Motivation	Semantic Backpropagation	Genetic Operators	Library of Procedures	Experimental Analysis	Summary

Semantic Backpropagation in Genetic Programming

Tomasz Pawlak Bartosz Wieloch Krzysztof Krawiec

Institute of Computing Science Poznan University of Technology

19.03.2013

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Motivation 00000	Semantic Backpropagation	Genetic Operators	Library of Procedures	Experimental Analysis 0000000	Summary
Outlin	е				

- 1 Motivation
 - What is Genetic Programming?
 - Semantics of Program
 - Fitness Landscape
- 2 Semantic Backpropagation
 - The algorithm
 - Common problems
- 3 Genetic Operators
 - RDO Mutation
 - Approximately Geometric Semantic Crossover
 - Applicability of Operators
- 4 Library of Procedures
 - Two Types of Libraries
 - General Difficulties
- 5 Experimental Analysis
 - RDO Performance
 - Approximately Geometric Semantic Crossover Performance

Motivation	Semantic Backpropagation	Genetic Operators	Library of Procedures	Experimental Analysis 0000000	Summary
Outlin	e				

- 1 Motivation
 - What is Genetic Programming?
 - Semantics of Program
 - Fitness Landscape
- 2 Semantic Backpropagation
 - The algorithm
 - Common problems
- 3 Genetic Operators
 - RDO Mutation
 - Approximately Geometric Semantic Crossover
 - Applicability of Operators
- 4 Library of Procedures
 - Two Types of Libraries
 - General Difficulties
- 5 Experimental Analysis
 - RDO Performance
 - Approximately Geometric Semantic Crossever Perfermance = -----

- Goal: produce a computer program that carries out the desired computation
 - Means: evolving a population of candidate solutions, with fitness function measuring how solution's computation diverges from the desired one
 - Standard search operators:

Semar	ntics of Progra	m			
Motivation ○●○○○	Semantic Backpropagation	Genetic Operators	Library of Procedures	Experimental Analysis 0000000	Summary

Semantics

- In general: Description of what a program does, i.e. what are the *effects* of execution of an entire program or its constituent components.
- In GP: a *list of outputs* that are actually produced by a program for all training examples (fitness cases).

semantics=[0.5, 2.0, 4.5, 8.0]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□► ◇◇◇

Use of Semantics in Genetic Programming

Recent GP works on semantics:

- L. Beadle, C. Johnson, *Semantically Driven Crossover in Genetic Programming*, IEEE Press, 2008, pp 111-116,
- N. Q. Uy, N. X. Hoai, M. O'Neill, R. I. McKay, E. Galvan-Lopez, Semantically-based crossover in genetic programming: application to real-valued symbolic regression, Genetic Programming and Evolvable Machines, 2011, pp 91-119.
- A. Moraglio, K. Krawiec, C. Johnson, *Geometric Semantic Genetic Programming*, Springer, 2012, pp 21-31.
- K. Krawiec, T. Pawlak, *Locally geometric semantic crossover: a study on the roles of semantics and homology in recombination operators*, Genetic Programming and Evolvable Machines, 2013, pp 31-63.

Motivation ○○○●○	Semantic Backpropagation	Genetic Operators	Library of Procedures	Experimental Analysis	Summary
Fitnes	s Landscape				

Example:

- Symbolic regression problem,
- Only two fitness cases,
- Target semantics = [0,0],
- Error function is Euclidean distance,

 \Downarrow

Fitness landscape is a cone with vertex in the target semantics.

A D > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0</p>

Fitness Landscape Seen From Different Perspectives

Program: cos(sin(x))

- Decomposable into tree instructions:
- $\cos(\#), \sin(\#), x$

no target!

	00000	000	00000	000000	
Outim	е				

- Motivation
 - What is Genetic Programming?
 - Semantics of Program
 - Fitness Landscape
- 2 Semantic Backpropagation
 - The algorithm
 - Common problems
- 3 Genetic Operators
 - RDO Mutation
 - Approximately Geometric Semantic Crossover
 - Applicability of Operators
- 4 Library of Procedures
 - Two Types of Libraries
 - General Difficulties
- 5 Experimental Analysis
 - RDO Performance
 - Approximately Geometric Semantic Crossever Perfermance = -----

Motivation 00000	Semantic Backpropagation	Genetic Operators	Library of Procedures	Experimental Analysis 0000000	Summary
Assum	ptions				

The objective: Propagate the semantic target backwards through the program tree, so that it defines a subgoal for a subproblem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

- Input:
 - The program p (tree-based representation),
 - The target semantics s_D ,
 - The chosen node p' of the program p.
- Output:
 - Desired semantics $s_D(p')$ for p'.

Motivation 00000	Semantic Backpropagation ○●○○○	Genetic Operators	Library of Procedures	Experimental Analysis 0000000	Summary
The al	lgorithm				

- Determine a path from the program root to p'.
- Starting from the root node, for each instruction *I* on the path, do recursively:
 - Determine inverse instruction I^{-1} to p w.r.t. child node p_c , which is next p = 0 on the path,
 - Execute p^{-1} to compute desired semantics $s_D(p_c)$ for the child node p_c ,
 - Stop when recursion reaches the chosen node $(p_c \equiv p')$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Comm	on problems				
Motivation 00000	Semantic Backpropagation	Genetic Operators	Library of Procedures	Experimental Analysis 0000000	Summary

Important observation

Most instructions are not invertible!

The reason

 In order to instruction be invertible for any output, it must implement bijection.

 In order to invert particular execution of instruction, it must implement injection.

Motivation 00000	Semantic Backpropagation	Genetic Operators	Library of Procedures	Experimental Analysis 0000000	Summary
Possib	le cases				

• $I: y \leftarrow x + c \implies I^{-1}: x \leftarrow c - y.$

Instruction is ambiguously invertible:

•
$$I: z \leftarrow x^2 \implies I^{-1}: x \in \{-\sqrt{z}, \sqrt{z}\},$$

• $I: z \leftarrow \sin(x) \implies I^{-1}: x \leftarrow \arcsin(z) + 2k\pi, k \in$

Instruction is non-invertible:

• $I: z \leftarrow e^x \implies I^{-1}: \forall_{z \in \mathbb{R}^-} x \leftarrow X \text{ (NaN, inconsistent).}$

Argument of instruction is ineffective:

• $I: z \leftarrow 0 \times x \implies I^{-1}: x \leftarrow ?$ (don't care).

Motivation 00000	Semantic Backpropagation ○○○●○	Genetic Operators	Library of Procedures	Experimental Analysis 0000000	Summary
Possib	le cases				

• $I: y \leftarrow x + c \implies I^{-1}: x \leftarrow c - y.$

Instruction is ambiguously invertible:

•
$$I: z \leftarrow x^2 \implies I^{-1}: x \in \{-\sqrt{z}, \sqrt{z}\},$$

• $I: z \leftarrow \sin(x) \implies I^{-1}: x \leftarrow \arcsin(z) + 2k\pi, k \in \mathbb{Z}$

Instruction is non-invertible:

• $I: z \leftarrow e^x \implies I^{-1}: \forall_{z \in \mathbb{R}^-} x \leftarrow X \text{ (NaN, inconsistent).}$

Argument of instruction is ineffective:

• $l: z \leftarrow 0 \times x \implies l^{-1}: x \leftarrow ?$ (don't care).

Motivation 00000	Semantic Backpropagation ○○○●○	Genetic Operators	Library of Procedures	Experimental Analysis 0000000	Summary
Possib	le cases				

• $I: y \leftarrow x + c \implies I^{-1}: x \leftarrow c - y.$

Instruction is ambiguously invertible:

•
$$I: z \leftarrow x^2 \implies I^{-1}: x \in \{-\sqrt{z}, \sqrt{z}\},$$

• $I: z \leftarrow \sin(x) \implies I^{-1}: x \leftarrow \arcsin(z) + 2k\pi, k \in \mathbb{Z}.$

Instruction is non-invertible:

• $I: z \leftarrow e^x \implies I^{-1}: \forall_{z \in \mathbb{R}^-} x \leftarrow X \text{ (NaN, inconsistent).}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Argument of instruction is ineffective:

• $I: z \leftarrow 0 \times x \implies I^{-1}: x \leftarrow ?$ (don't care).

Motivation 00000	Semantic Backpropagation ○○○●○	Genetic Operators	Library of Procedures	Experimental Analysis 0000000	Summary
Possib	le cases				

• $I: y \leftarrow x + c \implies I^{-1}: x \leftarrow c - y.$

Instruction is ambiguously invertible:

•
$$I: z \leftarrow x^2 \implies I^{-1}: x \in \{-\sqrt{z}, \sqrt{z}\},$$

• $I: z \leftarrow \sin(x) \implies I^{-1}: x \leftarrow \arcsin(z) + 2k\pi, k \in \mathbb{Z}$

Instruction is non-invertible:

• $I: z \leftarrow e^x \implies I^{-1}: \forall_{z \in \mathbb{R}^-} x \leftarrow X \text{ (NaN, inconsistent).}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Argument of instruction is ineffective:

• $I: z \leftarrow 0 \times x \implies I^{-1}: x \leftarrow ?$ (don't care).

Motivation 00000	Semantic Backpropagation	Genetic Operators	Library of Procedures	Experimental Analysis 0000000	Summary
Solutio	on				

When inversion of instruction is:

- Ambiguous: Store only one value (of many possible),
- Impossible (non-invertible): mark element as inconsistent

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

• Ineffective: mark element as 'don't care'

Motivation 00000	Semantic Backpropagation	Genetic Operators	Library of Procedures	Experimental Analysis 0000000	Summary
Outlin					

Outline

- Motivation
 - What is Genetic Programming?
 - Semantics of Program
 - Fitness Landscape
- 2 Semantic Backpropagation
 - The algorithm
 - Common problems
- 3 Genetic Operators
 - RDO Mutation
 - Approximately Geometric Semantic Crossover
 - Applicability of Operators
- 4 Library of Procedures
 - Two Types of Libraries
 - General Difficulties
- 5 Experimental Analysis
 - RDO Performance
 - Approximately Geometric Semantic Crossgver Performage = ??

Motivation 00000	Semantic Backpropagation	Genetic Operators ●○○	Library of Procedures	Experimental Analysis 0000000	Summary
RDO	Mutation				

Given one parent program *p*:

- Choose randomly a mutation node p',
- Backpropagate target semantics t to the mutation node p' to obtain desired semantics s_D(p') of p',

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Find a procedure p_L that commits the smallest error w.r.t. $s_D(p')$,
- Replace p' with p_L .

Given two parent programs p_1, p_2 :

- Compute corresponding semantics $s(p_1), s(p_2)$ of p_1, p_2 ,
- Compute midpoint s_m between semantics $s(p_1), s(p_2)$,

• e.g. $s_m = (s(p_1) + s(p_2))/2$ for numerical semantics,

- For each parent $p \in \{p_1, p_2\}$:
 - Choose with uniform distribution w.r.t. tree depth a crossover node p',
 - Backpropagate semantics s_m to the crossover node p' to obtain desired semantics $s_D(p')$ of p',
 - Search a procedure p_L committing the smallest error w.r.t. $s_D(p')$,

A D > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0</p>

• Replace p' with p_L .

Motivation 00000	Semantic Backpropagation	Genetic Operators ○○●	Library of Procedures	Experimental Analysis 0000000	Summary
A 11					

Applicability of Operators

		K	nowledge on tai	rget
S		Semantics	Fitness value	No knowledge
ltic	Object in normed	RDO ACX	ACX	ΔΟΧ
nar	vector space	NDO, AGA	AGA	AGA
ser	Object in	RDO ACXª	ACX ^a	ACX ^a
of	vector space	NDO, AGA	АОЛ	AGA
on	Object in	RDO	_	
tati	metric space	NDO		
.uəs	Object from a	RDO		
Dree	set without space	NDO		
Rep	No semantics,			
	syntax only			

^aAlthough in general vector space we cannot check if a point lies between two other points, we still can combine two points. Consequently AGX can operate in this space, however with no guarantee that the calculated desired semantics of the offspring is geometrically between semantics of its parents.

Motivation 00000	Semantic Backpropagation	Genetic Operators	Library of Procedures	Experimental Analysis 0000000	Summary
Outlir	ne				
2	Motivation What is Genetic Semantics of Pre Fitness Landscap Semantic Backprop The algorithm 	Programmin ogram oe oagation	g?		
3	 Common problem Genetic Operators RDO Mutation Approximately G Applicability of O Library of Procedu Two Types of Li 	Geometric Ser Operators res braries	nantic Crossove	er	

- General Difficulties
- 5 Experimental Analysis
 - RDO Performance
 - Approximately Geometric Semantic Crossever Performance and some

Motivation 00000	Semantic Backpropagation	Genetic Operators	Library of Procedures ●0000	Experimental Analysis 0000000	Summary
A Stat	tic Library				

All possible programs built upon given set of instructions, filtered for semantic uniqueness.

A D > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0</p>

Example

- Instructions: $\{+, -, \times, /, \sin, \cos, \exp, \log, x\}$,
- Max tree depth: 4,
- Total no. of programs: 269217, unique: 108520.

00000	00000	000	0000	000000		
A Population-based Library						

- Genetic Programming is population-based algorithm!
- Use all subprograms of all programs in population as a library.

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

• Library evolves with solutions.

Comp	arican of Libra	rioc			
Motivation 00000	Semantic Backpropagation	Genetic Operators 000	Library of Procedures 00●00	Experimental Analysis 0000000	Summary

	•	CI .	-
	omparicon		brariac
<u>ا</u>	OHDAIISOH		DIALES
~	ompanioon		or arres

	Static library	Population-based library
Time of build	Once, before run	Every generation
No. of unique procedures	Constant	Variable
Semantic diversity	Guaranteed	May converge
Can produce new semantics	No	Yes

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国■ めんの

 Motivation
 Semantic Backpropagation
 Genetic Operators
 Library of Procedures
 Experimental Analysis
 Summary

 Semantic Diversity
 Semantic Diversity
 Semantic Diversity
 Semantic Diversity
 Semantic Diversity

All possible programs:

- Instructions: $\{+, -, \times, /, sin, e^x, x\}$,
- Max tree depth: 4.

Semantics:

- 20 points distributed equidistantly in range [-5,5],
- Programs filtered according to semantic uniqueness.

Visualization:

- Reduction to 2D by PCA,
- Red: the smallest (i.e. single node) programs,
- Blue: the longest (i.e. 15 nodes) programs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Semantic Diversity

Conclusion

The space is mostly empty.

Motivation 00000	Semantic Backpropagation	Genetic Operators	Library of Procedures	Experimental Analysis	Summary
Outlin	e				

- Motivation
 - What is Genetic Programming?
 - Semantics of Program
 - Fitness Landscape
- 2 Semantic Backpropagation
 - The algorithm
 - Common problems
- 3 Genetic Operators
 - RDO Mutation
 - Approximately Geometric Semantic Crossover
 - Applicability of Operators
- 4 Library of Procedures
 - Two Types of Libraries
 - General Difficulties
- 5 Experimental Analysis
 - RDO Performance
 - Approximately Geometric Semantic Crossover Performance

Motivation 00000	Semantic Backpropagation	Genetic Operators	Library of Procedures	Experimental Analysis ●000000	Summary
RDO S	Setup				

- Population-based library
- Operators:
 - M canonical mutation,
 - X canonical crossover,
 - RDO RDO mutation,
- Operators applied:
 - individually, and
 - in every combination of two of them (probability varying from 0.1 to 0.9 with step 0.1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

- Benchmarks:
 - Ten symbolic regression problems,
 - Ten Boolean problems.

Motivation 00000	Semantic Backpropagation	Genetic Operators	Library of Procedures	Experimental Analysis 0●00000	Summary
Bench	marks				

F 02	Target program (expression)	Vars	Pango
			ixange
FU3	$x^5 + x^4 + x^3 + x^2 + x$	1	[-1; 1]
F04	$x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x$	1	[-1; 1]
F05	$\sin(x^2)\cos(x)-1$	1	[-1; 1]
F06	$\sin(x) + \sin(x + x^2)$	1	[-1; 1]
F07	$\log(x+1) + \log(x^2+1)$	1	[0; 2]
F08	\sqrt{X}	1	[0; 4]
F09	$\sin(x) + \sin(y^2)$	2	[0.01; 0.99]
F10	$2\sin(x)\cos(y)$	2	[0.01; 0.99]
F11	x^y	2	[0.01; 0.99]
F12	$x^4 - x^3 + y^2/2 - y$	2	[0.01; 0.99]

Motivation 00000	Semantic Backpropagation	Genetic Operators	Library of Procedures	Experimental Analysis	Summary
Bench	marks				

Problem	Instance	Bits	Fitness cases
	PAR4	4	16
even parity	PAR5	5	32
	PAR6	6	64
multiplexer	MUX6	6	64
	MUX11	11	2048
	MAJ5	5	32
majority	MAJ6	6	64
	MAJ7	7	128
	CMP6	6	64
comparator	CMP8	8	256

 Motivation
 Semantic Backpropagation
 Genetic Operators
 Library of Procedures
 Experimental Analysis
 Summa

 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0

success ratio

median error

Rank	Setup	Rank	Setup	Rank	Setup	Rank	Setup
12.45	X+RDO 0.2	8.83	M+RDO 0.7	11.70	X+RDO 0.2	8.63	M+RDO 0.7
12.63	X+RDO 0.1	8.98	M+RDO 0.6	13.40	RDO 1.0	8.78	M+RDO 0.3
13.18	RDO 1.0	9.00	M+RDO 0.5	14.28	X+RDO 0.1	8.90	X+RDO 0.5
13.25	M+RDO 0.1	9.35	M+RDO 0.4	14.58	M+RDO 0.1	9.15	M+RDO 0.5
20.70	X 1.0	9.38	M+RDO 0.8	20.55	X 1.0	9.20	X+RDO 0.4
20.70	X+M 0.1	9.75	X+RDO 0.7	21.30	X+M 0.1	9.23	X+RDO 0.8
20.85	X+M 0.2	9.78	M+RDO 0.3	22.53	X+M 0.2	9.25	M+RDO 0.4
22.25	X+M 0.3	10.05	X+RDO 0.8	23.10	X+M 0.3	9.75	X+RDO 0.6
22.53	X+M 0.4	10.18	X+RDO 0.6	23.55	X+M 0.4	9.88	M+RDO 0.6
23.45	X+M 0.5	10.33	X+RDO 0.5	23.85	X+M 0.5	9.95	X+RDO 0.3
23.93	X+M 0.6	10.35	X+RDO 0.4	24.53	X+M 0.6	9.95	X+RDO 0.7
25.90	X+M 0.7	10.53	X+RDO 0.3	25.73	X+M 0.7	10.08	M+RDO 0.8
25.95	X+M 0.8	11.08	M+RDO 0.9	25.85	X+M 0.8	10.65	M+RDO 0.2
26.85	X+M 0.9	11.50	M+RDO 0.2	27.18	M 1.0	11.15	X+RDO 0.9
29.63	M 1.0	11.73	X+RDO 0.9	27.18	X+M 0.9	11.20	M+RDO 0.9

Motivation 00000	Semantic Backpropagation	Genetic Operators	Library of Procedures	Experimental Analysis ○○○○●○○	Summary
AGX S	Setup				

- Two static libraries:
 - Instructions: $\{+, -, \times, /, \sin, \cos, \exp, \log, x\}$,
 - Max tree depth: $\{3,4\},$
 - Total no. of unique programs: 212, 108520,
- Use of library denoted by index:
 - AGX₃, AGX₄
- Competition:
 - Standard subtree crossover (GPX),
 - Locally Geometric Semantic Crossover (LGX).
- Benchmark:
 - Six univariate symbolic regression problems.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

otivation Semantic Backpropagation

Genetic Operators

Library of Procedures

Experimental Analysis 000000

Summary

AGX Performance

 \rightarrow AGX₃ \rightarrow AGX₄ \rightarrow GPX \rightarrow LGX₃ \rightarrow LGX₄

Motivation Semantic Backpropagation Genetic Operators Library of Procedures Experimental Analysis Summa 00000 AGX Success Rate (%)

Problem	AGX ₃	AGX ₄	GPX	LGX ₃	LGX ₄
Nonic	0	0	1	0	0
R1	0	1	0	0	0
R2	0	1	0	0	1
Nguyen-7	0	34	6	0	0
Keijzer-1	0	0	0	0	0
Keijzer-4	0	21	0	0	0

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation 00000	Semantic Backpropagation	Genetic Operators	Library of Procedures	Experimental Analysis 0000000	Summary
Summ	ary				

- Semantic backpropagation allows us to transform original problem trough a program structure.
- Operators involving semantic backpropagation achieve significantly better results than traditional ones.
- Outlook
 - We want to combine our efforts to improve the method.
 - We work on modifications of semantic backpropagation and GP operators, that allow us to use more inversions of semantics keeping the computational costs at bay.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

For Further Reading I

📔 K. Krawiec, T. Pawlak.

Locally geometric semantic crossover: a study on the roles of semantics and homology in recombination operators. Genetic Programming and Evolvable Machines Vol 14, pp 31-63, Springer, 2013.

- (Accepted) K. Krawiec, B. Wieloch.
 Running programs backwards.
 GECCO 2013 Proceedings, ACM, 2013.
- (Accepted) K. Krawiec, T. Pawlak.
 Approximating Geometric Crossover by Semantic Backpropagation.
 GECCO 2013 Proceedings, ACM, 2013.