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What Is Genetic Programming?

Goal: produce a computer program that carries out the
desired computation
Means: evolving a population of candidate solutions, with
fitness function measuring how solution’s computation
diverges from the desired one
Standard search operators:

mutation crossover
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Semantics of Program

Semantics
In general: Description of what a program does, i.e. what are
the effects of execution of an entire program or its constituent
components.
In GP: a list of outputs that are actually produced by a
program for all training examples (fitness cases).

x result
-0.5 0.5
1.0 2.0
1.5 4.5
2.0 8.0

semantics=[0.5, 2.0, 4.5, 8.0]
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Use of Semantics in Genetic Programming

Recent GP works on semantics:
L. Beadle, C. Johnson, Semantically Driven Crossover in
Genetic Programming, IEEE Press, 2008, pp 111-116,
N. Q. Uy, N. X. Hoai, M. O’Neill, R. I. McKay, E.
Galvan-Lopez, Semantically-based crossover in genetic
programming: application to real-valued symbolic regression,
Genetic Programming and Evolvable Machines, 2011, pp
91-119.
A. Moraglio, K. Krawiec, C. Johnson, Geometric Semantic
Genetic Programming, Springer, 2012, pp 21-31.
K. Krawiec, T. Pawlak, Locally geometric semantic crossover:
a study on the roles of semantics and homology in
recombination operators, Genetic Programming and Evolvable
Machines, 2013, pp 31-63.
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Fitness Landscape

Example:
Symbolic regression
problem,
Only two fitness cases,
Target semantics = [0, 0],
Error function is
Euclidean distance,

⇓

Fitness landscape is a cone
with vertex in the target
semantics.
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Fitness Landscape Seen From Different Perspectives

Program: cos(sin(x))
Decomposable into tree instructions:
cos(#), sin(#), x

target: 0 target: π
2 + kπ, k ∈ Z no target!
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Assumptions

The objective: Propagate the semantic target backwards through
the program tree, so that it defines a subgoal for a subproblem.

Input:
The program p (tree-based representation),
The target semantics sD ,
The chosen node p′ of the program p.

Output:
Desired semantics sD(p′) for p′.
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The algorithm

Determine a path from the program
root to p′.
Starting from the root node, for each
instruction I on the path, do
recursively:

Determine inverse instruction I−1 to
p w.r.t. child node pc , which is next
on the path,
Execute p−1 to compute desired
semantics sD(pc) for the child node
pc ,
Stop when recursion reaches the
chosen node (pc ≡ p′)

*
 -

*
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x 2

-1 0 1
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3 1 1

1 2 3

1 2 3
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The node, for which
the desired semantics

is calculated

Desired semantics of
entire program
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Common problems

Important observation
Most instructions are not invertible!

The reason
In order to instruction be invertible for any output, it must
implement bijection.
X

1

2

3

4

Y

D

B

C

A

In order to invert particular execution of instruction, it must
implement injection.
X
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Possible cases

1 Instruction is invertible:
I : y ← x + c =⇒ I−1 : x ← c − y .

2 Instruction is ambiguously invertible:
I : z ← x2 =⇒ I−1 : x ∈ {−

√
z ,
√
z},

I : z ← sin(x) =⇒ I−1 : x ← arcsin(z) + 2kπ, k ∈ Z.
3 Instruction is non-invertible:

I : z ← ex =⇒ I−1 : ∀z∈R−x ← X (NaN, inconsistent).
4 Argument of instruction is ineffective:

I : z ← 0× x =⇒ I−1 : x ←? (don’t care).
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Solution

When inversion of instruction is:
Ambiguous: Store only one value (of many possible),
Impossible (non-invertible): mark element as inconsistent
Ineffective: mark element as ‘don’t care’
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RDO Mutation

Given one parent program p:
Choose randomly a mutation node p′,
Backpropagate target semantics t to the mutation node p′ to
obtain desired semantics sD(p′) of p′,
Find a procedure pL that commits the smallest error w.r.t.
sD(p′),
Replace p′ with pL.
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Approximately Geometric Semantic Crossover (AGX)

Given two parent programs p1, p2:
Compute corresponding semantics s(p1), s(p2) of p1, p2,
Compute midpoint sm between semantics s(p1), s(p2),

e.g. sm = (s(p1) + s(p2))/2 for numerical semantics,

For each parent p ∈ {p1, p2} :
Choose with uniform distribution w.r.t. tree depth a crossover
node p′,
Backpropagate semantics sm to the crossover node p′ to
obtain desired semantics sD(p′) of p′,
Search a procedure pL committing the smallest error w.r.t.
sD(p′),
Replace p′ with pL.
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Applicability of Operators
Knowledge on target

Re
pr
es
en
ta
tio

n
of

se
m
an
tic

s Semantics Fitness value No knowledge
Object in normed RDO, AGX AGX AGXvector space

Object in RDO, AGXa AGXa AGXa
vector space
Object in RDO — —metric space

Object from a RDO — —set without space
No semantics, — — —syntax only

aAlthough in general vector space we cannot check if a point lies between
two other points, we still can combine two points. Consequently AGX can
operate in this space, however with no guarantee that the calculated desired
semantics of the offspring is geometrically between semantics of its parents.
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A Static Library

All possible programs built upon given set of instructions, filtered
for semantic uniqueness.

Example
Instructions: {+,−,×, /, sin, cos, exp, log, x},
Max tree depth: 4,
Total no. of programs: 269217, unique: 108520.
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A Population-based Library

Genetic Programming is population-based algorithm!
Use all subprograms of all programs in population as a library.
Library evolves with solutions.
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Comparison of Libraries

Static library Population-based library
Time of build Once, before run Every generation
No. of unique procedures Constant Variable
Semantic diversity Guaranteed May converge
Can produce new semantics No Yes
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Semantic Diversity

All possible programs:
Instructions: {+,−,×, /, sin, ex , x},
Max tree depth: 4.

Semantics:
20 points distributed equidistantly in
range [−5, 5],
Programs filtered according to
semantic uniqueness.

Visualization:
Reduction to 2D by PCA,
Red: the smallest (i.e. single node)
programs,
Blue: the longest (i.e. 15 nodes)
programs.
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Semantic Diversity

Conclusion
The space is mostly empty.
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RDO Setup

Population-based library
Operators:

M — canonical mutation,
X — canonical crossover,
RDO — RDO mutation,

Operators applied:
individually, and
in every combination of two of them
(probability varying from 0.1 to 0.9 with step 0.1)

Benchmarks:
Ten symbolic regression problems,
Ten Boolean problems.
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Benchmarks

Target program (expression) Vars Range
F03 x5 + x4 + x3 + x2 + x 1 [−1; 1]
F04 x6 + x5 + x4 + x3 + x2 + x 1 [−1; 1]
F05 sin(x2) cos(x)− 1 1 [−1; 1]
F06 sin(x) + sin(x + x2) 1 [−1; 1]
F07 log(x + 1) + log(x2 + 1) 1 [0; 2]
F08

√
x 1 [0; 4]

F09 sin(x) + sin(y2) 2 [0.01; 0.99]
F10 2 sin(x) cos(y) 2 [0.01; 0.99]
F11 x y 2 [0.01; 0.99]
F12 x4 − x3 + y2/2− y 2 [0.01; 0.99]
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Benchmarks

Problem Instance Bits Fitness cases

even parity
PAR4 4 16
PAR5 5 32
PAR6 6 64

multiplexer MUX6 6 64
MUX11 11 2048

majority
MAJ5 5 32
MAJ6 6 64
MAJ7 7 128

comparator CMP6 6 64
CMP8 8 256
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Results — Friedman ranks

success ratio

Setup Rank Setup Rank
M+RDO 0.7 8.63 X+RDO 0.2 11.70
M+RDO 0.3 8.78 RDO 1.0 13.40
X+RDO 0.5 8.90 X+RDO 0.1 14.28
M+RDO 0.5 9.15 M+RDO 0.1 14.58
X+RDO 0.4 9.20 X 1.0 20.55
X+RDO 0.8 9.23 X+M 0.1 21.30
M+RDO 0.4 9.25 X+M 0.2 22.53
X+RDO 0.6 9.75 X+M 0.3 23.10
M+RDO 0.6 9.88 X+M 0.4 23.55
X+RDO 0.3 9.95 X+M 0.5 23.85
X+RDO 0.7 9.95 X+M 0.6 24.53
M+RDO 0.8 10.08 X+M 0.7 25.73
M+RDO 0.2 10.65 X+M 0.8 25.85
X+RDO 0.9 11.15 M 1.0 27.18
M+RDO 0.9 11.20 X+M 0.9 27.18

median error

Setup Rank Setup Rank
M+RDO 0.7 8.83 X+RDO 0.2 12.45
M+RDO 0.6 8.98 X+RDO 0.1 12.63
M+RDO 0.5 9.00 RDO 1.0 13.18
M+RDO 0.4 9.35 M+RDO 0.1 13.25
M+RDO 0.8 9.38 X 1.0 20.70
X+RDO 0.7 9.75 X+M 0.1 20.70
M+RDO 0.3 9.78 X+M 0.2 20.85
X+RDO 0.8 10.05 X+M 0.3 22.25
X+RDO 0.6 10.18 X+M 0.4 22.53
X+RDO 0.5 10.33 X+M 0.5 23.45
X+RDO 0.4 10.35 X+M 0.6 23.93
X+RDO 0.3 10.53 X+M 0.7 25.90
M+RDO 0.9 11.08 X+M 0.8 25.95
M+RDO 0.2 11.50 X+M 0.9 26.85
X+RDO 0.9 11.73 M 1.0 29.63
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AGX Setup

Two static libraries:
Instructions: {+,−,×, /, sin, cos, exp, log, x},
Max tree depth: {3, 4},
Total no. of unique programs: 212, 108520,

Use of library denoted by index:
AGX3, AGX4

Competition:
Standard subtree crossover (GPX),
Locally Geometric Semantic Crossover (LGX).

Benchmark:
Six univariate symbolic regression problems.
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AGX Performance
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AGX Success Rate (%)

Problem AGX3 AGX4 GPX LGX3 LGX4
Nonic 0 0 1 0 0
R1 0 1 0 0 0
R2 0 1 0 0 1
Nguyen-7 0 34 6 0 0
Keijzer-1 0 0 0 0 0
Keijzer-4 0 21 0 0 0
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Summary

Semantic backpropagation allows us to transform original
problem trough a program structure.
Operators involving semantic backpropagation achieve
significantly better results than traditional ones.

Outlook
We want to combine our efforts to improve the method.
We work on modifications of semantic backpropagation and
GP operators, that allow us to use more inversions of
semantics keeping the computational costs at bay.



Appendix

For Further Reading I

K. Krawiec, T. Pawlak.
Locally geometric semantic crossover: a study on the roles of
semantics and homology in recombination operators.
Genetic Programming and Evolvable Machines Vol 14, pp
31-63, Springer, 2013.

(Accepted) K. Krawiec, B. Wieloch.
Running programs backwards.
GECCO 2013 Proceedings, ACM, 2013.

(Accepted) K. Krawiec, T. Pawlak.
Approximating Geometric Crossover by Semantic
Backpropagation.
GECCO 2013 Proceedings, ACM, 2013.
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