Sieci komputerowe

Tadeusz Kobus, Maciej Kokociński Instytut Informatyki, Politechnika Poznańska

Sieci VLAN

Problem

W dużych sieciach lokalnych (liczących kilkaset urządzeń), narzut związany z ramkami wysyłanymi na adres rozgłoszeniowy (ff:ff:ff:ff:ff:ff) zaczyna być zauważalny.

Rozwiązanie: pogrupować urządzenia i tworzyć oddzielne sieci dla każdej grupy urządzeń. Wtedy też łatwiej filtrować ruch w takiej sieci. Grupowanie najczęściej uwzględnia rodzaj urządzenia lub jego przeznaczenie:

- komputery pracowników różnych działów,
- drukarki,
- serwery,
- telefony IP,

- ...

Nie chcemy mieć oddzielnej infrastruktury dla każdej grupy urządzeń.

Sieci VLAN (Virtual LAN) (1)

- Sieć VLAN to wydzielona logicznie sieć urządzeń w ramach innej, większej sieci fizycznej (mogącej obejmować wiele urządzeń sieciowych).
- VLANy działają na warstwie 2 modelu OSI \rightarrow przełączniki.
- Urządzenia w ramach jednego VLANu mogą się komunikować między sobą jakby były podłączone do pojedynczego przełącznika; ruch między różnymi VLANami jest odseparowany (różne domeny rozgłoszeniowe).
- Komunikacja między VLANami wymaga użycia routera.
- Zalety:
 - ograniczenie ruchu rozgłoszeniowego,
 - łatwiejsze dostosowywanie struktury sieci do struktury organizacyjnej instytucji,
 - większe bezpieczeństwo.

Sieci VLAN (Virtual LAN) (2)

VLANy identyfikowane są liczbami całkowitymi.

Przypisywanie VLANu do portu: statycznie lub dynamicznie.

Przekazywanie ramek różnych VLANów między przełącznikami wymaga połączenia typu trunk:

- do ramek dodawana jest 12-bitowa liczba identyfikująca VLAN nadawcy,
- przełącznik docelowy usuwa etykietę przed wysłaniem ramki do portu adresata.

Rozważana sieć

Sieci VLAN:

- vlan 2 staff,
- vlan 3 students.

Adresacja:

- L1: 10.0.0.1/24,
- L2: 10.0.100.2/24,
- L3: 10.0.3/24,
- L4: 10.0.100.4/24.

Między S1 i S2 jest połączenie typu trunk.

W praktyce najpierw obmyślane są VLANy i adresacja projektowana jest pod nie.

Przypisywanie interfejsów do VLANów (1a)

S1(config)# vlan 2 S1(config-vlan)# name staff S1(config-vlan)# vlan 3 S1(config-vlan)# name students S1(config-vlan)# state ? active VLAN Active State suspend VLAN Suspended State S1(config-vlan)# exit APPLY completed. Exiting....

```
S1(config)# interface FastEthernet 1/1
S1(config-if)# switchport access vlan 2
S1(config-if)# interface FastEthernet 1/2
S1(config-if)# switchport access vlan 3
```

Domyślny stan sieci VLAN to active.

exit zapisuje zmiany i wychodzi do poziomu uprzywilejowanego.

W niektórych wersjach oprogramowania, VLAN tworzony jest automatycznie przy przypisaniu jego numeru do pierwszego portu.

Przypisywanie interfejsów do VLANów (1b)

S1# vlan database S1(vlan)# vlan 2 VLAN 2 added: Name: VI.AN0002 S1(vlan) # vlan 2 name staff VI.AN 2 modified: Name: staff S1(vlan) # vlan 3 name students VI.AN 3 added: Name: students S1(vlan)# exit APPLY completed. Exiting.... S1(config)# interface FastEthernet 1/1 S1(config-if)# switchport access vlan 2

S1(config-if)# interface FastEthernet 1/2 S1(config-if)# switchport access vlan 3

W starszych wersjach oprogramowania konfiguracja VLANów odbywa się z poziomu vlan database (tam też można modyfikować parametry VLANów).

exit zapisuje zmiany i wychodzi do poziomu uprzywilejowanego.

Przypisywanie interfejsów do VLANów (2)

(czasami: show vlan-switch)

S1# show vlan VLAN Name Status Ports default active Fa1/0, Fa1/3, Fa1/4, Fa1/5 1 Fa1/6, Fa1/7, Fa1/8, Fa1/9 2 staff active Fa1/1 3 students active Fa1/2 1002 fddi-default active 1003 token-ring-default active 1004 fddinet-default active 1005 trnet-default active

VLAN	Туре	SAID	MTU	Parent	RingNo	BridgeNo	Stp	${\tt BrdgMode}$	Trans1	Trans2
1	enet	100001	1500	-	-	-	-	-	1002	1003
2	enet	100002	1500	-	-	-	-	-	0	0
3	enet	100003	1500	-	-	-	-	-	0	0
1002	fddi	101002	1500	-	-	-	-	-	1	1003
1003	tr	101003	1500	1005	0	-	-	srb	1	1002
1004	fdnet	101004	1500	-	-	1	ibm	-	0	0
1005	trnet	101005	1500	-	-	1	ibm	_	0	0

Sieci Komputerowe, T. Kobus, M. Kokociński

Konfiguracja połączenia typu trunk

S1(config)# interface FastEthernet 1/0
S1(config-if)# switchport trunk encapsulation dot1q
S1(config-if)# switchport mode trunk
*Mar 1 00:10:02.203: %DTP-5-TRUNKPORTON: Port Fa1/0 has become dot1q trunk
S1(config-if)# switchport mode ?
access Set trunking mode to ACCESS unconditionally
trunk Set trunking mode to TRUNK unconditionally

S1# show interfaces trunk

Port Fa1/0	Mode on	Encapsulation 802.1q	Status trunking	Native vlan 1
Port Fa1/0	Vlans allowed 1-1005	d on trunk		
Port Fa1/0	Vlans allowed 1-3	l and active in	management dor	nain
Port Fa1/0	Vlans in spar none	nning tree forwa	arding state an	nd not pruned

Zadanie 1

- 1. Wraz z koleżankami i kolegami zbuduj sieć taką, że:
 - komputery z każdego rzędu podpięte są (poprzez interfejs p4p1) do osobnego przełącznika,
 - wszystkie przełączniki są ze sobą połączone (np. w łańcuch).
- Nadaj adres IP swojemu komputerowi zgodnie ze spójną adresacją, tak by wszystkie komputery w jednej kolumnie należały do jednej (unikalnej) sieci. Sprawdź połączenia z innymi komputerami (w kolumnie) w laboratorium.
- 3. Wraz z koleżankami i kolegami skonfiguruj przełączniki tak by komputery w każdej kolumnie należały do osobnego VLANu.
- Przy pomocy programu wireshark sprawdź czy możesz zaobserwować jakiekolwiek pakiety z sieci odpowiadających innym VLANom.

Zadanie 1

Wnioski:

- Kompletna separacja ruchu w VLANach.
- Nawet zmieniając adres komputera na adres z innej sieci, nie można z niej korzystać!

Routing między VLANami

Połączenie między routerem a przełącznikiem również musi być połączeniem typu trunk.

Sieci Komputerowe, T. Kobus, M. Kokociński

Konfiguracja routera do pracy z VLANami

R1(config)# interface FastEthernet 0/0
R1(config-if)# no shutdown
R1(config-if)# interface FastEthernet 0/0.2
R1(config-subif)# encapsulation dot1Q 2
R1(config-subif)# ip address 10.0.0.200 255.255.255.0
R1(config-subif)# interface FastEthernet 0/0.3
R1(config-subif)# encapsulation dot1Q 3
R1(config-subif)# ip address 10.0.100.200 255.255.255.0

R1# show ip interface brief

Interface	IP-Address	OK?	Method	Status		Prot
FastEthernet0/0	unassigned	YES	unset	up		up
FastEthernet0/0.2	10.0.0.200	YES	manual	up		up
FastEthernet0/0.3	10.0.100.200	YES	manual	up		up
FastEthernet0/1	unassigned	YES	unset	administratively	down	down

Zadanie 2

1. Wraz z koleżankami i kolegami zmodyfikuj sieć, tak by:

- nie było połączenia między dwoma środkowymi przełącznikami,
- przełączniki z pierwszej grupy były podłączone do jednego routera, a przełączniki z drugiej grupy były podłączone do drugiego routera.
- Skonfiguruj router tak, by mógł odbywać się ruch między różnymi VLANami. Dodaj statyczny routing na swoim komputerze, tak by mógł komunikować się z sieciami odpowiadającymi innym VLANom.
- Połącz routery ze sobą (określ między nimi dodatkową sieć) i skonfiguruj routing tak by była możliwa komunikacja każdy z każdym w laboratorium.