
A new way to develop parsers

for binary structures.

Kaitai Struct

~ Jarosław Wieczorek

Table of contents

● What is the Kaitai Struct?

● Why use Kaitai Struct?

● Kaitai Struct Syntax

● IDE

What is the Kaitai Struct ?

What is Kaitai Struct?

Kaitai Struct is a declarative language used to describe various binary data

structures, laid out in files or in memory: i.e. binary file formats, network stream

packet formats, etc.

What is Kaitai Struct?

The main idea is that a particular format is described in Kaitai Struct language

(.ksy files are simple YAML) and then can be compiled with ksc (Kaitai Struct

Compiler) into source files in one of the supported programming languages.

What is Kaitai Struct?

These modules will include a generated code for a parser that can read described

data structure from a file / stream and give access to it in a nice, easy-to-

comprehend API.

Why use Kaitai Struct ?

Describe the very structure

of the data, not how you read

or write it.

Declarative

Language-neutral

Write once, use in all supported languages:

● Lua

● Perl

● PHP

● Python

● Ruby

● C++/STL

● C#

● Go (*)

● Java

● JavaScript

Packed with tools and samples

Includes:

● compiler

● IDE

● visualizer

● massive library of popular formats

https://github.com/kaitai-io/kaitai_struct_compiler
http://127.0.0.1:8000/
https://github.com/kaitai-io/kaitai_struct_visualizer/
https://github.com/kaitai-io/kaitai_struct_formats

Feel free to use, modify and join

the project.

KS Tools:

● GNU GPL 3

KS Runtime libraries:

● MIT or Apache v2

Free & open source

Kaitai Struct syntax

Syntax

User-defined type specification is an essential component of KSY

specification. It declares a single user-defined type, which may include:

● meta — meta-information

● doc — doc-strings

● seq — sequence of attributes

● instances

● enums

● types — declaration of subtypes

http://doc.kaitai.io/ksy_reference.html#meta
http://doc.kaitai.io/ksy_reference.html#meta
http://doc.kaitai.io/ksy_reference.html#doc
http://doc.kaitai.io/ksy_reference.html#doc
http://doc.kaitai.io/ksy_reference.html#seq
http://doc.kaitai.io/ksy_reference.html#seq
http://doc.kaitai.io/ksy_reference.html#instances
http://doc.kaitai.io/ksy_reference.html#enums
http://doc.kaitai.io/ksy_reference.html#types
http://doc.kaitai.io/ksy_reference.html#types
http://doc.kaitai.io/ksy_reference.html#types

meta tag - meta information

Meta key is a map of string to objects that provides meta-information relevant the

current user-defined type or KSY file in whole. It also can be used to assign some

defaults and provide some configuration options for compiler.

meta:

id: foo_arc

title: Foo Archive

application: Foo Archiver v1.23

file-extension:

- fooarc

- fooarcz

license: CC0-1.0

ks-version: 9.9

imports:

- common/archive_header

- common/compressed_file

encoding: UTF-8

endian: le

id tag

Contents: a string that follows rules for all identifiers

Purpose: identifier for a primary structure described in top-level map

Influences: it would be converted to suit general formatting rules of a language

and used as the name of class

Mandatory: yes

meta:

id: foo_arc

title tag

Contents: a string

Purpose: free-form text string that is a longer title of this .ksy file

Influences: nothing

Mandatory: no

meta:

id: foo_arc

title: Foo Archive

application tag

Contents: a string

Purpose: free-form text string that describes application that’s associated with this

particular format, if it’s a format used by single application

Influences: nothing

Mandatory: no

meta:

id: foo_arc

title: Foo Archive

application: Foo Archiver v1.23

file-extension tag

Contents: a string or an array of strings

Purpose: roughly identify which files can

be parsed with this format by filename

extension

Influences: may be used for navigation

purposes by browsing applications

Mandatory: no

meta:

id: foo_arc

title: Foo Archive

application: Foo Archiver v1.23

file-extension:

- fooarc

- fooarcz

license tag

Contents: a string which matches

one of the identifiers within the

SPDX license list:

https://spdx.org/licenses/

Purpose: identify the copyright license of this .ksy file

Influences: nothing

Mandatory: no

meta:

id: foo_arc

title: Foo Archive

application: Foo Archiver v1.23

file-extension:

- fooarc

- fooarcz

license: CC0-1.0

ks-version tag

Contents: a string which contains a Kaitai Struct version number

Purpose: sets the minimum version of Kaitai Struct Compiler (KSC) required to

interpret this .ksy file

Influences: prevents this .ksy file from being read by older versions of KSC which

may not understand newer syntax of this .ksy file

Mandatory: no

meta:

id: foo_arc

title: Foo Archive

application: Foo Archiver v1.23

file-extension:

- fooarc

- fooarcz

license: CC0-1.0

ks-version: 9.9

imports tag

Contents: sequence of strings which contain valid filesystem characters

(generally A-Z, a-z, 0-9, _, - and /) corresponding to a relative or absolute path to

another .ksy file (without the .ksy extension)

Purpose: identify one or more .ksy files which will be imported

Influences: allows types defined within the imported .ksy files to be used in the

current context

Mandatory: no

meta:

id: foo_arc

title: Foo Archive

application: Foo Archiver v1.23

file-extension:

- fooarc

- fooarcz

license: CC0-1.0

ks-version: 9.9

imports:

- common/archive_header

- common/compressed_file

encoding tag

Contents: a string which is a user-defined encoding scheme, for example:

ASCII, UTF-8, UTF-16LE, UTF-16BE, UTF-32LE, UTF-32BE or a Name

from the IANA character sets registry.

Purpose: sets a default string encoding for this file

Influences: if set, str and strz data types will have their encoding by default set to

this value

Mandatory: no

meta:

id: foo_arc

title: Foo Archive

application: Foo Archiver v1.23

file-extension:

- fooarc

- fooarcz

license: CC0-1.0

ks-version: 9.9

imports:

- common/archive_header

- common/compressed_file

encoding: UTF-8

endian tag

Contents: le (for little-endian) or be (for big-endian)

Purpose: sets a default endianness for this type and all nested subtypes

Influences: if set, primitive data types like u4 would be treated as aliases to u4le /

u4be (depending on the setting); if not set, attempt to use abbreviated types like

u4 (i.e. without full endianness qualifier) will yield compile-time error.

Mandatory: no

meta:

id: foo_arc

title: Foo Archive

application: Foo Archiver v1.23

file-extension:

- fooarc

- fooarcz

license: CC0-1.0

ks-version: 9.9

imports:

- common/archive_header

- common/compressed_file

encoding: UTF-8

endian: le

ks-debug tag

Contents: true or false (default)

Purpose: advise the Kaitai Struct Compiler (KSC) to use debug mode

Influences: when set to true, KSC will generate classes as if --debug mode was

specified in the command line

Mandatory: no

meta:

id: foo_arc

title: Foo Archive

application: Foo Archiver v1.23

file-extension:

- fooarc

- fooarcz

license: CC0-1.0

ks-version: 9.9

imports:

- common/archive_header

- common/compressed_file

encoding: UTF-8

endian: le

ks-debug: true

ks-opaque-types tag

Contents: true or false (default)

Purpose: advise the Kaitai Struct Compiler (KSC) to ignore missing types in the

.ksy file, and assume that these types are already provided externally by the

environment the classes are generated for.

Influences: when set to true, KSC will generate classes as if --opaque-types=true

mode was specified in the command line

Mandatory: no

meta:

id: foo_arc

title: Foo Archive

application: Foo Archiver v1.23

file-extension:

- fooarc

- fooarcz

license: CC0-1.0

ks-version: 9.9

imports:

- common/archive_header

- common/compressed_file

encoding: UTF-8

endian: le

ks-debug: true

ks-opaque-types: true

doc tag

doc - used to give a more detailed description of a user-defined type.

In most target languages, it will be used as docstring (i.e. a special comment

which is exported as part of code documentation), compatible with tools like

Javadoc, Doxygen, JSDoc, .NET XML documentation comments, etc..

doc: |

A variable-length unsigned integer using base128 encoding.

1-byte groups consists of 1-bit flag of continuation and 7-bit value,

and are ordered "most significant group first", i.e. in "big-endian"

manner.

This particular encoding is specified and used in:

* Standard MIDI file format

* ASN.1 BER encoding

Documentation reference

doc-ref element can be used to provide reference to original documentation,

if your KSY file is actually an implementation of some documented format.

doc-ref: 'http://example.org/file-format-spec/1.0#header'

doc-ref: ECMA-119 standard, section 4.18 "Volume Set"

doc-ref: http://example.org/some-spec Header section

doc-ref tag

Contents: one of:

URL as text , Arbitrary string, URL as text + space + arbitrary string

Purpose: provide reference to original documentation (either in HTML form,

available to be referenced by certain URL, or just a free-form reference that can

be used to address printed manuals, etc)

Influences: generated docstring comments, usually in a form of "see also". If only

text is provided, it will be rendered as neutral text.

If an URL is provided, it will be rendered an active hyperlink, if possible.

If both URL and text is provided, it will create an active hyperlink that leads to

URL, with a visible caption equal to provided text.

Mandatory: no

Attributes

Every attribute MUST BE a map that maps certain keys to values. Some of these

keys are common to every possible attribute specification, some are only valid for

certain types.

Contents: a sequence of attribute specification

elements

Purpose: identifier for a primary structure described

in top-level map

Influences: would be translated into parsing method

in a target class

Mandatory: no

seq tag - Sequence of attributes

meta:

id: tcp_segment

endian: be

seq:

- id: src_port

type: u2

- id: dst_port

type: u2

- id: seq_num

type: u4

- id: ack_num

type: u4

Instances tag

Instance specification is very close to attribute sec (and inherits all its properties),

but it specifies an attribute that lies beyond regular parsing sequence.

Typically, each instance is compiled into a lazy reader function/method that will

parse (or calculate) requested data on demand, cache the result and return

whatever’s been parsed previously on subsequent calls.

Instances tag

Contents: map of strings to Instance spec

Purpose: description of data that lies outside of normal sequential parsing flow

(for example, that requires seeking somewhere in the file) or just needs to be

loaded only by special request

Influences: would be translated into distinct methods (that read desired data on

demand) in current class

Mandatory: no

seq:

- id: value_as_type1

type: type1

size: 16

instances:

value_with_type2:

io: value_with_type1._io

pos: 0

size: 2

types:

type1 ...

Enums tag

Enum specification allows to set up a enum (or closest equivalent) construct in

target language source file, which can then be referenced in attribute specs using

enum key.

Enums tag

Contents: map of strings to Enum specification

Purpose: allow to set up named enums: essentially a mapping between integer

constants to some symbolic names; these enums can be used in integer attributes

using enum key, thus converting it from simple integer attribute into a proper enum

constant

Influences: would be represented as enum-like construct

(or closest equivalent, if target language doesn’t support enums), nested or

namespaced in current type/class

Mandatory: no

enums:

ip_protocol:

1: icmp

6: tcp

0x11: udp

port:

22: ssh

25: smtp

80: http

seq:

- id: src_port

type: u2

enum: port

...

seq:

- id: http_version

type: u1

if: src_port == port::http

Types tag - declaration of subtypes

Contents: map of strings to User-defined type specification.

Purpose: declare types for sub-structures that could be referenced in attribute

specification in any seq or instances element.

Influences: would be translated into distinct classes

(usually nested into main one, if target language allows it).

Mandatory: no.

meta

id: top_level

seq:

- id: foo

type: header

- id: bar

type: body1

- id: baz

type: body2

types:

header: # ...

body1: # ...

body2: # ...

Common keys

id - key

Contents: a string that matches /^[a-z][a-z0-9_]*$/ — i.e. starts with lowercase

letter and then may contain lowercase letters, numbers and underscore

Purpose: identify attribute among others

Influences: used as variable / field name in target programming language

Mandatory:

● yes (for attributes in a seq — sequence of attributes)

● forbidden (for attributes in instances)

Type - declaration of subtype

Contents: one of primitive data types or a name of User-defined type spec

Purpose: define a data type for an attribute

Influences: how much bytes would be read, data type and contents of a variable

in target programming language

Mandatory: no — if type is not specified, then attribute is considered

[a generic byte sequence](#no-type-specified)

Type - declaration of subtype

If type is used to reference a User-defined type specification, then the following

algorithm it used to find which type is referred to, given the name:

1) It tries to find a given type by name in current type’s types — declaration of

subtypes map.

2) If that fails, it checks if current type actually has that name and if it does,

uses current type recursively.

3) If that fails too, it goes one level up in the hierarchy of nested types and tries

to resolve it there.

Contents

Contents: one of:

● a string in UTF-8 encoding

● an array of:

● bytes in decimal representation

● bytes in hexadecimal representation, starting with 0x

● strings in UTF-8 encoding

Contents

Purpose: specify fixed contents that should be encountered by parser at this

point.

Influences: parser checks if specified content exists at a given point in stream;

if everything matches, then parsing continues; if content in the stream doesn’t

match bytes specified in given contents, it will trigger a parsing exception, thus

signalling that something went terribly wrong and it’s meaningless to continue

parsing.

Mandatory: no.

Contents

Examples:

foo — expect bytes 66 6f 6f

[foo, 0, A, 0xa, 42] — expect bytes 66 6f 6f 00 41 0a

2a

[1, 0x55, '▒,3', 3] — expect bytes 01 55 e2 96 92 2c

33 03

Repeat

Contents: expr or eos or until

Purpose: designate repeated attribute in a structure;

Influences: attribute would be read as array / list / sequence, executing parsing

code multiple times.

Mandatory: no

Repeat

if repeat: expr is used, then attribute is repeated the number of times specified

in repeat-expr key;

if repeat: eos is used, then attribute is repeated until the end of current stream

if repeat: until is used, then attribute is repeated until given expression becomes

true (one may use a reference to last parsed element in such expression)

Repeat-expr

Contents: expression, expected to be of integer type

Purpose: specify number of repetitions for repeated attribute

Influences: number of times attribute is parsed

Mandatory: yes, if repeat: expr

Repeat-until

Contents: expression, expected to be of boolean type

Purpose: specify expression that would be checked each time after an element

of requested type is parsed; while expression is false (i.e. until it becomes true),

more elements would be parsed and added to resulting array; one can use

_ in expression as a special variable that references last read element

Influences: number of times attribute is parsed

Mandatory: yes, if repeat: until

If, else

Contents: expression, expected to be of boolean type

Purpose: mark the attribute as optional

Influences: attribute would be parsed only if condition specified in if key evaluates

(in runtime) to true

Mandatory: no

size and size-eos

Specify amount of bytes to read in size key.

One can specify an integer constant or an [[expression|expressions]] in this field

(for example, if the number of bytes to read depends on some other attribute).

Set size-eos: true, thus ordering to read all the bytes till the end of current

stream.

pos, io, value

pos

Specifies position in a stream from which the value should be parsed.

io

Specifies an IO stream from which a value should be parsed.

value

Overrides any reading & parsing. Instead, just calculates function specified in

value and returns the result as this instance. Can be used for multitude of

purposes, such as data conversion while reading, etc.

Terminator

Contents: integer that represents terminating byte

Purpose: string reading will stop when this

byte will be encountered

Influences: field data type

becomes given enum

Mandatory: no, default is 0

Consume

Contents: boolean

Purpose: specify if terminator byte should be "consumed" when reading - that is:

If consume is true, stream pointer will point to the byte after the terminator byte.

If consume is false, stream pointer will point to the terminator byte itself.

Influences: stream position after reading of string.

Mandatory: no, default is true.

Include

Contents: boolean.

Purpose: specify if terminator byte should be considered a part of string read and

thus appended to it.

Influences: string parsed: if true, then resulting string would be 1 byte longer and

that byte would be terminator byte.

Mandatory: no, default is false.

Kaitai Struct IDE

