1 200 OK
2 Content-Type: application/soap+xml; charset=utf-8
3 Content-Length: nnn
4 
5 <?xml version="1.0"?>
6 <soap:Envelope
7 xmlns:soap="http://www.w3.org/2001/12/soap-envelope">
8 
9   <soap:Body xmlns:m="http://www.example.org/stock">
10 <m:GetStockPriceResponse>
11 <m:Price>34.5</m:Price>
12 </m:GetStockPriceResponse>
13   </soap:Body> 
14 </soap:Envelope>



W E B  S E R V I C E  D E S C R I P T I O N  
L A N G U A G E

• WSDL — an XML-based interface definition language
used for describing the functionality of a web service.

• WSDL provides a machine-readable description of:
• what operations are available in the service,
• what data are required and returned by service operations,
• what message-exchange pattern is employed,
• how to connect to the service provider,
• where to find the service endpoint.

• WSDL acts as a service contract that users should observe 
and the web service promises to abide by.



W E B  S E R V I C E  D E S C R I P T I O N  
L A N G U A G E

• Address book service example: http://goo.gl/aBiMTZ

http://goo.gl/aBiMTZ


W S D L  I N  P R A C T I C E

• Many frameworks ship with built-in support
• wsimport in JDK 1.6
• IntelliJ IDEA Ultimate
• wsld.exe in .NET Framework Tools
• Visual Studio

• WSDL documents, as service contracts, should be publishable and 
discoverable, as are the services that they describe.

• Universal Description Discovery and Integration (UDDI) registry
• Stores published WSDL
• Clients can discover the document and consume the web service 

that it describes
• Public UDDIs have not been as widely adopted — Microsoft, IBM and 

SAP shut down their UDDI servers in 2006
• Private UDDIs are still in use



P R E S E N T A T I O N  O U T L I N E

•

•

• Big web services:
•
•
• Java API for XML Web Services (JAX-WS)
•

•
•
•
•
•
•



J A V A  A P I  F O R  X M L  W E B  S E R V I C E S

• JAX-WS is a standard (part of the Java EE platform) for 
building web services and clients that communicate using 
SOAP

• JAX-WS is the successor to JAX-RPC derived from XML-RPC

• JAX-WS specification (JSR 229) defines the mapping
between WSDL 1.1 and Java:
• defines how different WSDL constructs are mapped to Java.
• defines how Java packages, classes, interfaces, methods, parameters, 

and other parts of a web service endpoint are mapped to WSDL



J A X - W S  O N  T H E  S E R V E R  S I D E

• On the server side, the web service methods are defined by an 
interface or a class written in Java

• JAX-WS relies on simple annotations added to plain Java 
classes to define service endpoint interfaces:

1 @WebService
2 public class Hello {
3 private final String message = "Hello, ";
4 
5 public Hello() {
6 }
7 
8 @WebMethod
9 public String sayHello(@WebParam(name = "name") String name) {
10 return message + name + ".";
11 }
12 }



J A X - W S  O N  T H E  C L I E N T  S I D E

• A client creates a proxy (a local object representing the 
service) and then simply invokes methods on the proxy 

• Client proxies can be automatically generated from 
WSDL using the wsimport tool which follows the WSDL-
to-Java mapping

• The JAX-WS runtime system converts the API calls and 
responses to and from SOAP messages



J A V A  E E

J A X - W S  I N  A C T I O N
C O D E  F I R S T  D E V E L O P M E N T

C L I E N T

C L I E N T  
P R O X Y

S E R V E R

S E R V I C E  
E N D P O I N T  
I N T E R F A C E

J A X - W S
R U N T I M E

J A V A  S E

J A X - W S  
R U N T I M E

W S G E N
T O O L

S O A P  O V E R  H T T P

W S D L

X S D

W S I M P O R T
T O O L



J A V A  A R C H I T E C T U R E  F O R  X M L  
B I N D I N G
• JAX-WS delegates the mapping of Java types to and from XML definitions 

to JAXB — annotations can be used to customize the mapping.

• Business methods that are exposed to web service clients must have 
JAXB-compatible parameters and return types. 



J A V A  E E

J A X - W S  I N  A C T I O N
C O N T R A C T  F I R S T  D E V E L O P M E N T

C L I E N T

C L I E N T  
P R O X Y

S E R V E R

S E R V I C E  
E N D P O I N T  
I N T E R F A C E

J A X - W S
R U N T I M E

J A V A  S E

J A X - W S  
R U N T I M E S O A P  O V E R  H T T P

W S D L

X S D

W S I M P O R T
T O O L



C O D E  F I R S T  V S .  C O N T R A C T  
F I R S T

• Code-first approach is dominant beacause it is easier.

• However, it has some drawbacks, including:
• fragility — implementation code typically changes at a faster 

rate than the interface (or a formal service contract); changes 
in the back-end can break any existing clients

• tight-coupling — interfaces are not separated from 
implementations, internal models are exposed

• language-dependence — different WS stacks generate 
different service contract; Object/XML impedance mismatch

• performance — automatically generated XMLs can be bloated



J A V A  W E B  S E R V I C E S  
F R A M E W O R K S

• Metro — a high-performance, extensible, easy-to-use 
web service stack which is developed as a part of the 
open source GlassFish project.

• Components of Metro include:
• JAX-WS RI — reference implementation of the JAX-WS 
• JAXB RI — data binding used in every Java WS framework
• WSIT — support for quality of service features (reliability, 

security, transactions) and interoperability with .NET

• Metro is bundled with Java SE and GlassFish server.



J A V A  W E B  S E R V I C E S  
F R A M E W O R K S

• Apache Axis2 — Apache Extensible Interaction System
• support for wide range of XML-Java binding frameworks (XMLBeans, 

JiXB) and transport protocols (Jabber, UDP)
• not fully compliant with JAX-WS

• Apache CXF — Celtix + XFire
• simple to integrate CXF into existing systems, intuitive, easy to use
• fully compliant with JAX-WS and JAX-RS specifications

• Spring Web Services: 
• emphasis on contract-first development
• best aligned with Spring technology stack (Spring Annotations, 

Spring Security), does not implement JAX-WS.



P R E S E N T A T I O N  O U T L I N E

•

•

• Big web services:
•
•
•
• .NET API for Web Services (WCF)

•
•
•
•
•
•



W I N D O W S  C O M M U N I C A T I O N  
F O U N D A T I O N  ( W C F )

• WCF
• Infrastructure
• Set of APIs for SOA applications
• Uniform interfaces for multiple communication technologies

• Code development is separated from how communication is performed

• A mode of communication is fully configurable

• Support for

• SOAP

• REST

• MSMQ

• Named pipes



W C F  – C O D E  F I R S T  A P P R O A C H

• Define data contract



W C F  – C O D E  F I R S T  A P P R O A C H

• Define service contract



W H Y  U S E  I N T E R F A C E ?

• Interfaces does not change with implementation

• Interfaces can be deployed as separate assembly and 
shared

• Interface is a minimal amount of knowledge required 
to use a service



C O N F I G U R A T I O N  O F  E N D P O I N T S

• Endpoint
• Address of service
• Binding of service (e.g., protocol)
• Contract of service
• Behavior of service (e.g., RPC style)



M U L T I P L E  E N D P O I N T S  O F  A  
S E R V I C E

Client

FlipCaseService

Endpoint 1

Endpoint 2

Endpoint 3

Address http://localhost:8080/flipcase/ws
Binding wsHttpBinding
Contract FlipCaseService.FlipCaseService

Address http://localhost:8080/flipcase/basic
Binding basicHttpBinding
Contract FlipCaseService.FlipCaseService

Address Net.tcp://localhost:8081/flipcase
Binding netTcpBinding
Contract FlipCaseService.FlipCaseService



E X E M P L A R Y  C O N F I G U R A T I O N  
( A P P . C O N F I G / W E B . C O N F I G )

<system.serviceModel>
<behaviors>
<serviceBehaviors>

<behavior>
<!—

To avoid disclosing metadata information, set the values below to false before deployment
-->
<serviceMetadata httpGetEnabled="true" httpsGetEnabled="true"/>
<!— To receive exception details in faults for debugging purposes, set the value below to

true.  Set to false before deployment to avoid disclosing exception information -->
<serviceDebug includeExceptionDetailInFaults="false"/>

</behavior>
</serviceBehaviors>

</behaviors>
<protocolMapping>

<add binding="basicHttpsBinding" scheme="https" />
</protocolMapping>    
<serviceHostingEnvironment aspNetCompatibilityEnabled="true" multipleSiteBindingsEnabled="true" />

</system.serviceModel>



W S - S T A N D A R D S  O V E R V I E W

• WS-* — standards associated with big web services
that extend the basic WS protocol stack, including:

• WS-Security — specifies how integrity and confidentiality can 
be enforced on messages.

• WS-ReliableMessaging — allows SOAP messages to be 
reliably delivered between distributed applications in the 
presence of software component, system, or network failures.

• WS-Addressing — a standardized way of including message 
routing data within SOAP headers.

• WS-Transaction — defines protocols to achieve transactional
behavior





W S - *  C R I T I C I S M

• SOAP
• verbosity
• overhead

• Fragility

• Complexity

• But.. WS-* are still heavily used in the B2B integration.



P R E S E N T A T I O N  O U T L I N E

•

•

•
•
•
•
•

• RESTful web services:
• REST — Representational State Transfer
•
•
•
•



W H Y  T H E  W E B  I S  S O  
S U C C E S S F U L ?
• Why is the Web such a successful information-sharing

platform? 

• How has it grown from a simple network of researchers 
and academics to an interconnected worldwide
community? 

• What makes the Web scale?

• Can we follow the same principles driving the human-
centric Web for computer-to-computer scenarios?

Architectural Styles and the Design of Network-based 
Software Architectures, Roy Fielding, 2000
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm


A R C H I T E C T U R E  O F  T H E  W E B

• Web architecture is based on three technologies URL, 
HTTP, and HTML — the Fielding dissertation explains 
the principles behind the design of these technologies.

• Underlying the three web technologies are two
essential concepts: resources and representations.

• Understanding web technologies on a deep level is the 
key to understanding the REST constraints, how those 
constraints drive the success of the Web, and how you 
can exploit those constraints in your own APIs.



T H I N K I N G  I N  R E S O U R C E S

• Resources are the fundamental building blocks of web-
based systems, to the extent that the Web is often referred 
to as being resource-oriented.

• A resource is anything we expose to the Web, from 
a document or video clip to a business processor device.

• A resource is anything with which a consumer interacts
while progressing toward some goal.

• To use a resource we need to:
• identify it on the network
• have some means of manipulating it

— the Web provides URI
— the Web employs HTTP



T H I N K I N G  I N  R E S O U R C E S

A R C H I T E C T U R E  O F  T H E  W O R L D  W I D E  W E B ,  V O L U M E  O N E
H T T P : / / W W W . W 3 . O R G / T R / W E B A R C H /

http://www.w3.org/TR/webarch/


R E S O U R C E  R E P R E S E N T A T I O N

• A representation is a view on the state of the
resource at an instant in time, e.g. JSON, PDF.

• A resource can be represented in multiple formats, 
defined by a media types; client and server employ 
content negotiation to agree on the transfer format.

• Clients and servers exchange representations: 
• GET — retrieves a representation of the current state of the 

addressed resource; the client never sees a resource directly.
• POST — passes a representation of the resource to the server 

so that the underlying resource’s state can change.



R E P R E S E N T A T I O N A L  S T A T E  
T R A N S F E R
REST is a set of architectural principles (design 
constraints) describing how to build distributed systems 
(e.g. web apps) to achieve scalability and reliability:
1. Client-Server
2. Statelessness
3. Caching
4. Uniform Interface:

I. Identification of resources — addressability
II. Manipulation of resources through representations
III. Self-descriptive messages
IV. Hypermedia As The Engine Of Application State — HATEOAS

5. Layered System
6. Code-On-Demand



R E S T  A R C H I T E C T U R A L  P R I N C I P L E S
1 .  C L I E N T - S E R V E R

• Immediate separation of concerns:
• Simplifying the server component in order to improve scalability. 
• Moving all of the user interface functionality to the client.
• Independent development and evolution of components.

U S E R  
I N T E R F A C E

D A T A
S T O R A G E S E R V I C E S



R E S T  A R C H I T E C T U R A L  P R I N C I P L E S
2 .  S T A T E L E S S N E S S

• Each request must be context-free and self-contained

• Increased:

• Visibility – work to be done can be determined based on a single request

• Reliability – it eases the task of recovering from partial failures 

• Scalability – no session means that the server may free up once a request is responded

• Decreased network performance by sending repetitive data

D A T A
S T O R A G E S E R V I C E S

S T A T E  O F  
R E S O U R C E S

S T A T E  O F  
A P P L I C A T I O N



R E S T  A R C H I T E C T U R A L  P R I N C I P L E S
3 .  C A C H I N G

• Server's responses should be labeled as cacheable or non-cacheable.

• If a response is cacheable, then a client cache is given the right to 
reuse that response data for later, equivalent requests.

• Caching may increase performance but also introduces the standard 
complexities associated with proper cache invalidation.

D A T A
S T O R A G E S E R V I C E S

C A C H E



R E S T  A R C H I T E C T U R A L  P R I N C I P L E S
4 .  U N I F O R M  I N T E R F A C E :  R E S O U R C E S

I. Addressability — every resource in the system is 
reachable through a unique identifier
• the Web provides addressability by using URI.

• unique URIs make the available resources linkable.
scheme://host[:port]/path/…/[?query-string][#anchor]



R E S T  A R C H I T E C T U R A L  P R I N C I P L E S
4 .  U N I F O R M  I N T E R F A C E :  R E S O U R C E S

II. Manipulation of resources through representations — clients 
and servers manipulate resources by sending representations 
back and forth using HTTP methods

• HTTP has a fixed number of methods with well-defined semantics that are 
sufficient to meet the requirements of most distributed applications:
• GET
• PUT
• DELETE
• POST
• PATCH
• HEAD
• OPTIONS

• HTTP defines a set of response codes that specify semantics of the result of 
the requested method, e.g., 200 OK, 201 Created, 404 Not Found

• HTTP methods and response codes mean the same for all resources (universal 
semantics).



R E S T  A R C H I T E C T U R A L  P R I N C I P L E S
4 .  U N I F O R M  I N T E R F A C E :  M E S S A G E S

III. Self-Descriptive Messages:

• Interaction is stateless between requests — in a stateless 
system, a server can handle a client’s request without having to 
remember how it handled all that client’s previous requests.

• Standard methods and media types are used to indicate 
semantics and exchange information — an HTTP response 
includes the Content-Type header to inform the client how
to parse the body.

• Responses explicitly indicate cacheability — the server 
conveys caching information by adding a header to the very 
HTTP response that might be cached.



R E S T  A R C H I T E C T U R A L  P R I N C I P L E S
4 .  U N I F O R M  I N T E R F A C E :  H A T E O A S

IV.HATEOAS
— Hypermedia As The Engine Of Application State

1. All application state is kept on the client side. Changes to 
application state are the client’s responsibility.

2. The client can only change its application state by making an 
HTTP request and processing the response.

3. How does the client know which requests it can make next? 
— by looking at the hypermedia controls in the representations
it has received so far.

4. Therefore, hypermedia controls are the driving force behind 
changes in application state.



R E S T  A R C H I T E C T U R A L  P R I N C I P L E S
H A T E O A S  E X A M P L E

GET /account/12345 HTTP/1.1

1 <?xml version="1.0"?>
2 <account>
3 <account_number>12345</account_number>
4 <balance currency="usd">100.00</balance>
5 <link rel="deposit" href="/account/12345/deposit"/>
6 <link rel="withdraw" href="/account/12345/withdraw"/>
7 <link rel="transfer" href="/account/12345/transfer"/>
8 <link rel="close" href="/account/12345"/>
9 </account>

HTTP/1.1 200 OK



R E S T  A R C H I T E C T U R A L  P R I N C I P L E S
H A T E O A S  E X A M P L E

GET /account/12345 HTTP/1.1

1 <?xml version="1.0"?>
2 <account>
3 <account_number>12345</account_number>
4 <balance currency="usd">-25.00</balance>
5 <link rel="deposit" href="/account/12345/deposit"/>
6 </account>

HTTP/1.1 200 OK



R E S T  A R C H I T E C T U R A L  P R I N C I P L E S
4 .  U N I F O R M  I N T E R F A C E :  H A T E O A S

IV. HATEOAS:

• HATEOAS improves discoverability, providing a way of making 
the application more self-documenting.

• A REST client needs no prior knowledge about how to interact 
with any particular application or server beyond a generic 
understanding of hypermedia (in contrast to knowing the IDL)

• HATEOAS allows a client to automatically adapt to changes on 
the server side.

• HATEOAS allows a server to change its underlying implementation 
without breaking all of its clients.



R E S T  A R C H I T E C T U R A L  P R I N C I P L E S
4 .  U N I F O R M  I N T E R F A C E :  B E N E F I T S

• Familiarity — no need for interface description 
language to describe which methods are available.

• Interoperability — with REST over HTTP there is 
usually no need to install vendor-specific libraries.

• Scalability — predictable behavior of interface 
methods can bring large performance benefits.
• method properties (safe and idempotent)
• caching semantics 
• statelessness



R E S T  A R C H I T E C T U R A L  P R I N C I P L E S
5 .  L A Y E R E D  S Y S T E M

• Layered-client-server adds proxy and gateway components to the 
client-server style... These additional mediator components can be 
added in multiple layers to add features like load balancing and 
security checking to the system.

• Layered systems reduce coupling across multiple layers by hiding the 
inner layers from all except the adjacent outer layer, thus improving 
extensibility and reusability.

• A client cannot tell whether it is connected directly to the end server, or 
to an intermediary along the way — transparency.



R E S T  A R C H I T E C T U R A L  P R I N C I P L E S
6 .  C O D E - O N - D E M A N D

• Optional constraint — may be disabled within some contexts.

• Client functionality to be extended by downloading and 
executing code in the form of applets or scripts.

• This simplifies clients by reducing the number of features 
required to be pre-implemented. 

• Allowing features to be downloaded after deployment 
improves system extensibility and configurability, and 
provides for better user-perceived performance.



P R E S E N T A T I O N  O U T L I N E

•

•

•
•
•
•
•

• RESTful web services:
•
• RESTful web API in practice
•
•
•



R E S T  I N  P R A C T I C E

• REST captures the fundamental principles of the Web.

• REST constraints provide abstract guidance on how 
modern web applications should be designed to 
promote their longevity and independent evolution.

• In particular, REST focuses on the interface between 
the server and the client — RESTful web services.

• HATEOAS, while theoretically compelling, has proved 
difficult to implement consistently (e.g. in JSON APIs).



R E S T F U L  W E B  A P I

• Web API — web services with emphasis on REST 
principles (in contrast to SOAP-based WS).



R E S T F U L  W E B  A P I  G U I D E L I N E S

The key abstraction of information in REST is a resource. Any 
information that can be named can be a resource: a document 
or image, a temporal service (e.g. "weather in Los Angeles"), 
a collection of other resources, and so on.

1. Identify and model the resources exposed by the service:
• name resources as nouns as opposed to verbs or actions
• each resource has at least one URI, which should follow a predictable, 

hierarchical structure to enhance understandability and usability.
• a resource can be a singleton / instance or a collection, e.g.

• a user of the system — https://api.github.com/users/mszubert
• repositories — https://api.github.com/users/mszubert/repos
• repo contents — https://api.github.com/repos/mszubert/2048/contents

— R O Y  F I E L D I N G

https://api.github.com/users/mszubert
https://api.github.com/users/mszubert/repos
https://api.github.com/repos/mszubert/2048/contents


R E S T F U L  W E B  A P I  G U I D E L I N E S

2. Use HTTP verbs and response codes to model 
interactions with resources:

• GET = read a representation of a specific resource (by an 
identifier) or a collection of resources without side-effects, e.g.
GET /users/mszubert/repos 

• DELETE = delete a specific resource by an identifier e.g.
DELETE /repos/mszubert/2048

• POST = create a new resource by appending to the existing 
collection resource — server generates URIs
POST /repos/mszubert/2048/forks

• PUT = update an existing resource or create a new one by 
sending its complete representation — client specifies URIs
PUT /repos/mszubert/2048/contents/:path



R E S T F U L  W E B  A P I  G U I D E L I N E S
H T T P  V E R B S  P R O P E R T I E S

H T T P  M E T H O D S A F E I D E M P O T E N T

G E T Y E S Y E S

P O S T N O N O

P U T N O Y E S

D E L E T E N O Y E S

P A T C H N O O P T I O N A L

H E A D Y E S Y E S

O P T I O N S Y E S Y E S



R E S T F U L  W E B  A P I  G U I D E L I N E S

3. Specify possible representations of resources:
• As the default representation, the recommendation is JSON, 

but services should allow clients to get alternatives (e.g. XML)

Source: Google Trends, https://trends.google.com

https://trends.google.com/


J A V A S C R I P T  O B J E C T  N O T A T I O N

• JSON (RFC 4627) — a data interchange text-based format 
derived from JavaScript (a leightweight alternative to 
XML):
• easy for humans to read and write
• easy for machines to parse and generate
• good interoperability with the client (browser)

• Commonly used in RESTful Web API as a resource
representation format.

• JSON Schema specifies a JSON-based format to define 
the structure of JSON data for validation, documentation, 
and interaction control.



J S O N  E X A M P L E  — B A S I C  T Y P E S

• Number — a signed decimal number that 
may contain a fractional part.

• String — a sequence of zero or more 
Unicode characters.

• Boolean — either of the values true or false.

• Array — an ordered list of zero or more 
values, each of which may be of any type. 

• Object — an unordered collection of 
key/value pairs where the keys are strings. 

• null — An empty value, using the word null

1 {
2 "firstName": "John",
3 "lastName": "Smith",
4 "isAlive": true,
5 "age": 25,
6 "height_cm": 167.6,
7 "address": {
8 "streetAddress": "21 2nd Street",
9 "city": "New York",
10 },
11 "phoneNumbers": [
12 {
13 "type": "home",
14 "number": "212 555-1234"
15 },
16 {
17 "type": "office",
18 "number": "646 555-4567"
19 }
20 ],
21 "children": [],
22 "spouse": null
23 }



J S O N  A N D  R E S T / H A T E O A S
• JSON is not a hypermedia format — there is no predefined 

way to deal with link discovery in JSON. 

• Although a browser running JavaScript is consistent with the 
design of the Web and the formal definition of REST, the use 
of JSON as a data interchange format is not.

• JSON-LD, a W3C Recommendation, is a specification for 
encoding meaning into otherwise meaningless JSON 
documents:

• Hypertext Application Language (HAL) is another 
standard for storing links in JSON

{
"@context": "https://json-ld.org/contexts/person.jsonld",
"@id": "http://dbpedia.org/resource/John_Lennon",
"name": "John Lennon",
"born": "1940-10-09",
"spouse": "http://dbpedia.org/resource/Cynthia_Lennon"

}

https://json-ld.org/contexts/person.jsonld
http://dbpedia.org/resource/John_Lennon
http://dbpedia.org/resource/Cynthia_Lennon


P R E S E N T A T I O N  O U T L I N E

•

•

•
•
•
•
•

• RESTful web services:
•
•
• Richardson Maturity Model
•
•



R I C H A R D S O N  M A T U R I T Y  M O D E L

0 .  P L A I N  O L D  X M L

1 .  R E S O U R C E S

2 .  H T T P  V E R B S

3 .  H Y P E R M E D I A

”Steps toward the 
glory of REST”

H T T P : / / M A R T I N F O W L E R . C O M / A R T I C L E S /  
R I C H A R D S O N M A T U R I T Y M O D E L . H T M L



R I C H A R D S O N  M A T U R I T Y  M O D E L
L E V E L  0  — P L A I N  O L D  X M L

• POX — Plain Old XML over HTTP.

• Services use a single URI, single a HTTP verb (typically 
POST) and a single response status code (cf. XML-RPC)

• HTTP is used only as a synchronous, firewall-friendly 
transport system for remote interactions (remote 
procedure calls) based on transferring XML.

• POX-based approach ignores the web as a platform.



R I C H A R D S O N  M A T U R I T Y  M O D E L
L E V E L  0  E X A M P L E

1 POST /appointmentService HTTP/1.1
2 Content-Type: application/xml
3 [various other headers]
4 
5 <openSlotRequest date = "2010-01-04" doctor = "mjones"/>

1 HTTP/1.1 200 OK
2 Content-Type: application/xml
3 [various other headers]
4 
5 <openSlotList>
6 <slot start = "1400" end = "1450">
7 <doctor id = "mjones"/>
8 </slot>
9 <slot start = "1600" end = "1650">

10 <doctor id = "mjones"/>
11 </slot>
12 </openSlotList>



1 HTTP/1.1 200 OK
2 [various headers]
3 
4 <appointment>
5 <slot doctor = "mjones" start = "1400" end = "1450"/>
6 <patient id = "jsmith"/>
7 </appointment>

1 HTTP/1.1 200 OK
2 [various headers]
3 
4 <appointmentRequestFailure>
5 <slot doctor = "mjones" start = "1400" end = "1450"/>
6 <patient id = "jsmith"/>
7 <reason>Slot not available</reason>
8 </appointmentRequestFailure>

R I C H A R D S O N  M A T U R I T Y  M O D E L
L E V E L  0  E X A M P L E

1 POST /appointmentService HTTP/1.1
2 [various other headers]
3 
4 <appointmentRequest>
5 <slot doctor = "mjones" start = "1400" end = "1450"/>
6 <patient id = "jsmith"/>
7 </appointmentRequest>



R I C H A R D S O N  M A T U R I T Y  M O D E L
L E V E L  1  — R E S O U R C E S

• Rather than making all requests to a singular service 
endpoint, reference specific individual resources.

• URI templates (e.g. /doctors/{name}):
• provide a way to parameterize URIs with variables that can be 

substituted at runtime,
• allow to automate the way clients bind to services,
• provide human- and machine-readable service 

documentation.



R I C H A R D S O N  M A T U R I T Y  M O D E L
L E V E L  1  E X A M P L E

1 POST /doctors/mjones HTTP/1.1
2 [various other headers]
3 
4 <openSlotRequest date = "2010-01-04"/>

1 HTTP/1.1 200 OK
2 [various headers]
3 
4 <openSlotList>
5 <slot id = "1234" doctor = "mjones" start = "1400" end = "1450"/>
6 <slot id = "5678" doctor = "mjones" start = "1600" end = "1650"/>
7 </openSlotList>

1 POST /slots/1234 HTTP/1.1
2 [various other headers]
3 
4 <appointmentRequest>
5 <patient id = "jsmith"/>
6 </appointmentRequest>



R I C H A R D S O N  M A T U R I T Y  M O D E L
L E V E L  2  — H T T P  V E R B S  A N D  C O D E S

• Level 2 introduces a standard set of verbs to handle similar situations 
in the same way, removing unnecessary variation.

• GET is crucial to support caching and improve web performance.

• POST and PUT are not strict equivalent of create and update:
• PUT — create or overwrite a resource completely through client-generated URI.
• POST — create a resource identified by a service-generated URI.

— append a resource to a collection identified by service-generated URI.

• PATCH (RFC 5789) can be used to partial update of resources.

• Use response status codes to indicate the status.



R I C H A R D S O N  M A T U R I T Y  M O D E L
L E V E L  2  E X A M P L E

1 GET /doctors/mjones/slots?date=20100104&status=open HTTP/1.1
2 [various other headers]

1 HTTP/1.1 200 OK
2 [various headers]
3  
4 <openSlotList>
5 <slot id = "1234" doctor = "mjones" start = "1400" end = "1450"/>
6 <slot id = "5678" doctor = "mjones" start = "1600" end = "1650"/>
7 </openSlotList>

1 POST /slots/1234 HTTP/1.1
2 [various other headers]
3 
4 <appointmentRequest>
5 <patient id = "jsmith"/>
6 </appointmentRequest>



R I C H A R D S O N  M A T U R I T Y  M O D E L
L E V E L  2  E X A M P L E

1 HTTP/1.1 201 Created
2 Location: /slots/1234/appointment
3 [various headers]
4 
5 <appointment>
6 <slot id = "1234" doctor = "mjones" start = "1400" end = "1450"/>
7 <patient id = "jsmith"/>
8 </appointment>

1 HTTP/1.1 409 Conflict
2 [various headers]
3 
4 <openSlotList>
5 <slot id = "5678" doctor = "mjones" start = "1600" end = "1650"/>
6 </openSlotList>



R I C H A R D S O N  M A T U R I T Y  M O D E L
L E V E L  3  — H Y P E R M E D I A  /  H A T E O A S

• Level 3 introduces discoverability, providing a way of 
making a service more self-documenting.

• Hypermedia controls tell us what we can do next, and the 
URI of the resource we need to manipulate to do it. 

• No need to know where to post our appointment request —
the hypermedia controls in the response describes it.

• One obvious benefit of hypermedia controls is that it allows 
the server to change its URI scheme without breaking clients. 



R I C H A R D S O N  M A T U R I T Y  M O D E L
L E V E L  3  E X A M P L E

1 GET /doctors/mjones/slots?date=20100104&status=open HTTP/1.1
2 [various other headers]

1 HTTP/1.1 200 OK
2 [various headers]
3 
4 <openSlotList>
5 <slot id = "1234" doctor = "mjones" start = "1400" end = "1450">
6 <link rel = "/linkrels/slot/book"
7 uri = "/slots/1234"/>
8 </slot>
9 <slot id = "5678" doctor = "mjones" start = "1600" end = "1650">

10 <link rel = "/linkrels/slot/book"
11 uri = "/slots/5678"/>
12 </slot>
13 </openSlotList>

1 POST /slots/1234 HTTP/1.1
2 [various other headers]
3 
4 <appointmentRequest>
5 <patient id = "jsmith"/>
6 </appointmentRequest>



R I C H A R D S O N  M A T U R I T Y  M O D E L
L E V E L  3  E X A M P L E

1 HTTP/1.1 201 Created
2 Location: /slots/1234/appointment
3 [various headers]
4 
5 <appointment>
6 <slot id = "1234" doctor = "mjones" start = "1400" end = "1450"/>
7 <patient id = "jsmith"/>
8 <link rel = "/linkrels/appointment/cancel"
9 uri = "/slots/1234/appointment"/>

10 <link rel = "/linkrels/appointment/addTest"
11 uri = "/slots/1234/appointment/tests"/>
12 <link rel = "self"
13 uri = "/slots/1234/appointment"/>
14 <link rel = "/linkrels/appointment/changeTime"
15 uri = "/doctors/mjones/slots?date=20100104&status=open"/>
16 <link rel = "/linkrels/appointment/updateContactInfo"
17 uri = "/patients/jsmith/contactInfo"/>
18 <link rel = "/linkrels/help"
19 uri = "/help/appointment"/>
20 </appointment>



P R E S E N T A T I O N  O U T L I N E
•

•

•
•
•
•

• RESTful web services:
•
•
•
• Java API for RESTful Services (JAX-RS)
•



R E S T F U L  W E B  S E R V I C E S  I N  J A V A

• Servlets and JSP
• uncomplicated but powerful
• provide convenient wrappers around HTTP requests and 

responses; allow for filtering of requests by HTTP verb

• JAX-RS (Java API for RESTful Web Services)
• takes full advantage of annotations to advertise the RESTful 

aspects of implemented services
• integrates well with JAXB technologies to automate the conversion 

of Java types into XML and JSON documents.
• mimics the routing idioms of Rails and Sinatra

• JAX-WS (Java API for XML Web Services)
• @WebServiceProvider annotation provides lower-level API



J A X - R S  — S E R V I C E - S I D E  A P I

• Annotating plain Java classes allow to implement the 
standard principles of REST:
• identifying a resource as a URI,
• exposing a well-defined set of methods to access the resource,
• providing multiple representation formats of a resource.

1 @Path("hello/{name}")
2 public class HelloResource {
3 
4 private final String message = "Hello, ";
5 
6 @GET
7 @Produces(MediaType.TEXT_PLAIN)
8 public String sayHello(@PathParam("name") String name) {
9 return message + name + ".";

10 }
11 }



J A X - R S  — C L I E N T - S I D E  A P I

• JAX-RS Client API makes it easy to consume a RESTful 
Web service exposed over HTTP by encapsulating the 
key REST constraint — Uniform Interface:
• every resource is identified by a URI;
• clients interact with the resource using a fixed set of HTTP verbs
• different representations (media types) can be returned

1 String entity = client.target("http://example.com/rest")
2 .path("resource/helloworld")
3 .queryParam("greeting", "Hi World!")
4 .request(MediaType.TEXT_PLAIN_TYPE)
5 .header("some-header", "true")
6 .get(String.class);



P R E S E N T A T I O N  O U T L I N E

•

•

•
•
•
•
•

• RESTful web services:
•
•
•
•
• .NET API for RESTful Services (WCF)



C R E A T E  A  S E R V I C E  C O N T R A C T
[ServiceContract]
public interface IService
{

[OperationContract]
[WebGet]
string EchoWithGet(string s);

[OperationContract]
[WebInvoke(Method = "POST", 

RequestFormat = WebMessageFormat.Json, 
ResponseFormat = WebMessageFormat.Json, 
UriTemplate = "OverwrittenUri")]

string EchoWithPost(string s);
}



I M P L E M E N T  A  S E R V I C E
public class RESTService : IService
{

public string EchoWithGet(string s)
{

return s;
}

public string EchoWithPost(string s)
{

return s;
}

}



C O N F I G U R E  
( A P P . C O N F I G / W E B . C O N F I G )

<system.serviceModel>
<services>
<service name="WcfService2.RESTService">
<endpoint binding="webHttpBinding" contract="WcfService2.IService" behaviorConfiguration="REST"/>

</service>
</services>
<behaviors>
<endpointBehaviors>
<behavior name="REST">
<webHttp/>

</behavior>
</endpointBehaviors>
<serviceBehaviors>
<behavior>
<!–
To avoid disclosing metadata information, set the values below to false before deployment
-->
<serviceMetadata httpGetEnabled="true" httpsGetEnabled="true"/>
<!-- To receive exception details in faults for debugging purposes, set the value below to
true.  Set to false before deployment to avoid disclosing exception information -->
<serviceDebug includeExceptionDetailInFaults="false"/>

</behavior>
</serviceBehaviors>

</behaviors>
<serviceHostingEnvironment aspNetCompatibilityEnabled="true" multipleSiteBindingsEnabled="true"/>

</system.serviceModel>



C R E A T E  S E R V I C E  C L I E N T

class RESTClient : ClientBase<IService>, IService
{

public string EchoWithGet(string s)
{

return this.Channel.EchoWithGet(s);
}

public string EchoWithPost(string s)
{

return this.Channel.EchoWithPost(s);
}

}



C O N F I G U R E  S E R V I C E  C L I E N T
<system.serviceModel>

<behaviors>
<endpointBehaviors>

<behavior name="REST">
<webHttp/>

</behavior>
</endpointBehaviors>

</behaviors>
<client>

<endpoint address="http://localhost:8088/RESTService.svc"
name="RESTService"
binding="webHttpBinding"
contract="WcfService2.IService"
behaviorConfiguration="REST"/>

</client>
</system.serviceModel>

var client = new RESTClient();
client.EchoWithPost("abc");

And run:



W A D L  — W E B  A P P L I C A T I O N  
D E S C R I P T I O N  L A N G U A G E

• WADL — machine-readable XML description of HTTP-based 
web applications (typically REST web services).

• REST equivalent of WSDL used mainly in big web services.
• WADL is not widely adopted (alternative: swagger.io). 

1 <?xml version="1.0"?>
2 <application xmlns="http://wadl.dev.java.net/2009/02">
3 <resources base="http://localhost:8080/myapp/">
4 <resource path="hello/{name}">
5 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" name="name"
6 style="template" type="xs:string"/>
7 <method id="sayHello" name="GET">
8 <response>
9 <representation mediaType="text/plain"/>
10 </response>
11 </method>
12 </resource>
13 </resources>
14 </application>



R E S T - S T Y L E  
( M I C R O ) F R A M E W O R K S
• DropWizard

• Jetty for HTTP
• Jersey for JAX-RS
• Jackson for JSON

• RestEasy

• Restlet

• Spark

• Sinatra

• Express.js

• Flask



C O N C L U S I O N S

• Two types of web services:
• SOAP-based
• REST-style / RESTful

• SOAP-based web services are one approach to provide 
data API for heterogeneous clients.

• JAX-WS and WCF are programmer-friendly web service 
technologies.

• WS-* standards make big web services suitable for 
enterprise application–integration scenarios that have 
advanced quality-of-service requirements



C O N C L U S I O N S

• Web API form a foundation of modern web applications —
next step towards separating content from presentation.

• REST vs SOAP:
• REST is minimalistic, SOAP needs a stack of protocols
• SOAP is out of sync with web architecture
• neither Android nor iOS support SOAP natively
• WS-* standards make SOAP services suitable for enterprise application–

integration scenarios
• Advances requirements for quality-of-service, distributed transactions, 

reliability, discoverability etc.



R E F E R E N C E S

• RESTful Service Best Practices: Recommendations for Creating Web 
Services — Todd Fredrich, Pearson eCollege, 2013, available at:
http://www.restapitutorial.com/resources.html

• RESTful Web Services — Leonard Richardson and Sam Ruby, 
O'Reilly Inc., 2007, available at: http://restfulwebapis.org/rws.html

• Richardson Maturity Model — Martin Fowler, 2010
http://martinfowler.com/articles/richardsonMaturityModel.html

• Architectural Styles and the Design of Network-based Software 
Architectures — Roy Fielding, PhD thesis,
University of California, Irvine, 2000
http://www.ics.uci.edu/~fielding/pubs/dissertation/

http://www.restapitutorial.com/resources.html
http://restfulwebapis.org/rws.html
http://martinfowler.com/articles/richardsonMaturityModel.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/


R E F E R E N C E S

• REST in Practice — Jim Webber, Savas Parastatidis, and Ian 
Robinson, O’Reilly Media, Inc., 2010

• Java Web Services: Up and Running — Martin Kalin, O’Reilly 
Media, Inc., 2013

• RESTful Java with JAX-RS 2.0 — Bill Burke, 
O’Reilly Media, Inc., 2014

• Client-Server Web Apps with JavaScript and Java — Casimir 
Saternos, O’Reilly Media, Inc., 2014 

• Java Platform, Enterprise Edition: The Java EE Tutorial
https://docs.oracle.com/javaee/7/tutorial

• Microsoft Virtual Academy, Web Services and Windows Azure

https://docs.oracle.com/javaee/7/tutorial

