
W E B F U N D A M E N T A L S
H Y P E R T E X T T R A N S F E R P R O T O C O L

T O M A S Z P A W L A K , P H D
M A R C I N S Z U B E R T , P H D

P R E S E N T A T I O N O U T L I N E

• Evolution of the Web

• Building blocks of the Web

• HTTP — Hypertext Transfer Protocol
• Messages: verbs, status codes, headers
• Connections: performance, security, proxies

• HTTP extensions: SPDY, HTTP/2

M O T I V A T I O N

• HTTP: the protocol every web developer must know.

• HTTP is the foundation of the most successful
distributed system ever built — the World Wide Web.

• Understanding HTTP is critical to:
• designing a clean, simple and RESTful Web API,
• implementing efficient and scalable web applications,
• debugging web application.

S C A L A B I L I T Y

• “Scalability is the capability of a system, network, or
process to handle a growing amount of work, or its
potential to be enlarged in order to accommodate
that growth.”, Wikipedia

H I S T O R I C A L P E R S P E C T I V E

• 1989 — Tim Berners-Lee
presented a proposal for an
information management system that
would enable sharing of resources
over a computer network.

H I S T O R I C A L P E R S P E C T I V E

• 1989 — Tim Berners-Lee
presented a proposal for an
information management system that
would enable sharing of resources
over a computer network.

• ARPANET — open decentralized
computer network architecture.

H I S T O R I C A L P E R S P E C T I V E

• 1989 — Tim Berners-Lee
presented a proposal for an
information management system that
would enable sharing of resources
over a computer network.

• ARPANET — open decentralized
computer network architecture.

H I S T O R I C A L P E R S P E C T I V E

• 1989 — Tim Berners-Lee
presented a proposal for an
information management system that
would enable sharing of resources
over a computer network.

• ARPANET — open decentralized
computer network architecture.
• 1969: First message sent

H I S T O R I C A L P E R S P E C T I V E

• 1989 — Tim Berners-Lee
presented a proposal for an
information management system that
would enable sharing of resources
over a computer network.

• ARPANET — open decentralized
computer network architecture.
• 1969: First message sent
• 1971: First e-mail sent

H I S T O R I C A L P E R S P E C T I V E

• 1989 — Tim Berners-Lee
presented a proposal for an
information management system that
would enable sharing of resources
over a computer network.

• ARPANET — open decentralized
computer network architecture.
• 1969: First message sent
• 1971: First e-mail sent
• 1973: File Transfer Protocol (RFC 354)

H I S T O R I C A L P E R S P E C T I V E

• 1989 — Tim Berners-Lee
presented a proposal for an
information management system that
would enable sharing of resources
over a computer network.

• ARPANET — open decentralized
computer network architecture.
• 1969: First message sent
• 1971: First e-mail sent
• 1973: File Transfer Protocol (RFC 354)
• 1977: Network Voice Protocol (RFC 741)

H I S T O R I C A L P E R S P E C T I V E

• 1989 — Tim Berners-Lee
presented a proposal for an
information management system that
would enable sharing of resources
over a computer network.

• ARPANET — open decentralized
computer network architecture.
• 1969: First message sent
• 1971: First e-mail sent
• 1973: File Transfer Protocol (RFC 354)
• 1977: Network Voice Protocol (RFC 741)
• 1981: Internet Protocol v4

H I S T O R I C A L P E R S P E C T I V E

• 1989 — Tim Berners-Lee
presented a proposal for an
information management system that
would enable sharing of resources
over a computer network.

• ARPANET — open decentralized
computer network architecture.
• 1969: First message sent
• 1971: First e-mail sent
• 1973: File Transfer Protocol (RFC 354)
• 1977: Network Voice Protocol (RFC 741)
• 1981: Internet Protocol v4
• 1987: number of hosts > 10 000

N U M B E R O F I N T E R N E T H O S T S

I N T E R N E T D O M A I N S U R V E Y
H T T P S : / / W W W . I S C . O R G / N E T W O R K / S U R V E Y /

https://www.isc.org/network/survey/

N U M B E R O F I N T E R N E T H O S T S

0
200 000 000
400 000 000
600 000 000
800 000 000

1 000 000 000
1 200 000 000

1993 1995 1998 2000 2003 2006 2008 2011 2013 2016 2019

I N T E R N E T D O M A I N S U R V E Y
H T T P S : / / W W W . I S C . O R G / N E T W O R K / S U R V E Y /

https://www.isc.org/network/survey/

H I S T O R I C A L P E R S P E C T I V E
W H A T H A S B E E N C H A N G I N G ?
• The Internet of Things (IoT)

• The first thing (non-computer) connected to the Internet ever: the Toaster

• It was connected to the Internet with TCP/IP networking and controlled with SNMP
http://www.livinginternet.com/i/ia_myths_toast.htm

• In 2008 the number of things connected to the Internet exceeded the number of people on
earth.

• Dave Evans, Cisco, The Internet of Things,
http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

• Web users and their expectations:
• multiple platforms, simultaneous screening
• consistent user experience — responsive web design
• little or no latency — impatience of web users

• Note: an average attention span of an Internet user shortened from 12sec in 2000 to 8sec in 2015

• Less than a goldfish (9sec)!

• http://time.com/3858309/attention-spans-goldfish/

• Technology:
• shift of responsibility from the server to the client
• http://www.evolutionoftheweb.com/

http://www.livinginternet.com/i/ia_myths_toast.htm
http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://time.com/3858309/attention-spans-goldfish/
http://www.evolutionoftheweb.com/

H I S T O R I C A L P E R S P E C T I V E
W H A T H A S B E E N C H A N G I N G ?
• The Internet of Things (IoT)

• The first thing (non-computer) connected to the Internet ever: the Toaster

• It was connected to the Internet with TCP/IP networking and controlled with SNMP
http://www.livinginternet.com/i/ia_myths_toast.htm

• In 2008 the number of things connected to the Internet exceeded the number of people on
earth.

• Dave Evans, Cisco, The Internet of Things,
http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

• Web users and their expectations:
• multiple platforms, simultaneous screening
• consistent user experience — responsive web design
• little or no latency — impatience of web users

• Note: an average attention span of an Internet user shortened from 12sec in 2000 to 8sec in 2015

• Less than a goldfish (9sec)!

• http://time.com/3858309/attention-spans-goldfish/

• Technology:
• shift of responsibility from the server to the client
• http://www.evolutionoftheweb.com/

http://www.livinginternet.com/i/ia_myths_toast.htm
http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://time.com/3858309/attention-spans-goldfish/
http://www.evolutionoftheweb.com/

H I S T O R I C A L P E R S P E C T I V E
W H A T H A S B E E N C H A N G I N G ?
• The Internet of Things (IoT)

• The first thing (non-computer) connected to the Internet ever: the Toaster

• It was connected to the Internet with TCP/IP networking and controlled with SNMP
http://www.livinginternet.com/i/ia_myths_toast.htm

• In 2008 the number of things connected to the Internet exceeded the number of people on
earth.

• Dave Evans, Cisco, The Internet of Things,
http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

• Web users and their expectations:
• multiple platforms, simultaneous screening
• consistent user experience — responsive web design
• little or no latency — impatience of web users

• Note: an average attention span of an Internet user shortened from 12sec in 2000 to 8sec in 2015

• Less than a goldfish (9sec)!

• http://time.com/3858309/attention-spans-goldfish/

• Technology:
• shift of responsibility from the server to the client
• http://www.evolutionoftheweb.com/

http://www.livinginternet.com/i/ia_myths_toast.htm
http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://time.com/3858309/attention-spans-goldfish/
http://www.evolutionoftheweb.com/

W H A T H A S N O T C H A N G E D ?
— B U I L D I N G B L O C K S O F T H E W E B

W H A T H A S N O T C H A N G E D ?
— B U I L D I N G B L O C K S O F T H E W E B

1. HTML — a markup language for formatting and
publishing hypertext documents.

W H A T H A S N O T C H A N G E D ?
— B U I L D I N G B L O C K S O F T H E W E B

1. HTML — a markup language for formatting and
publishing hypertext documents.

2. URL — a uniform notation scheme for uniquely
identifying accessible resources over the network.

W H A T H A S N O T C H A N G E D ?
— B U I L D I N G B L O C K S O F T H E W E B

1. HTML — a markup language for formatting and
publishing hypertext documents.

2. URL — a uniform notation scheme for uniquely
identifying accessible resources over the network.

3. HTTP — a protocol for transporting messages
(requests and responses) over the network.

B U I L D I N G B L O C K S O F T H E W E B
W O R L D W I D E W E B B R O W S E R

B U I L D I N G B L O C K S O F T H E W E B
H T T P D W E B S E R V E R

H Y P E R T E X T M A R K U P L A N G U A G E

• HTML was defined by Tim Berners-Lee as an
application of the Standard Generalized Markup
Language (SGML).

• HTML is used for describing both the content and the
structure of web pages.

• HTML is a markup language that web browsers use to
interpret and compose text, images and other material
into web pages.

H Y P E R T E X T M A R K U P L A N G U A G E

• Elements of HTML structure
• Headings, paragraphs, tables, lists, photos, etc.
• Hyperlinks
• Design forms for conducting transactions with remote services, for use

in searching for information, making reservations, ordering products.

— H T T P : / / W W W . W 3 . O R G / S T A N D A R D S / W E B D E S I G N / H T M L C S S

U N I F O R M R E S O U R C E I D E N T I F I E R

— U N I F O R M R E S O U R C E I D E N T I F I E R (U R I) : G E N E R I C S Y N T A X (R F C 3 9 8 6)

• A Uniform Resource Identifier (URI) is a compact
sequence of characters that identifies an abstract or
physical resource.

• A Uniform Resource Identifier (URI) provides a simple and
extensible means for identifying a resource.

• The term "Uniform Resource Locator" (URL) refers to the
subset of URIs that, in addition to identifying a resource,
provide a means of locating the resource by describing its
primary access mechanis (e.g., its network "location").

U N I F O R M R E S O U R C E L O C A T O R

• scheme — protocol used to connect to the server

• // are optional in some protocols and compulsory in others

• user:password – optional user name and password for authentication

• host — IP address of the server (or its domain name)

• port — optional port number to which the target server listens

• path — path to the desired resource on the server

• query-string — key=value dynamic parameters separated by &

• fragment — positional marker within the requested document

scheme://[user:password@]host[:port]/path/…/[?query-string][#fragment]

U N I F O R M R E S O U R C E L O C A T O R

• Schemes
• Case insensitive
• By convention lowercase
• May use +, ., -

• Path
• Must begin with a single slash (/) if host is present
• Must not begin with two slashes (//)

• Permitted characters in variable parts
• Lowercase and uppercase letters
• Arabic numbers
• ASCII encoding
• Other symbols must be octet-encoded (e.g., %26 instead of &)

H Y P E R T E X T T R A N S F E R P R O T O C O L

• The Hypertext Transfer Protocol (HTTP)
• Application-level
• Textual
• Stateless & sessionless

• No requirement for persistent connection
• Source of troubles for software developers

• For distributed, collaborative, hypermedia information
systems

• Can be used for many tasks beyond its use for hypertext
• HTTP has been in use by the World-Wide Web global

information initiative since 1990. HTTP/1.1 (RFC 2616) in
wide use since 1999. HTTP/2.0 (RFC 7540) was introduced in
2015.

H Y P E R T E X T T R A N S F E R P R O T O C O L

• In the following I will describe HTTP/1.1

• Then show what changed in HTTP/2.0

T H E C L I E N T — S E R V E R
A R C H I T E C T U R E

C L I E N T

S E R V E R

• The HTTP protocol uses the request-response paradigm.

• An HTTP transaction consists of a single request from a
client, followed by a single response from the server.

T H E C L I E N T — S E R V E R
A R C H I T E C T U R E

R E Q U E S T

C L I E N T

S E R V E R

H T T P

• The HTTP protocol uses the request-response paradigm.

• An HTTP transaction consists of a single request from a
client, followed by a single response from the server.

T H E C L I E N T — S E R V E R
A R C H I T E C T U R E

R E S P O N S E

R E Q U E S T

C L I E N T

S E R V E R

H T T P

H T T P

• The HTTP protocol uses the request-response paradigm.

• An HTTP transaction consists of a single request from a
client, followed by a single response from the server.

T H E C L I E N T — S E R V E R
A R C H I T E C T U R E

R E S P O N S E

R E Q U E S T

C L I E N T

S E R V E R

H T T P

H T T P

• The HTTP protocol uses the request-response paradigm.

• An HTTP transaction consists of a single request from a
client, followed by a single response from the server.

H T T P M E S S A G E S S T R U C T U R E

• HTTP messages are simple, formatted blocks of data.

• Requests and response have a similar structure:

message = {start-line}\r\n
({message-header}\r\n)*
\r\n
{message-body}

{start-line} = {Request-Line} | {Status-Line}
{message-header} = Field-Name ':' Field-Value

{Request-Line} = {method} {URI} HTTP/{version}
{Status-Line} = HTTP/{version} {status} {explanation}

H T T P R E Q U E S T M E T H O D S (V E R B S)

• GET — retrieves the specified resource. GET does not have a
body and, until HTTP 1.1, was not required to have headers.

• POST — requests that the target resource processes the data
enclosed in the message body according to specific semantics.

• PUT — requests that the state of the resource be created or
replaced with the state enclosed in the message body.

• DELETE — deletes the specified resource.

GET /standards/ HTTP/1.1
Host: www.w3.org
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:35.0)

H T T P R E Q U E S T M E T H O D S (V E R B S)

• HEAD — functionally similar to GET, except that the server
responds without message body. It's used to retrieve the
server headers for a particular resource, generally to check
if the resource has changed, via timestamps.

• OPTIONS — Returns the HTTP methods that the server
supports for the specified URL.

• TRACE — Echoes back the received request so that a
client can see what (if any) changes or additions have been
made by intermediate servers. Each intermediate proxy or
gateway would inject its IP or DNS name into the Via
header field. This can be used for diagnostic purposes.

H T T P R E Q U E S T M E T H O D S (V E R B S)

• PATCH — Updates portion of resource at the given
URL (RFC 5789)

• CONNECT — Establish a tunnel to the server
identified by the target resource. It is intended only for
use in requests to a proxy (RFC 2817)

H T T P M E T H O D P R O P E R T I E S

• A method is "safe" if its defined semantics is essentially read-
only. Safe methods does not change the state of the server:
• GET
• HEAD
• OPTIONS
• TRACE
• CONNECT

• A method is considered "idempotent" if the effect of multiple
identical requests with that method is the same as the effect for
a single such request:
• safe methods
• PUT
• DELETE
• PATCH (optionally, in conjunction with ETag, see RFC 5789 for details)

P O S T I S N O T S A F E , N O R I D E M P O T E N T

C L I E N T

S E R V E R

P O S T I S N O T S A F E , N O R I D E M P O T E N T

C L I E N T

S E R V E R

1 . P O S T

P O S T I S N O T S A F E , N O R I D E M P O T E N T

2 . S U C C E S S (2 X X) C L I E N T

S E R V E R

1 . P O S T

P O S T I S N O T S A F E , N O R I D E M P O T E N T

2 . S U C C E S S (2 X X) C L I E N T

S E R V E R

1 . P O S T

3 . R E F R E S H

P O S T I S N O T S A F E , N O R I D E M P O T E N T

2 . S U C C E S S (2 X X) C L I E N T

S E R V E R

1 . P O S T

3 . R E F R E S H
4 . P O S T

P O S T I S N O T S A F E , N O R I D E M P O T E N T

2 . S U C C E S S (2 X X) C L I E N T

S E R V E R

1 . P O S T

3 . R E F R E S H
4 . P O S T

H T T P R E S P O N S E S T A T U S C O D E S
• 1xx — Informational — does not include message body.

• 100 — Continue
• 101 — Switching protocols

H T T P R E S P O N S E S T A T U S C O D E S
• 1xx — Informational — does not include message body.

• 100 — Continue
• 101 — Switching protocols

• 2xx — Successful — the action requested by the client was
received, understood, accepted and processed successfully.
• 200 — OK
• 201 — Created
• 202 — Accepted

H T T P R E S P O N S E S T A T U S C O D E S
• 1xx — Informational — does not include message body.

• 100 — Continue
• 101 — Switching protocols

• 2xx — Successful — the action requested by the client was
received, understood, accepted and processed successfully.
• 200 — OK
• 201 — Created
• 202 — Accepted

• 3xx — Redirection — the client must take additional action to
complete the request.
• 301 — Moved permanently
• 302 — Found (in HTTP/1.0: Moved temporarily)
• 303 — See other (changes method to GET)
• 304 — Not modified
• 307 — Temporary Redirect (does not change method)
• 308 — Permanent Redirect (does not change method)
• 301 & 302 are not implemented consistently: some user agents change method

to GET, others do not; the standard says to not change the method

H T T P R E D I R E C T I O N P U R P O S E S

• Similar domain names
• wikipedia.net, wikipedia.org, wikipedia.com

• URL shortening services
• http://goo.gl, http://bitly.com

• Request to a directory without terminating slash
• http://www.cs.put.poznan.pl/mszubert

• Redirecting users to a login page (301 vs. 302).

• Post/Redirection/Get

http://wikipedia.net
http://wikipedia.org
http://wikipedia.com
http://goo.gl
http://bitly.com
http://www.cs.put.poznan.pl/mszubert

P O S T / R E D I R E C T / G E T

C L I E N T

S E R V E R

P O S T / R E D I R E C T / G E T

C L I E N T

S E R V E R

1 . P O S T

P O S T / R E D I R E C T / G E T

2 . R E D I R E C T (3 X X) C L I E N T

S E R V E R

1 . P O S T

P O S T / R E D I R E C T / G E T

2 . R E D I R E C T (3 X X) C L I E N T

S E R V E R

1 . P O S T

3 . G E T

P O S T / R E D I R E C T / G E T

2 . R E D I R E C T (3 X X) C L I E N T

S E R V E R

1 . P O S T

3 . G E T

4 . S U C C E S S (2 X X)

P O S T / R E D I R E C T / G E T

2 . R E D I R E C T (3 X X) C L I E N T

S E R V E R

1 . P O S T

5 . R E F R E S H
3 . G E T

4 . S U C C E S S (2 X X)

P O S T / R E D I R E C T / G E T

2 . R E D I R E C T (3 X X) C L I E N T

S E R V E R

1 . P O S T

5 . R E F R E S H
3 . G E T

4 . S U C C E S S (2 X X)

6 . G E T

H T T P R E S P O N S E E R R O R C O D E S

• 4xx — Client Error — the client failed either by requesting an
invalid resource or making a bad request.
• 400 — Bad request
• 401 — Not authorized
• 402 — Payment required
• 403 — Forbidden
• 404 — Not found
• 405 — Method not allowed
• 406 — Not acceptable
• 418 — I’m a teapot

H T T P R E S P O N S E E R R O R C O D E S

• 4xx — Client Error — the client failed either by requesting an
invalid resource or making a bad request.
• 400 — Bad request
• 401 — Not authorized
• 402 — Payment required
• 403 — Forbidden
• 404 — Not found
• 405 — Method not allowed
• 406 — Not acceptable
• 418 — I’m a teapot

• 5xx — Server Error — the server failed to fulfill a valid request.
• 500 — Internal server error
• 501 — Not implemented
• 503 — Service unavailable

H T T P M E S S A G E S S T R U C T U R E

1 message = {start-line}\r\n
2 ({message-header}\r\n)*
3 \r\n
4 {message-body}

5 {start-line} = {Request-Line} | {Status-Line}
6 {message-header} = Field-Name ':' Field-Value

H T T P M E S S A G E S S T R U C T U R E

• Headers are a form of message metadata and are
broadly classified into:
• general headers
• request-specific headers
• response-specific headers
• entity headers

1 message = {start-line}\r\n
2 ({message-header}\r\n)*
3 \r\n
4 {message-body}

5 {start-line} = {Request-Line} | {Status-Line}
6 {message-header} = Field-Name ':' Field-Value

U S E S O F H E A D E R S

• Informational

• Virtual hosting

• Content negotiation

• Client identification

• Authentication

• Caching

G E N E R A L H E A D E R S

• Date — provides a date and time stamp telling when the
message was created.

• Via — shows what intermediaries (proxies, gateways) the
message has gone through.

• Connection — allows clients and servers to specify options
about the request/response connection.

• Cache-Control — used to pass caching directions along
with the message.

• Transfer-Encoding — used to compress or to break the
response into smaller parts (with the chunked value).

I N F O R M A T I O N A L R E Q U E S T
H E A D E R S

• Host — gives the hostname and port to which the request is
being sent; introduced to enable a single server to service
multiple domains (virtual hosting).

• Referer — identifies the address of the webpage that linked to
the resource being requested.

• User-agent — tells the server the name of the application
making the request.

• From — the email address of the user making the request.

• Client-IP — the IP address of the client’s machine.

I N F O R M A T I O N A L R E S P O N S E
H E A D E R S

• Server — identifies the server generating the message.

• Warning — stores text for human consumption,
something that would be useful when tracing a problem.

• Location — contains the new URL when redirecting.

• Age — provided by proxies, time in seconds since the
message was generated on the server.

• Allow — valid actions for a specified resource.

C O N T E N T N E G O T I A T I O N
R E Q U E S T H E A D E R S — A C C E P T

• Content negotiation — a mechanism that allows to serve
different versions of a document at the same URI, so that user
agents can specify which version fit their capabilities the best.

1 Accept: text/html, text/plain;q=0.3
2 Accept-Charset: utf-8, iso-8859-13;q=0.8
3 Accept-Encoding: gzip;q=1.0, identity;q=0.5, *;q=0
4 Accept-Language: pl, en-us;q=0.7

• Accept — accepted Internet media types (MIME).
https://www.iana.org/assignments/media-types/media-types.xhtml

• Accept-Encoding — used mainly for HTTP compression.

https://www.iana.org/assignments/media-types/media-types.xhtml

C O N T E N T N E G O T I A T I O N
R E S P O N S E E N T I T Y H E A D E R S

• Message typing is necessary for both servers and
browsers to determine proper actions in processing
messages.

• Browsers use types and sub-types either to select a proper
content-rendering module or to invoke a third-party tool.

1 Content-Type: text/html; charset=utf-8
2 Content-Encoding: gzip
3 Content-Language: pl
4 Content-Length: 348
5 Content-Location: /index.html

C L I E N T I D E N T I F I C A T I O N
S T A T E L E S S N A T U R E O F H T T P

• HTTP is stateless and sessionless, each request-response transaction
is independent.

• Most of the web applications are highly stateful, rely on tracking and
storing user sessions.

C L I E N T I D E N T I F I C A T I O N
S T A T E L E S S N A T U R E O F H T T P

• HTTP is stateless and sessionless, each request-response transaction
is independent.

• Most of the web applications are highly stateful, rely on tracking and
storing user sessions.

• How to determine which requests come from the same user?

C L I E N T I D E N T I F I C A T I O N
S T A T E L E S S N A T U R E O F H T T P

• HTTP is stateless and sessionless, each request-response transaction
is independent.

• Most of the web applications are highly stateful, rely on tracking and
storing user sessions.

• How to determine which requests come from the same user?

• The server can identify and track users by employing:
• HTTP headers — informational request headers: From, Referer, User-Agent

• Client IP address tracking — identify users by their IP addresses: Client-IP
• Extending URLs — generating user-specific URLs by embedding identity
• Cookies — the most popular and non-intrusive approach (RFC 6265)
• ETag – unique identifier of resource version
• User login — authentication headers: WWW-Authenticate, Authorization

C L I E N T I D E N T I F I C A T I O N
I P A D D R E S S T R A C K I N G

• The client IP address typically is not present in the HTTP
headers, but web servers can find the IP address of the other
side of the TCP connection.

C L I E N T I D E N T I F I C A T I O N
I P A D D R E S S T R A C K I N G

• The client IP address typically is not present in the HTTP
headers, but web servers can find the IP address of the other
side of the TCP connection.

• Using the client IP address to identify the user has weaknesses:
• Client IP addresses describe only the computer being used, not the user.
• Many ISPs assign IP addresses to users dynamically.
• Users are hidden behind Network Address Translation (NAT) devices.
• HTTP proxies and gateways typically open new TCP connections to the

origin server. Some proxies add Client-ip or X-Forwarded-For
extension headers to preserve the original IP address.

• Anonymous proxies make tracking IP adress impractical.

C L I E N T I D E N T I F I C A T I O N
E M B E D D I N G I N F O R M A T I O N I N T O U R L S

• Special versions of each URL for each user (also called fat URLs).

• Typically, a real URL is extended by adding some state information
(e.g. unique session ID) to the end of the URL or to a query string,
e.g. http://[host]/edit.jsp;jsessionid=123

C L I E N T I D E N T I F I C A T I O N
E M B E D D I N G I N F O R M A T I O N I N T O U R L S

• Special versions of each URL for each user (also called fat URLs).

• Typically, a real URL is extended by adding some state information
(e.g. unique session ID) to the end of the URL or to a query string,
e.g. http://[host]/edit.jsp;jsessionid=123

• Problems:
• Ugly URLs — URLs displayed in the browser are confusing for new users.
• Can’t share URLs — URLs contain state information about a particular session.
• Extra server load — the server needs to rewrite HTML to fatten the hyperlinks.
• Not persistent across sessions — all information is lost when the user logs out,

unless he bookmarks the particular URL.

C L I E N T I D E N T I F I C A T I O N
C O O K I E S

• HTTP State Management Mechanism (RFC 6265)

C L I E N T
S E R V E R

C L I E N T I D E N T I F I C A T I O N
C O O K I E S

• HTTP State Management Mechanism (RFC 6265)

C L I E N T
S E R V E R

1 . R E Q U E S T

C L I E N T I D E N T I F I C A T I O N
C O O K I E S

• HTTP State Management Mechanism (RFC 6265)

1 HTTP/1.1 200 OK
2 Content-Type: text/html; charset=utf-8
3 Set-Cookie: ID=494647c; domain=.msn.com; path=/

2 . R E S P O N S E C L I E N T
S E R V E R

1 . R E Q U E S T

C L I E N T I D E N T I F I C A T I O N
C O O K I E S

• HTTP State Management Mechanism (RFC 6265)

1 HTTP/1.1 200 OK
2 Content-Type: text/html; charset=utf-8
3 Set-Cookie: ID=494647c; domain=.msn.com; path=/

2 . R E S P O N S E C L I E N T
S E R V E R

1 . R E Q U E S T
3 . S T O R E C O O K I E

C O O K I E
J A R

C L I E N T I D E N T I F I C A T I O N
C O O K I E S

• HTTP State Management Mechanism (RFC 6265)

1 HTTP/1.1 200 OK
2 Content-Type: text/html; charset=utf-8
3 Set-Cookie: ID=494647c; domain=.msn.com; path=/

1 GET …msn.com HTTP/1.1
2 Cookie: ID=494647c;

2 . R E S P O N S E C L I E N T
S E R V E R

1 . R E Q U E S T
3 . S T O R E C O O K I E

4 . R E Q U E S T

C O O K I E
J A R

C L I E N T I D E N T I F I C A T I O N
T Y P E S O F C O O K I E S

• Session cookies — also known as in-memory cookies
or transient cookies. Web browsers normally delete
session cookies when the user closes the browser.

• Persistent cookies — also referred to as tracking
cookies. Instead of expiring when the web browser is
closed, persistent cookies expire at a specific date or
after a specific length of time.

1 HTTP/1.0 200 OK
2 Content-type: text/html
3 Set-Cookie: ID=494647c; Max-Age=86400
4 Set-Cookie: ID=abc123; Expires=Wed, 09 Jun 2021 10:18:14 GMT

C L I E N T I D E N T I F I C A T I O N
I S S U E S W I T H C O O K I E S

• Session hijacking and cookie theft:
• network sniffing — resolved by using Secure cookies

• Secure cookies are sent back by the browser only if the connection is
encrypted

• cross-site scripting — mitigated by using HttpOnly cookies
• HttpOnly cookies are not available to scripts in the browser

• cross-site request forgery — mitigated by using SameSite cookies
• SameSite cookies are sent back by the browser only if they were created by

the same site as the site where the HTTP request originates
• SameSite attribute is implemented inconsistently across browsers as of

03.2020, some of them default to SameSite=Lax, while others to
SameSite=None (see https://caniuse.com/#search=samesite)

https://caniuse.com/#search=samesite

C R O S S - S I T E R E Q U E S T F O R G E R Y

V I C T I M
S E R V E R

M A L I C I O U S
S I T E

V I C T I M
U S E R

C R O S S - S I T E R E Q U E S T F O R G E R Y

V I C T I M
S E R V E R

M A L I C I O U S
S I T E

V I C T I M
U S E R

1 . L O G O N R E Q U E S T

C R O S S - S I T E R E Q U E S T F O R G E R Y

V I C T I M
S E R V E R

M A L I C I O U S
S I T E

V I C T I M
U S E R

2 . S E S S I O N C O O K I E

1 . L O G O N R E Q U E S T

C R O S S - S I T E R E Q U E S T F O R G E R Y

V I C T I M
S E R V E R

M A L I C I O U S
S I T E

V I C T I M
U S E R

2 . S E S S I O N C O O K I E

1 . L O G O N R E Q U E S T

3 . G E T /

C R O S S - S I T E R E Q U E S T F O R G E R Y

V I C T I M
S E R V E R

M A L I C I O U S
S I T E

V I C T I M
U S E R

2 . S E S S I O N C O O K I E

1 . L O G O N R E Q U E S T

3 . G E T /

4 . M A L I C I O U S H T M L

1 <img
2 src="http://bank.com/transfer?from=1234&to=9876&amount=1000"
3 width="0" height="0" border="0"/>

C R O S S - S I T E R E Q U E S T F O R G E R Y

V I C T I M
S E R V E R

M A L I C I O U S
S I T E

V I C T I M
U S E R

2 . S E S S I O N C O O K I E

1 . L O G O N R E Q U E S T

3 . G E T /

4 . M A L I C I O U S H T M L

1 <img
2 src="http://bank.com/transfer?from=1234&to=9876&amount=1000"
3 width="0" height="0" border="0"/>

5 . I M A G E R E Q U E S T

1 GET /transfer?from=1234&to=9876&amount=1000 HTTP/1.1
2 Cookie: ID=494647c;

C L I E N T I D E N T I F I C A T I O N
I S S U E S W I T H C O O K I E S

• Cookies can be disabled or deleted by users in their
browsers

• Privacy concerns:
• Third party cookies may track users across the Internet

• E.g., Google Analytics
• EU: The Right to be Forgotten

Service providers are required to ask users whether they accept use
of a tracking mechanism (in Poland from 2013)
• Penalties up to €1 million or 2% of their sale
• Replaced in May 2018 by:

• EU: General Data Protection Regulation
Service providers are required to ask the users for consent for use
of data separately for each purpose
• Penalties up to €20 million or 4% of their worldwide turnover

C L I E N T I D E N T I F I C A T I O N
E T A G

• ETag
• Piece of information that uniquely identifies a resource and its

version
• E.g., a cryptographic sum: crc, md5, sha-1, sha-256,…

• Sent by server in HTTP headers
• Intended for effective caching

• Browser that supports ETags
• Sends header in every subsequent request:
• If-None-Match: “etag-value”

• Server responses
• 304 Not Modified or
• 200 Ok

C L I E N T I D E N T I F I C A T I O N
E T A G
• To track a user, send different ETag for the same

resource each time, a request has no ETag included

C L I E N T
S E R V E R

C L I E N T I D E N T I F I C A T I O N
E T A G
• To track a user, send different ETag for the same

resource each time, a request has no ETag included

C L I E N T
S E R V E R

1 . R E Q U E S T

C L I E N T I D E N T I F I C A T I O N
E T A G
• To track a user, send different ETag for the same

resource each time, a request has no ETag included

1 HTTP/1.1 200 OK
2 Content-Type: text/html; charset=utf-8
3 ETag: "686897696a7c876b7e"

2 . R E S P O N S E C L I E N T
S E R V E R

1 . R E Q U E S T

C L I E N T I D E N T I F I C A T I O N
E T A G
• To track a user, send different ETag for the same

resource each time, a request has no ETag included

1 HTTP/1.1 200 OK
2 Content-Type: text/html; charset=utf-8
3 ETag: "686897696a7c876b7e"

2 . R E S P O N S E C L I E N T
S E R V E R

1 . R E Q U E S T
3 . S T O R E E T A G

C A C H E

C L I E N T I D E N T I F I C A T I O N
E T A G
• To track a user, send different ETag for the same

resource each time, a request has no ETag included

1 HTTP/1.1 200 OK
2 Content-Type: text/html; charset=utf-8
3 ETag: "686897696a7c876b7e"

1 GET / HTTP/1.1
2 If-None-Match: "686897696a7c876b7e"

2 . R E S P O N S E C L I E N T
S E R V E R

1 . R E Q U E S T
3 . S T O R E E T A G

4 . R E Q U E S T

C A C H E

C L I E N T I D E N T I F I C A T I O N
H T T P B A S I C A U T H E N T I C A T I O N

• HTTP provides built-in support for Basic Authentication, where
user credentials formatted as user:password are transmitted
via the Authorization header as a Base64-encoded string.

C L I E N T I D E N T I F I C A T I O N
H T T P B A S I C A U T H E N T I C A T I O N

• HTTP provides built-in support for Basic Authentication, where
user credentials formatted as user:password are transmitted
via the Authorization header as a Base64-encoded string.
1 HTTP/1.1 401 Unauthorized
2 Server: Apache/2.2.4
3 WWW-Authenticate: Basic

C L I E N T I D E N T I F I C A T I O N
H T T P B A S I C A U T H E N T I C A T I O N

• HTTP provides built-in support for Basic Authentication, where
user credentials formatted as user:password are transmitted
via the Authorization header as a Base64-encoded string.
1 HTTP/1.1 401 Unauthorized
2 Server: Apache/2.2.4
3 WWW-Authenticate: Basic

1 GET http://localhost/protected/ HTTP/1.1
2 Authorization: Basic dXNlcjpwYXNzd29yZA==

C L I E N T I D E N T I F I C A T I O N
H T T P B A S I C A U T H E N T I C A T I O N

• HTTP provides built-in support for Basic Authentication, where
user credentials formatted as user:password are transmitted
via the Authorization header as a Base64-encoded string.

• If the server validates the authorization credentials, browser
uses them as the value of the Authorization header in future
requests to dependent URLs.

1 HTTP/1.1 401 Unauthorized
2 Server: Apache/2.2.4
3 WWW-Authenticate: Basic

1 GET http://localhost/protected/ HTTP/1.1
2 Authorization: Basic dXNlcjpwYXNzd29yZA==

C L I E N T I D E N T I F I C A T I O N
H T T P B A S I C A U T H E N T I C A T I O N

• HTTP provides built-in support for Basic Authentication, where
user credentials formatted as user:password are transmitted
via the Authorization header as a Base64-encoded string.

• If the server validates the authorization credentials, browser
uses them as the value of the Authorization header in future
requests to dependent URLs.

• Basic authentication is insecure by default — credentials are
simply encoded (not encrypted) — rarely used without HTTPS.

1 HTTP/1.1 401 Unauthorized
2 Server: Apache/2.2.4
3 WWW-Authenticate: Basic

1 GET http://localhost/protected/ HTTP/1.1
2 Authorization: Basic dXNlcjpwYXNzd29yZA==

C L I E N T I D E N T I F I C A T I O N
H T T P D I G E S T A U T H E N T I C A T I O N

• Server sends a seed nonce and a message realm to the client

• Client responds with MD5 of credentials concatenated with realm,
method, URI, and nonce

• Algorithm for calculating response (RFC 2069):

C L I E N T I D E N T I F I C A T I O N
H T T P D I G E S T A U T H E N T I C A T I O N

• Server sends a seed nonce and a message realm to the client

• Client responds with MD5 of credentials concatenated with realm,
method, URI, and nonce

• Algorithm for calculating response (RFC 2069):
HA1=MD5(username:realm:password)
HA2=MD5(method:digestURI)
response=MD5(HA1:nonce:HA2)

C L I E N T I D E N T I F I C A T I O N
H T T P D I G E S T A U T H E N T I C A T I O N

C L I E N T I D E N T I F I C A T I O N
H T T P D I G E S T A U T H E N T I C A T I O N

1 HTTP/1.1 401 Unauthorized
2 Date: Sun, 10 Apr 2014 20:26:47 GMT
3 WWW-Authenticate: Digest realm="testrealm@host.com",

nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093"

C L I E N T I D E N T I F I C A T I O N
H T T P D I G E S T A U T H E N T I C A T I O N

1 HTTP/1.1 401 Unauthorized
2 Date: Sun, 10 Apr 2014 20:26:47 GMT
3 WWW-Authenticate: Digest realm="testrealm@host.com",

nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093"

1 GET /dir/index.html HTTP/1.1
2 Host: localhost
3 Authorization: Digest username="Mufasa",

realm="testrealm@host.com",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
uri="/dir/index.html",
response="6629fae49393a05397450978507c4ef1"

C L I E N T I D E N T I F I C A T I O N
H T T P D I G E S T A U T H E N T I C A T I O N
• RFC 2617 defines more secure way to digest authentication

• Recurrent MD5 hashes
• A counter of requests incremented by client
• A client-generated seed

• More secure than basic and RFC 2069 digest
authentication, but
• Passwords must be stored in plain text on server side to calculate

MD5s
• MD5 collisions are easy to generate

• RFC 7616 extends digest authentication by negotiation of
checksum algorithm
• A proposal of standard as of 03.2020
• Partial implementations in major browsers as of 03.2020

C L I E N T I D E N T I F I C A T I O N
H T T P B E A R E R A U T H E N T I C A T I O N

• Involves a trusted third party performing authorization
• Authorized client receives OAuth 2.0 token

• Client exchanges the token with server

• Server verifies the token with the trusted third party

• RFC 6750
• A proposal of standard as of 03.2020

C L I E N T I D E N T I F I C A T I O N
H T T P B E A R E R A U T H E N T I C A T I O N

T R U S T E D
T H I R D
P A R T Y

C L I E N T

S E R V E R

C L I E N T I D E N T I F I C A T I O N
H T T P B E A R E R A U T H E N T I C A T I O N

T R U S T E D
T H I R D
P A R T Y

C L I E N T

S E R V E R

1 . A U T H O R I Z A T I O N R E Q U E S T

C L I E N T I D E N T I F I C A T I O N
H T T P B E A R E R A U T H E N T I C A T I O N

T R U S T E D
T H I R D
P A R T Y

C L I E N T

S E R V E R

1 . A U T H O R I Z A T I O N R E Q U E S T

2 . T O K E N

C L I E N T I D E N T I F I C A T I O N
H T T P B E A R E R A U T H E N T I C A T I O N

T R U S T E D
T H I R D
P A R T Y

C L I E N T

S E R V E R

1 . A U T H O R I Z A T I O N R E Q U E S T

2 . T O K E N

3 . A U T H O R I Z E D R E Q U E S T
1 GET / HTTP/1.1
2 Authorization: Bearer mF_9.B5f-4.1JqM

C L I E N T I D E N T I F I C A T I O N
H T T P B E A R E R A U T H E N T I C A T I O N

T R U S T E D
T H I R D
P A R T Y

C L I E N T

S E R V E R

1 . A U T H O R I Z A T I O N R E Q U E S T

2 . T O K E N

3 . A U T H O R I Z E D R E Q U E S T

4 . T O K E N
V E R I F I C A T I O N

1 GET / HTTP/1.1
2 Authorization: Bearer mF_9.B5f-4.1JqM

C L I E N T I D E N T I F I C A T I O N
H T T P B E A R E R A U T H E N T I C A T I O N

T R U S T E D
T H I R D
P A R T Y

C L I E N T

S E R V E R

1 . A U T H O R I Z A T I O N R E Q U E S T

2 . T O K E N

3 . A U T H O R I Z E D R E Q U E S T

5 . R E S P O N S E4 . T O K E N
V E R I F I C A T I O N

1 GET / HTTP/1.1
2 Authorization: Bearer mF_9.B5f-4.1JqM

C L I E N T I D E N T I F I C A T I O N
H T T P B E A R E R A U T H E N T I C A T I O N

• Advantages:
• The server may not know credentials of the client and still

identify it
• The server does not store any sensitive information

• Disadvantages:
• The token may leak through unencrypted connection
• Limited support in implementations, requires developer’s

intervention

H T T P C O N N E C T I O N S

• How do HTTP messages move through the network?

C L I E N TS E R V E R

H T T P C O N N E C T I O N S

• How do HTTP messages move through the network?

• A TCP connection must be established between the client
and server before they can communicate with each other.

C L I E N TS E R V E R

H T T P C O N N E C T I O N S

• How do HTTP messages move through the network?

• A TCP connection must be established between the client
and server before they can communicate with each other.

C L I E N T

H T T P

S E R V E R

A P P L I C A T I O NA P P L I C A T I O N

H T T P C O N N E C T I O N S

• How do HTTP messages move through the network?

• A TCP connection must be established between the client
and server before they can communicate with each other.

T R A N S P O R TT R A N S P O R T

C L I E N T

H T T P

T C P

S E R V E R

A P P L I C A T I O NA P P L I C A T I O N

H T T P C O N N E C T I O N S

• How do HTTP messages move through the network?

• A TCP connection must be established between the client
and server before they can communicate with each other.

T R A N S P O R T

N E T W O R K

T R A N S P O R T

N E T W O R K

C L I E N T

H T T P

T C P

I P

S E R V E R

A P P L I C A T I O NA P P L I C A T I O N

H T T P C O N N E C T I O N S

• How do HTTP messages move through the network?

• A TCP connection must be established between the client
and server before they can communicate with each other.

T R A N S P O R T

N E T W O R K

D A T A L I N K

T R A N S P O R T

N E T W O R K

D A T A L I N K
C L I E N T

H T T P

T C P

I P

E T H E R N E TS E R V E R

A P P L I C A T I O NA P P L I C A T I O N

P E R S I S T E N T C O N N E C T I O N S

• When does a browser open and close a connection?

P E R S I S T E N T C O N N E C T I O N S

• When does a browser open and close a connection?

• HTTP/1.0 — all connections were closed after a single
transaction.
• HTTP is stateless — it does not require extended connection lifetime.
• Lot of network delays due to three-way handshake and slow-start.

P E R S I S T E N T C O N N E C T I O N S

• When does a browser open and close a connection?

• HTTP/1.0 — all connections were closed after a single
transaction.
• HTTP is stateless — it does not require extended connection lifetime.
• Lot of network delays due to three-way handshake and slow-start.

P E R S I S T E N T C O N N E C T I O N S

• When does a browser open and close a connection?

• HTTP/1.0 — all connections were closed after a single
transaction.
• HTTP is stateless — it does not require extended connection lifetime.
• Lot of network delays due to three-way handshake and slow-start.

• HTTP/1.1 — introduced persistent connections:
• Reducing connection-establishment delays,
• Long-lived connections that stay open until the client closes them.
• Persistent connections are default, Connection: keep-alive is redundant.
• Close of the connection requires the client to set the Connection: close

request header.
• Most web servers close a persistent connection if it is idle for some period.

P I P E L I N I N G R E Q U E S T S

• Persistent HTTP allows us to reuse an existing TCP connection
between multiple application requests, but it implies a strict
first in, first out (FIFO) queuing order on the client.

P I P E L I N I N G R E Q U E S T S

• Persistent HTTP allows us to reuse an existing TCP connection
between multiple application requests, but it implies a strict
first in, first out (FIFO) queuing order on the client.

• HTTP pipelining is a small but important optimization to this
workflow, which allows us to relocate the FIFO queue from the
client (request queuing) to the server (response queuing):
• Browsers can send requests without waiting for responses.
• Servers are responsible for submitting responses to browser requests in

the order of their arrival.

P I P E L I N I N G R E Q U E S T S

• What if the first request hangs indefinitely or simply takes
a very long time to generate on the server?

P I P E L I N I N G R E Q U E S T S

• What if the first request hangs indefinitely or simply takes
a very long time to generate on the server?

• Head-of-line blocking results in suboptimal delivery:
• underutilized network links,
• server buffering costs,
• unpredictable latency delays for the client.

P I P E L I N I N G R E Q U E S T S

• What if the first request hangs indefinitely or simply takes
a very long time to generate on the server?

• Head-of-line blocking results in suboptimal delivery:
• underutilized network links,
• server buffering costs,
• unpredictable latency delays for the client.

• HTTP pipelining adoption has remained very limited
despite its many benefits — some browsers support
pipelining, usually as an advanced option, but most have
it disabled.

C O N N E C T I O N S A N D P R O X I E S

C L I E N TS E R V E R

C O N N E C T I O N S A N D P R O X I E S

C L I E N TS E R V E R

H T T P R E Q U E S T

C O N N E C T I O N S A N D P R O X I E S

C L I E N TS E R V E R

H T T P R E S P O N S E

H T T P R E Q U E S T

C O N N E C T I O N S A N D P R O X I E S

C L I E N TS E R V E R

H T T P R E S P O N S E

H T T P R E Q U E S T

C O N N E C T I O N S A N D P R O X I E S

• Connection — a virtual circuit established between two programs
for the purpose of communication.

• Proxy — an intermediary program which acts as both a server and
a client for the purpose of making requests on behalf of other
clients.

C L I E N TS E R V E R

H T T P R E S P O N S E

H T T P R E Q U E S T

P R O X Y
P R O X Y

C O N N E C T I O N S A N D P R O X I E S

• Connection — a virtual circuit established between two programs
for the purpose of communication.

• Proxy — an intermediary program which acts as both a server and
a client for the purpose of making requests on behalf of other
clients.

C L I E N TS E R V E R

H T T P R E S P O N S E

H T T P R E Q U E S T

P R O X Y
P R O X Y

C O N N E C T I O N S A N D P R O X I E S

• Connection — a virtual circuit established between two programs
for the purpose of communication.

• Proxy — an intermediary program which acts as both a server and
a client for the purpose of making requests on behalf of other
clients.

C L I E N TS E R V E R

H T T P R E S P O N S E

H T T P R E Q U E S T

P R O X Y
P R O X Y

T Y P E S O F P R O X I E S :
T R A N S P A R E N C Y

• A transparent proxy — does not modify the request
or response; client is unaware of its existence:
• load-balancing
• monitoring, logging, debugging

T Y P E S O F P R O X I E S :
T R A N S P A R E N C Y

• A transparent proxy — does not modify the request
or response; client is unaware of its existence:
• load-balancing
• monitoring, logging, debugging

• A non-transparent proxy — modifies the request or
response in order to provide some added service:
• content filtering
• removing confidential data
• providing online anonymity

F O R W A R D A N D R E V E R S E P R O X I E S

C L I E N TS E R V E R

F O R W A R D A N D R E V E R S E P R O X I E S

C L I E N TS E R V E R

F O R W A R D A N D R E V E R S E P R O X I E S

C L I E N TS E R V E R

F O R W A R D A N D R E V E R S E P R O X I E S

• Forward proxy — proxies in behalf of requesting hosts,
each client must be configured to explicitly use this
proxy.

• Reverse proxy — proxies in behalf of servers, appears to
clients as ordinary server, used to take the computational
load off the web servers, e.g. TLS acceleration.

C L I E N TS E R V E R F O R W A R D
P R O X Y

F O R W A R D A N D R E V E R S E P R O X I E S

• Forward proxy — proxies in behalf of requesting hosts,
each client must be configured to explicitly use this
proxy.

• Reverse proxy — proxies in behalf of servers, appears to
clients as ordinary server, used to take the computational
load off the web servers, e.g. TLS acceleration.

C L I E N TS E R V E R

R E V E R S E
P R O X Y

F O R W A R D
P R O X Y

H T T P C A C H I N G

• HTTP caching — a set of mechanisms allowing HTTP
responses to be held in some form of temporary storage.

• Instead of satisfying future requests by going back to the
original data source, the saved copy of the data can be used.

H T T P C A C H I N G

• HTTP caching — a set of mechanisms allowing HTTP
responses to be held in some form of temporary storage.

• Instead of satisfying future requests by going back to the
original data source, the saved copy of the data can be used.

• Caching can reduce latency, help prevent bandwith
bottlenecks as well as improve user experience.

H T T P C A C H I N G

• HTTP caching — a set of mechanisms allowing HTTP
responses to be held in some form of temporary storage.

• Instead of satisfying future requests by going back to the
original data source, the saved copy of the data can be used.

• Caching can reduce latency, help prevent bandwith
bottlenecks as well as improve user experience.

• Two types of caches can be employed:
• public cache — shared among multiple users,

resides on a proxy (forward or reverse).
• private cache — stored by a browser for a single user.

C A C H I N G I N A C T I O N

C L I E N TS E R V E R C A C H I N G
P R O X Y

C A C H I N G I N A C T I O N

• Request methods can be defined as "cacheable" to
indicate that responses to them are allowed to be stored
for future reuse. In general, GET and HEAD are cacheable.

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

C A C H I N G I N A C T I O N

• Request methods can be defined as "cacheable" to
indicate that responses to them are allowed to be stored
for future reuse. In general, GET and HEAD are cacheable.

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?

C A C H I N G I N A C T I O N

• Request methods can be defined as "cacheable" to
indicate that responses to them are allowed to be stored
for future reuse. In general, GET and HEAD are cacheable.

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?
N O ! C A C H E M I S S

C A C H I N G I N A C T I O N

• Request methods can be defined as "cacheable" to
indicate that responses to them are allowed to be stored
for future reuse. In general, GET and HEAD are cacheable.

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?

3 . R E Q U E S T

N O ! C A C H E M I S S

C A C H I N G I N A C T I O N

• Request methods can be defined as "cacheable" to
indicate that responses to them are allowed to be stored
for future reuse. In general, GET and HEAD are cacheable.

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?

3 . R E Q U E S T

4 . R E S P O N S E

N O ! C A C H E M I S S

C A C H I N G I N A C T I O N

• Request methods can be defined as "cacheable" to
indicate that responses to them are allowed to be stored
for future reuse. In general, GET and HEAD are cacheable.

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?

3 . R E Q U E S T

4 . R E S P O N S E

N O ! C A C H E M I S S
5 . S T O R E R E S P O N S E

C A C H I N G I N A C T I O N

• Request methods can be defined as "cacheable" to
indicate that responses to them are allowed to be stored
for future reuse. In general, GET and HEAD are cacheable.

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?

3 . R E Q U E S T

4 . R E S P O N S E 6 . R E S P O N S E

N O ! C A C H E M I S S
5 . S T O R E R E S P O N S E

C A C H E H I T

C L I E N TS E R V E R C A C H I N G
P R O X Y

C A C H E H I T

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

C A C H E H I T

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?

C A C H E H I T

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?
Y E S ! C A C H E H I T

C A C H E H I T

• Keeping the content fresh is one of the primary
responsibilities of the cache — HTTP provides a simple
mechanism of document expiration.

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?
Y E S ! C A C H E H I T

3 . V A L I D ?

C A C H E H I T

• Keeping the content fresh is one of the primary
responsibilities of the cache — HTTP provides a simple
mechanism of document expiration.

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?
Y E S ! C A C H E H I T

3 . V A L I D ?
Y E S !

C A C H E H I T

• Keeping the content fresh is one of the primary
responsibilities of the cache — HTTP provides a simple
mechanism of document expiration.

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?

4 . R E S P O N S E

Y E S ! C A C H E H I T
3 . V A L I D ?

Y E S !

D O C U M E N T E X P I R A T I O N

• HTTP server can attach an expiration date to each
response using the Cache-Control and Expires headers.

• The cache can serve the copy as long as the age of the
document is within the expiration date.

1 HTTP/1.1 200 OK
2 Last-Modified: Wed, 25 Jan 2012 17:55:15 GMT
3 Expires: Sat, 22 Jan 2022 17:55:15 GMT
4 Cache-Control: max-age=315360000,public

D O C U M E N T E X P I R A T I O N

• HTTP server can attach an expiration date to each
response using the Cache-Control and Expires headers.

• The cache can serve the copy as long as the age of the
document is within the expiration date.

• Once a cached document expires, the cache must
revalidate with the server to check if the document has
changed and update its local copy accordingly.

1 HTTP/1.1 200 OK
2 Last-Modified: Wed, 25 Jan 2012 17:55:15 GMT
3 Expires: Sat, 22 Jan 2022 17:55:15 GMT
4 Cache-Control: max-age=315360000,public

R E V A L I D A T E H I T

C L I E N TS E R V E R C A C H I N G
P R O X Y

R E V A L I D A T E H I T

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

R E V A L I D A T E H I T

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?

R E V A L I D A T E H I T

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?
Y E S ! C A C H E H I T

R E V A L I D A T E H I T

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?
Y E S ! C A C H E H I T

3 . V A L I D ?

R E V A L I D A T E H I T

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?
Y E S ! C A C H E H I T

3 . V A L I D ?
N O ! E X P I R E D

R E V A L I D A T E H I T

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?
Y E S ! C A C H E H I T

3 . V A L I D ?
N O ! E X P I R E D

4 . R E V A L I D A T I O N

R E V A L I D A T E H I T

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?
Y E S ! C A C H E H I T

3 . V A L I D ?
N O ! E X P I R E D

4 . R E V A L I D A T I O N

5 . V A L I D ?

R E V A L I D A T E H I T

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?
Y E S ! C A C H E H I T

3 . V A L I D ?
N O ! E X P I R E D

4 . R E V A L I D A T I O N

5 . V A L I D ?
Y E S !
R E V A L I D A T E H I T

R E V A L I D A T E H I T

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?
Y E S ! C A C H E H I T

3 . V A L I D ?
N O ! E X P I R E D

4 . R E V A L I D A T I O N

6 . 3 0 4
5 . V A L I D ?

Y E S !
R E V A L I D A T E H I T

R E V A L I D A T E H I T

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?
Y E S ! C A C H E H I T

3 . V A L I D ?
N O ! E X P I R E D

4 . R E V A L I D A T I O N

6 . 3 0 4

7 . U P D A T E E X P I R A T I O N D A T E

5 . V A L I D ?
Y E S !
R E V A L I D A T E H I T

R E V A L I D A T E H I T

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?

8 . R E S P O N S E

Y E S ! C A C H E H I T
3 . V A L I D ?

N O ! E X P I R E D

4 . R E V A L I D A T I O N

6 . 3 0 4

7 . U P D A T E E X P I R A T I O N D A T E

5 . V A L I D ?
Y E S !
R E V A L I D A T E H I T

R E V A L I D A T E M I S S

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?
Y E S ! C A C H E H I T

3 . V A L I D ?
N O ! E X P I R E D

4 . R E V A L I D A T I O N

R E V A L I D A T E M I S S

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?
Y E S ! C A C H E H I T

3 . V A L I D ?
N O ! E X P I R E D

4 . R E V A L I D A T I O N

5 . V A L I D ?

R E V A L I D A T E M I S S

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?
Y E S ! C A C H E H I T

3 . V A L I D ?
N O ! E X P I R E D

4 . R E V A L I D A T I O N

5 . V A L I D ?
N O !
R E V A L I D A T E M I S S

R E V A L I D A T E M I S S

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?
Y E S ! C A C H E H I T

3 . V A L I D ?
N O ! E X P I R E D

4 . R E V A L I D A T I O N

6 . 2 0 0 O K
5 . V A L I D ?

N O !
R E V A L I D A T E M I S S

R E V A L I D A T E M I S S

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?
Y E S ! C A C H E H I T

3 . V A L I D ?
N O ! E X P I R E D

4 . R E V A L I D A T I O N

6 . 2 0 0 O K

7 . S T O R E R E S P O N S E

5 . V A L I D ?
N O !
R E V A L I D A T E M I S S

R E V A L I D A T E M I S S

C L I E N TS E R V E R C A C H I N G
P R O X Y

1 . R E Q U E S T

2 . C A C H E D ?

8 . R E S P O N S E

Y E S ! C A C H E H I T
3 . V A L I D ?

N O ! E X P I R E D

4 . R E V A L I D A T I O N

6 . 2 0 0 O K

7 . S T O R E R E S P O N S E

5 . V A L I D ?
N O !
R E V A L I D A T E M I S S

S E R V E R R E V A L I D A T I O N

• Document expiration
• The cache does not revalidate with the server for every request

• Save of bandwidth, time and reduction of the traffic

• Server revalidation is made with conditional methods.

• Conditional GET
• Ask the server to send back an object body only if the document is different

than in the cache

• Otherwise, server responses with a small 304 Not Modified message without
body

• Freshness check and the object fetch are combined into
a single request by adding special conditional headers

S E R V E R R E V A L I D A T I O N
C O N D I T I O N A L H E A D E R S

• HTTP defines five conditional request headers; two of them
are commonly used for cache revalidation.

S E R V E R R E V A L I D A T I O N
C O N D I T I O N A L H E A D E R S

• HTTP defines five conditional request headers; two of them
are commonly used for cache revalidation.

• If-Modified-Since — performs the requested method if
the document has been modified since the specified date.
This is used in conjunction with the Last-Modified server
response header.

S E R V E R R E V A L I D A T I O N
C O N D I T I O N A L H E A D E R S

• HTTP defines five conditional request headers; two of them
are commonly used for cache revalidation.

• If-Modified-Since — performs the requested method if
the document has been modified since the specified date.
This is used in conjunction with the Last-Modified server
response header.

• If-None-Match — the server may provide special tags
(ETag) on the document that act like serial numbers. The If-
None-Match header performs the requested method if the
cached tag differs from the tag in the server’s document.

S E R V E R R E V A L I D A T I O N
E N T I T Y T A G R E V A L I D A T I O N

• Date-based revalidation is the most common technique,
but there are situations when it is not adequate:
• Documents rewritten periodically but containing the same data,
• Servers cannot accurately determine modification dates,
• One-second granularity of modification dates is not enough.

S E R V E R R E V A L I D A T I O N
E N T I T Y T A G R E V A L I D A T I O N

• Date-based revalidation is the most common technique,
but there are situations when it is not adequate:
• Documents rewritten periodically but containing the same data,
• Servers cannot accurately determine modification dates,
• One-second granularity of modification dates is not enough.

• HTTP allows you to compare document version
identifiers called entity tags (ETags).

• Entity tags are arbitrary labels attached to the document
which might contain a serial number, a checksum or
other fingerprint of the document content.

C O N T E N T D E L I V E R Y N E T W O R K S

• Content delivery network (CDN) — a large, geographically
distributed network of specialized servers that accelerate
the delivery of web content to internet-connected devices.

• The primary technique that a CDN uses to speed the
delivery of web content to end users is edge caching.

• Edge caching entails storing replicas of static text, image,
audio, and video content in multiple servers around the
"edges" of the internet, so that user requests can be served
by a nearby edge server rather than by a far-off origin
server.

C O N T R O L L I N G C A C H A B I L I T Y

• Cache-Control header has a few different values to
constrain how clients should cache the response.

• public — public proxy servers can cache the response

• private — only the browser can cache the response

• no-cache — one must not cache the response, or one
must revalidate cached response with use of other
criteria

• no-store — one must not cache the response

C O N T R O L L I N G C A C H A B I L I T Y

• Cache-Control: max-age — sets a relative expiration time
(in seconds) from the time the response is generated.

• Cache-Control: s-maxage — acts like max-age but applies
only to shared (public) caches.

C O N T R O L L I N G C A C H A B I L I T Y

• Cache-Control: max-age — sets a relative expiration time
(in seconds) from the time the response is generated.

• Cache-Control: s-maxage — acts like max-age but applies
only to shared (public) caches.

• If the server does not send expiration date, the client can use its
own heuristic expiration algorithm to determine freshness:

1 time_since_modify = max(0, fetch_time - server_last_modified);
2 new_expiration_time = time_since_modify * lm_factor;

C O N T R O L L I N G C A C H A B I L I T Y

• Cache-Control: max-age — sets a relative expiration time
(in seconds) from the time the response is generated.

• Cache-Control: s-maxage — acts like max-age but applies
only to shared (public) caches.

• If the server does not send expiration date, the client can use its
own heuristic expiration algorithm to determine freshness:

• Cache-Control: must-revalidate — tells caches they
cannot serve a stale copy of this object without first revalidating
with the origin server. Caches are still free to serve fresh copies
without revalidating.

1 time_since_modify = max(0, fetch_time - server_last_modified);
2 new_expiration_time = time_since_modify * lm_factor;

H T T P A P P L I C A T I O NA P P L I C A T I O N

H T T P S — S E C U R E C O N N E C T I O N S

• An additional security layer in the network protocol stack,
between HTTP and TCP — the Secure Sockets Layer
(SSL) or the improved Transport Layer Security (TLS).

T R A N S P O R T

N E T W O R K

D A T A L I N K

T R A N S P O R T

N E T W O R K

D A T A L I N K
C L I E N T

T C P

I P

E T H E R N E TS E R V E R

H T T P A P P L I C A T I O NA P P L I C A T I O N

H T T P S — S E C U R E C O N N E C T I O N S

• An additional security layer in the network protocol stack,
between HTTP and TCP — the Secure Sockets Layer
(SSL) or the improved Transport Layer Security (TLS).

T R A N S P O R T

N E T W O R K

D A T A L I N K

T R A N S P O R T

N E T W O R K

D A T A L I N K
C L I E N T

T C P

I P

E T H E R N E TS E R V E R

H T T P A P P L I C A T I O NA P P L I C A T I O NE N C R Y P T I O N E N C R Y P T I O NS S L / T L S

H T T P S — S E C U R E C O N N E C T I O N S

• An additional security layer in the network protocol stack,
between HTTP and TCP — the Secure Sockets Layer
(SSL) or the improved Transport Layer Security (TLS).

T R A N S P O R T

N E T W O R K

D A T A L I N K

T R A N S P O R T

N E T W O R K

D A T A L I N K
C L I E N T

T C P

I P

E T H E R N E TS E R V E R

T R A N S P O R T L A Y E R S E C U R I T Y

• The TLS protocol provides three essential services that
form a foundation of secure communication:
• encryption — using public-key cryptography allows the peers

to negotiate a shared secret key (within a TLS handshake).
• authentication — to verify the identity of the server/client;
• integrity — to detect message tampering and forgery.

T R A N S P O R T L A Y E R S E C U R I T Y

• The TLS protocol provides three essential services that
form a foundation of secure communication:
• encryption — using public-key cryptography allows the peers

to negotiate a shared secret key (within a TLS handshake).
• authentication — to verify the identity of the server/client;
• integrity — to detect message tampering and forgery.

• HTTPS encrypts all request and response traffic,
including the HTTP headers and message body, and
everything after the host name in the URL.

T L S H A N D S H A K E

C L I E N TS E R V E R

T L S H A N D S H A K E

C L I E N TS E R V E R

T L S H A N D S H A K E

C L I E N TS E R V E R

1 . R E Q U E S T C E R T I F I C A T E

T L S H A N D S H A K E

C L I E N TS E R V E R

1 . R E Q U E S T C E R T I F I C A T E

2 . C E R T I F I C A T E

T L S H A N D S H A K E

C L I E N TS E R V E R

1 . R E Q U E S T C E R T I F I C A T E

2 . C E R T I F I C A T E

3 . V E R I F Y
C E R T I F I C A T E

T L S H A N D S H A K E

C L I E N TS E R V E R

1 . R E Q U E S T C E R T I F I C A T E

2 . C E R T I F I C A T E

3 . V E R I F Y
C E R T I F I C A T E

4 . E X C H A N G E S Y M M E T R I C K E Y

T L S H A N D S H A K E

C L I E N TS E R V E R

1 . R E Q U E S T C E R T I F I C A T E

2 . C E R T I F I C A T E

3 . V E R I F Y
C E R T I F I C A T E

4 . E X C H A N G E S Y M M E T R I C K E Y

5 . E N C R Y P T E D R E Q U E S T

T L S H A N D S H A K E

C L I E N TS E R V E R

1 . R E Q U E S T C E R T I F I C A T E

2 . C E R T I F I C A T E

3 . V E R I F Y
C E R T I F I C A T E

4 . E X C H A N G E S Y M M E T R I C K E Y

5 . E N C R Y P T E D R E Q U E S T

6 . E N C R Y P T E D R E S P O N S E

H T T P / 2

• HTTP history:
• 1991: HTTP 0.9
• 1996: HTTP 1.0 (RFC 1945)
• 1997: HTTP 1.1 (RFC 2068)
• 1999: HTTP 1.1 improved (RFC 2616)
• 05.2015 — HTTP/2 (RFC 7540, proposed standard)

• HTTP/2 maintains high-level compatibility with
HTTP/1.1 (methods, status codes, header fields)

• Based on SPDY — developed by Google since 2009.

S P E ED Y — M O T I V A T I O N

• The Web has changed —
https://httparchive.org/reports/state-of-the-
web?start=earliest&end=latest&view=list

https://httparchive.org/reports/state-of-the-web?start=earliest&end=latest&view=list

S P E ED Y — M O T I V A T I O N

• The Web has changed —
https://httparchive.org/reports/state-of-the-
web?start=earliest&end=latest&view=list

• HTTP was not designed for optimal performance:
• single request per connection (until HTTP/1.1)
• exclusively client-initiated requests
• uncompressed and redundant headers
• optional data compression

https://httparchive.org/reports/state-of-the-web?start=earliest&end=latest&view=list

S P E ED Y — M O T I V A T I O N

• The Web has changed —
https://httparchive.org/reports/state-of-the-
web?start=earliest&end=latest&view=list

• HTTP was not designed for optimal performance:
• single request per connection (until HTTP/1.1)
• exclusively client-initiated requests
• uncompressed and redundant headers
• optional data compression

• Browsers and applications employ a number of tricks
to improve the performance of the HTTP protocol.

https://httparchive.org/reports/state-of-the-web?start=earliest&end=latest&view=list

P A R A L L E L C O N N E C T I O N S

• Parallel connections — a technique employed by browsers
to minimize network delays and improve overall performance.

• A pool of parallel connections allows the client to download
the assets simultaneously rather than in a serial fashion.

• According to HTTP 1.1: A single-user client SHOULD NOT
maintain more than 2 connections with any server or proxy.

• Most browser use a set of heuristics to decide on how many
parallel connections to establish (typically from 4 to 8).

D O M A I N S H A R D I N G

• Domain sharding — distributing web resources across
multiple domains or content delivery networks.

• Domain sharding is often overused and can hurt performance
due to additional DNS lookups and TCP slow-start.

Source: https://gtmetrix.com/parallelize-downloads-across-hostnames.html

No sharding Sharding

https://gtmetrix.com/parallelize-downloads-across-hostnames.html

R E S O U R C E C O N C A T E N A T I O N ,
S P R I T I N G A N D I N L I N I N G

• The fastest request is a request not made.

• Concatenation — multiple JavaScript or CSS files
are combined into a single resource.

• Spriting — multiple images are combined into a
larger, composite image.

• Resource Inlining

• JavaScript and CSS can be included in HTML
via the appropriate tags

• Binary data (e.g., images) can be included in
HTML/CSS using data-URI

S P E E D Y — B U S I N E S S M O T I V A T I O N

• SPDY — a protocol for transporting content over the web,
designed specifically for end-user perceived latency (the
target was a 50% reduction in page load time).

S P E ED Y — D E S I G N

• SPDY requires no changes to existing networking infrastructure.

• SPDY uses TCP as the transport layer but requires also SSL/TLS.

T R A N S P O R T

N E T W O R K

D A T A L I N K

T R A N S P O R T

N E T W O R K

D A T A L I N K C L I E N T

H T T P

T C P

I P

E T H E R N E T
S E R V E R

A P P L I C A T I O NA P P L I C A T I O N

S P E ED Y — D E S I G N

• SPDY requires no changes to existing networking infrastructure.

• SPDY uses TCP as the transport layer but requires also SSL/TLS.

T R A N S P O R T

N E T W O R K

D A T A L I N K

T R A N S P O R T

N E T W O R K

D A T A L I N K C L I E N T

H T T P

T C P

I P

E T H E R N E T
S E R V E R

A P P L I C A T I O NA P P L I C A T I O N

S P E ED Y — D E S I G N

• SPDY requires no changes to existing networking infrastructure.

• SPDY uses TCP as the transport layer but requires also SSL/TLS.

T R A N S P O R T

N E T W O R K

D A T A L I N K

T R A N S P O R T

N E T W O R K

D A T A L I N K C L I E N T

H T T P

T C P

I P

E T H E R N E T
S E R V E R

A P P L I C A T I O NA P P L I C A T I O NE N C R Y P T I O N E N C R Y P T I O NS S L / T L S

S P E ED Y — D E S I G N

• SPDY requires no changes to existing networking infrastructure.

• SPDY uses TCP as the transport layer but requires also SSL/TLS.

T R A N S P O R T

N E T W O R K

D A T A L I N K

T R A N S P O R T

N E T W O R K

D A T A L I N K C L I E N T

H T T P

T C P

I P

E T H E R N E T
S E R V E R

A P P L I C A T I O NA P P L I C A T I O NE N C R Y P T I O N E N C R Y P T I O NS S L / T L S

S P E ED Y — D E S I G N

• SPDY requires no changes to existing networking infrastructure.

• SPDY uses TCP as the transport layer but requires also SSL/TLS.

T R A N S P O R T

N E T W O R K

D A T A L I N K

T R A N S P O R T

N E T W O R K

D A T A L I N K C L I E N T

H T T P

T C P

I P

E T H E R N E T
S E R V E R

A P P L I C A T I O NA P P L I C A T I O NE N C R Y P T I O N E N C R Y P T I O NS S L / T L S

S E S S I O N S E S S I O NS P D Y

S P E ED Y — F E A T U R E S

• Multiplexed streams — SPDY allows for unlimited concurrent
streams over a single TCP connection.

• The ability to divide HTTP messages into independent binary
frames, interleave them, and reassemble them on the other
end is the most important enhancement of SPDY and HTTP/2.

S P E ED Y — F E A T U R E S

• Multiplexed streams — SPDY allows for unlimited concurrent
streams over a single TCP connection.

• The ability to divide HTTP messages into independent binary
frames, interleave them, and reassemble them on the other
end is the most important enhancement of SPDY and HTTP/2.

S P E ED Y — F E A T U R E S

• Request prioritization — the client can request many
items from the server and assign a priority to each request.

• HTTP header compression — SPDY compresses request
and response HTTP headers

• Server-initiated streams — allows to deliver content to
the client without the client needing to ask for it:
• Server push — server can push data to clients via X-Associated-

Content header.
• Server hint — server uses X-Subresources header to suggest to the

client that it should ask for specific resources.

F R O M S P E ED Y T O H T T P / 2

• Chrome has supported SPDY since Chrome 6, but since most
of the benefits are present in HTTP/2, it’s time to say
goodbye. We plan to remove support for SPDY in early 2016.

• Features inherited by HTTP/2 from SPDY:
• multiplexed streams — can use one connection for parallelism
• priorities and dependencies — one stream can depended on another

(the parent stream is processed by the server before its dependencies)
• header compression — uses HPACK algorithm to reduce overhead
• allows servers to “push” responses proactively into client caches
• is binary, instead of textual HTTP/1.1

• However, in HTTP/2 encryption is not mandatory.

H T T P : / / B L O G . C H R O M I U M . O R G / 2 0 1 5 / 0 2 / H E L L O - H T T P 2 - G O O D B Y E - S P D Y . H T M L

http://blog.chromium.org/2015/02/hello-http2-goodbye-spdy.html

H T T P / 2 I M P L E M E N T A T I O N S

• Firefox:
• experimental support for HTTP/2 in version 34
• enabled by default in version 36
• only supports HTTP/2 over encrypted connection (TLS)

• Google Chrome:
• support from version 40
• enabled by default in 41
• only supports HTTP/2 over encrypted connection (TLS)

• Microsoft Edge:
• support from version 12
• only supports HTTP/2 over encrypted connection (TLS)

• Performance comparison:
https://blog.httpwatch.com/2015/01/16/a-simple-performance-comparison-of-https-spdy-and-http2/

• Server adoption is worse:
about 44% websites support HTTP/2 as of 03.2020:
https://w3techs.com/technologies/details/ce-http2/all/all

https://blog.httpwatch.com/2015/01/16/a-simple-performance-comparison-of-https-spdy-and-http2/
https://w3techs.com/technologies/details/ce-http2/all/all

T H E S I G H T O F T H E F U T U R E

• HTTP/3 is currently under development
• Draft of standard:

https://tools.ietf.org/html/draft-ietf-quic-http-27
• Experimental implementations available in Chrome and Firefox as

of 03.2020

• HTTP/3 is an extension to HTTP/2 that adds binding to
QUIC protocol instead of TCP at transport layer

• Quick UDP Internet Connections (QUIC)
• Under development by Google
• It does not use persistent connections
• It supports multiplexed streams at transport layer, e.g., TLS

handshake can be done at once using one packet sent by the client
and one sent by the server instead of a sequence of packets sent
each way

https://tools.ietf.org/html/draft-ietf-quic-http-27

C O N C L U S I O N S

• More Bandwidth Doesn’t Matter (Much).

• Latency is a Performance Bottleneck.

C O N C L U S I O N S

• HTTP is an essential building block of the Web and a
prerequisite for utilizing the full power of Internet
technologies.

• HTTP headers allow for more advanced features like
caching, authentication or client identification.

• Performance of HTTP/1.x can be improved by using
persistent and parallel connections.

• HTTP/2 offers further performance improvements,
including multiplexed streams and header compression.

R E F E R E N C E S

• High Performance Browser
Networking — Ilya Grigorik,
O’Reilly Media, Inc., 2013,
available online at:
http://chimera.labs.oreilly.com/bo
oks/1230000000545

• What Every Web Developer
Should Know About HTTP —
K. Scott Allen, OdeToCode LLC,
2012, available online at:
http://odetocode.com/Articles/74
1.aspx

http://chimera.labs.oreilly.com/books/1230000000545
http://odetocode.com/Articles/741.aspx

R E F E R E N C E S

• http2 explained: background, the protocol, the
implementations and the future — Daniel Stenberg,
http://daniel.haxx.se/http2/, 2015

• HTTP: The Protocol Every Web Developer Must Know
http://code.tutsplus.com/tutorials/http-the-protocol-
every-web-developer-must-know-part-1--net-31177

• HTTP: The Definitive Guide — David Gourley, Brian
Totty, Marjorie Sayer, Anshu Aggarwal, Sailu Reddy,
O’Reilly Media, Inc., 2002

http://daniel.haxx.se/http2/
http://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-1--net-31177

