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Multiple Classifiers

Typical research — create and evaluate a single learning
algorithm; compare performance of some algorithms.

Empirical observations or applications — a given algorithm may
outperform all others for a specific subset of problems

There is no one algorithm achieving the best accuracy for all
situations! {No free lunch]

Growing research interest in combining a set of learning
algorithms / classifiers into one system

»2Multiple learning systems try to exploit the local different
behavior of the base learners to enhance the accuracy of the

Friday, June 4, 2010



Multiple classifiers - definitions

Multiple classifier — a set of classifiers whose individual predictions
are combined in some way to classify new examples.

Various names: ensemble methods, committee, classifier fusion,
combination, aggregation,...

Integration should improve predictive accuracy!

Diversity of component classifiers — if they make errors, then they
should not correlated!

/C-T

example x

Final decision y

\1/

Classifier
Cr
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Approaches to create multiple systems

e Homogeneous classifiers — use of the same algorithm over
diversified data sets

» Bagging (Breiman)
e Boosting (Freund, Schapire)

e Multiple partitioned data

e Multi-class specialized systems, (e.g. ECOC pairwise
classification)

e Heterogeneous classifiers — different learning algorithms over
the same data

e Voting or rule-fixed aggregation

o Stacked generalization or meta-learning
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The Combiner Classifier - 1

Learning alg. 1

Base classifier 1

data

Training /

Learning alg. 2

Chan & Stolfo : Meta-learning.
* Two-layered architecture:

. 1-
. .

Base classifier 2

Learning alg. k

Different algorithms!

evel — base classifiers.

evel — meta-classifier.

Base classifier k

1-level

» Base classifiers created by applying the different
learning algorithms to the same data.
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Learning the meta-classifier

Base classifier 1

AN

Base classifier 2

~\>

/

Base classifier k

v

Validation

set

* Predictions of base classifiers on an extra validation set (not directly
training set — apply ,internal” cross validation) with correct class

Meta

classifier

Meta-level
training | —— Learning alg.| ——
set
Predictions Dec.
Cl1 | Cl.2 ClK |Cclass
A A B A
A B C B

decisions — a meta-level training set.

* An extra learning algorithm is used to construct a meta-classifiers.

 The idea — a meta-classifier attempts to learn relationships between
predictions and the final decision;

It may correct some mistakes of the base classifiers.

Friday, June 4, 2010




The Combiner - 2

New
object

attributes

Base classifier 1

Base classifier 2

AN

Meta
classifier

Base classifier k

1-level

p%dictions

Meta-level

—— Final decision

Classification of a new instance by the combiner

 Chan & Stolfo [95/97] : experiments that their combiner
({CART,ID3,K-NN}—NBayes) is better than equal voting.

%
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Bagging [L..Breiman, 1996}

Bagging = Bootstrap aggregation

Generates individual classifiers on bootstrap samples of the
training set

As a result of the sampling-with-replacement procedure, each
classifier is trained on the average of 63.2% of the training
examples.

For a dataset with N examples, each example has a probability
of 1-(-1/N)N of being selected at least once in the N samples.
For N—oo, this number converges to (1-1/e) or 0.632 [Bauer and
Kohavi, 1999}

Bagging traditionally uses component classifiers of the same
type (e.g., decision trees), and combines prediction by a simple
majority voting across.
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More about ,Bagging”

» Bootstrap aggregating — L.Breiman [1996]

S
51 52 57
C C2 |
)
l <X,y

Learning
set

Bootstrap
sampling

Single
classifiers

Aggregated
answer

input S — learning set, 7— no. of
bootstrap samples, LA — learning
algorithm

output C* - multiple classifier
for i=1 to 7'do
begin
S.:=bootstrap sample from S;
Cii=LA(S));

end;

C’(x) = argmax , 31_ (C;(x) = »)
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Boosting {Freund & Schapirel

e In general takes a different weighting schema of resampling than

bagging.
e [terative procedure:

e The component classifiers are built sequentially; and
examples that are misclassified by previous components are
chosen more often than those that are correctly classified!

* So, new classifiers are influenced by performance of
previously built ones. New classifier is encouraged to become
expert for instances classified incorrectly by earlier classifier.

e There are several variants of this algorithm — AdaBoost the most
popular (see also arcing).
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Random forests {Breiman}

e Feature selection within bagging framework.

* At every level, choose a random subset of the
attributes (not examples) and choose the best
split among those attributes.

* Combined with selecting examples like basic

bagging.

e Doesn’t overfit.
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Class imbalance

e Data set is said to present a class imbalance if it
contains many more examples of one class than the
other.

e There exist many domains that do not have a
balanced data set.

e There are a lot of problems where the most
important knowledge usually resides in the

minority class.

e Some real-problems: Fraudulent credit card
transactions, Learning word pronunciation,
Prediction of telecommunications equipment
failures, Detection oil spills from satellite images,
Medical diagnosis, Intrusion detection, Insurance
risk modeling, Hardware fault detection
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Imbalance — Difhculties

e Standard approach to learn classifiers such as
decision tree induction are designed under
assumption of partly balanced classes and to
optimize overall accuracy without taking into
account the relative distribution of each class.

* As aresult, these classifiers tend to ignore
small classes while concentrating on classifying
the large ones accurately
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Introduction to Imbalanced Data Sets

Negative-exanmples

Negative exanrples (S0% )

(99% )

Imbalanced data Balanced data
Fig. 1. Imbalanced and balanced data sets.
I biased towards the majority class
Classification
Accuracy We need to change the way to

evaluate a model performance!

Negativerexanmples

ant | (99%) 100%
t‘“P"”Jm ; Overall Accuracy: 99%

class

. Positive examples (1%)|
0%

Fig. 2. The illustration of class imbalance problems. 9
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After

Data level vs Algorithm Level

Strategies to deal with imbalanced data sets

Over-Samplm

Motivation

Random
Focused
nder-Samplin
Random

Text

Retain influyent examples
Balance the training set

Cost Modifying (cost-sensitive)

FocusedA///// -

Remove noisy instances in
the decision boundaries

Reduce the training set

Algorithm-level approaches: A commont strategy to deal
with the class imbalance is to choose an appropriate

iInductive bias.

Boosting approaches: ensemble learning, AdaBoost, ...

16
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HANDLING IMBALANCED DATA



Difficulty factors in clinical data

- Challenges for data mining from clinical data
+ Missing and imprecise values, inconsistent examples
- Uneven distribution of patients across decision classes

Minority class (usually critical) vs. majority classes = class imbalance

- Class imbalance deteriorates performance of classifiers learned
from data (especially for the minority class!)

- Three groups of approaches to address this problem
- Data-level methods — preprocessing before learning (more prevalent)
 Algorithm-level methods — specialized learning algorithms

« Cost-based methods — methods that consider costs of misclassifications
(at different times)



Dealing with imbalanced data

Class imbalance is not the only or main problem...

- Other data difficulty factors (affecting the minority class)
- Overlapping regions between classes

- Rare sub-concepts (= small disjuncts) in the minority class and “outliers”
thrown into the majority classes

- ldentification of difficulty factors — tagging examples based on
their local neighborhood [Napierata and Stefanowski, 2015]

Safe vs. unsafe (- borderline, rare and outlier)




Types of examples capturing difficulty factors
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Goal and research questions

Goal: evaluate and compare combinations of preprocessing
methods and classifiers on clinical data

1.  What are the data difficulty factors encountered in the analyzed clinical
data sets?

2.  How do the preprocessing methods improve the performance of
obtained classifiers?

3.  What are the best combinations of preprocessing methods and
classifiers?

/Special focus on the minority class h
* Real-life clinical data sets collected in the ED at CHEO gL lgo Hopital
Aot c ~ Children's c fants de
* Common or relevant pediatric presentations — | Hogitalel I!::slt"d:nl‘;:t i
«  Minority class indicates patients requiring i
\_ quick care and significant resources 4

Wilk S., Stefanowski J., Wojciechowski S., Farion K.J., Michalowski W. (2016) Application of Preprocessing Methods to Imbalanced Clinical Data: An Experimental
Study. In: Information Technologies in Medicine. ITiB 2016. Advances in Intelligent Systems and Computing, vol 471. Springer, Cham




Considered data sets

# examples | Imbalance | # attributes
Data set Clinical problem (minority) ratio (numeric)

Abdominal pain 457 (48)
HP Hip pain 412 (46)
SP Scrotal pain 409 (56)
AE1 Asthma exacerbations (2004) 362 (59)
AE2 Asthma exacerbations (2007) 240 (21)

- Data collected retrospectively (HP, SP and AE1) and

prospectively (AP and AE2)

- Removal of attributes with > 50% of missing values

(15 in SP, 10 in AE1)

- All non-critical classes combined into a single majority class

0.11
0.11
0.14
0.16
0.09

13 (3)
20 (4)
14 (3)
32 (11)
42 (9)




Experimental design

1. ldentifying data difficulty factors in the data sets (by tagging
examples with their types)

2. Evaluating the performance of selected combinations of
preprocessing methods and classifiers on the data sets
- Sensitivity, specificity and their geometric mean (G-mean, GM)
- Stratified 10-fold cross validation repeated 10 times for reduced variance

- Friedman test (a = 0.05) to compare the performance of multiple
combinations of preprocessing methods and classifiers over multiple data sets



lllustration of Preprocessing Methods
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Encountered Data Difficulty Factors

% Safe % Rare

Data set [ % Borderline

HP 7 28 15 50
SP 4 53 11 32
AE1 2 63 10 25

AE2 14 k 24 10 52 /

- Large portion of unsafe (esp. borderline and outlier) examples

- Very small portion of safe examples



Observed sensitivity

INN 0.4300
3NN 0.4385
C45 0.3680
PART 0.4375
NB 0.7160
RBF 0.5130
SVM 0.5020
INN 0.2743
3NN 0.2440
C45 0.3990
PART 0.3893
NB 0.4343
RBF 0.3913
SVM 0.3293

0.7500
0.7390
0.7610
0.7595
0.7990
0.7860
0.7935

0.6307
0.6590
0.6203
0.6637
0.7797
0.6977
0.6597

0.4300
0.6495
0.5140
0.5170
0.7875
0.7645
0.7880

0.2743
0.5553
0.5523
0.5487
0.7203
0.4920
0.3813

0.5220
0.5365
0.5005
0.5255
0.6770
0.6535
0.6150

0.3950
0.5240
0.3950
0.3597
0.4077
0.4070
0.3350

0.5635
0.5330
0.5455
0.5340
0.7490
0.6685
0.5770

0.4743
0.4617
0.4550
0.4683
0.5187
0.4743
0.4163

0.5005
0.6230
0.5710
0.5325
0.8135
0.7405
0.7640

0.2793
0.5513
0.5883
0.5760
0.7220
0.5220
0.3947

GM - consistent with sensitivity (RU + NB)
Specificity — deteriorated (worst for RU)

INN
NN
C45
PART
NB
RBF
SVM

W

INN
3NN
C45
PART
NB
RBF
SVM

INN
3NN
C45
PART
NB
RBF
SVM

0.2035
0.1205
0.2690
0.2875
0.7535
0.5475
0.5100

0.2743
0.1623
0.1847

0.6035 0.2035
0.6025 0.4300
0.7170 0.4965
0.6955 0.5115
0.8480 0.8510
0.7920 0.7145
0.7210 0.4985

0.5903 0.2743
0.6327 0.5097
0.6080 0.3910

0.2553 0.6330 0.3723
0.4897 0.7143 0.6833
0.4343 0.6940 0.6683
0.3217 0.6170 0.3147

0.1000
0.0900
0.1733
0.2617
0.7117
0.5317
0.4117

0.5867 0.1000
0.7133 0.4200
0.6733 0.3933
0.6767 0.3767
0.7967 0.7267
0.7917 0.7367
0.5950 0.3200

0.3315
0.3630
0.3865
0.3585
0.5645
0.4245
0.4445

0.4570
0.5277
0.2913
0.2823
0.4680
0.4763
0.3583

0.3217
0.4417
0.1500
0.2817
0.2400
0.2500
0.3433

0.3040
0.2095
0.3365
0.3370
0.7660
0.5865
0.5340

0.3957
0.3163
0.3097
0.3497
0.5803
0.5203
0.4080

0.1317
0.1500
0.2683
0.3483
0.7467
0.6800
0.3533

0.2035
0.4280
0.4780
0.4840
0.8615
0.6840
0.4970

0.2760
0.4860
0.3617
0.3953
0.7167
0.7080
0.3720

0.1000
0.3750
0.3300
0.3400
0.7533
0.7533
0.2900



DATA FUSION



Heterogeneity of clinical data

Text data — “free text” with unformal codes

and expressions
Numerical data

Omics data (various representations)
Drawings — hand-made sketches, markings

on diagrams (dentistry)

Signals (numerical time series)

Images and videos
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Problem statement

Focus on a single data modality may be insufficient to construct a

comprehensive and accurate clinical decision model

Most of the developed clinical decision model rely on a single
data modality (e.g., “traditional” data or image data)

- Data fusion may be used address the above limitation



Data fusion

Integration of data and knowledge from multiple sources

of diversified format and structure

- Human perception system - extended angular vision is
obtained by the combination of percepts from each eye

- Human brain = fusion on information collected through all the
senses and previous memory to generate orderly action

- Other application areas — multi-sensor networks, surveillance
systems, imaging studies



Data fusion techniques

Combination of data (COD)

- Aggregation of data from various sources into a single space
- Construction of a decision model using aggregated space

- Drawback: course of dimensionality



Data fusion techniques

Combination of interpretations (COl)
- Construction of decision models from each data source

- Combination of outcomes of obtained models by a combiner to produce
a single decision (= stacking)

51 52 53 s‘ - - sr'l

() (]

- Drawback: Inability to handle inter-source dependencies



Data fusion techniques

General fusion framework (GFF)

- Brining data into a homogeneous space through a series of simple and
complex transformations
- Simple: data pre-processing (feature selection, transformation)

« Complex: construction of “intermediary” classifier:

- Construction of the final classifier
from the homogeneous space

o

- Drawback: selecting transformations and their sequence

G. Lee, A. Madabhushi: A knowledge representation framework for integration, classification of multi-scale imaging and non-imaging data: Preliminary
results in predicting prostate cancer recurrence by fusing mass spectrometry and histology. IEEE International Symposium on Biomedical Imaging: From

Nano to Macro, 2009.




Predicting treatment for fractures

- Prediction of the type of treatment in patients with fractures —
surgical vs. non-surgical

- Non-image data (demographics, results of examinations and
lab tests) and image data (X-ray)

- 210 patients extracted from a repository of educational cases
hosted by the WCT telemedical platform

- Comparison of COD and COI approaches (of varying complexity)

A. Haq, Sz. Wilk, A. Abellé: Fusion of clinical data: A case study to predict the type of treatment of bone fractures. AMC 29 (1), 2019.




Example fusion models
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Application of deep learning

an Dlglta| MediCine www.nature.com/npjdigitalmed

ARTICLE  OPEN
Scalable and accurate deep learning with electronic health

records

Alvin Rajkomar @', Eyal Oren', Kai Chen', Andrew M. Dai', Nissan Hajaj', Michaela Hardt', Peter J. Liu', Xiaobing Liu' e Marcus'

Mimi Sun’, Patrik Sundberg’, Hector Yee', Kun Zhang', Yi Zhang', Gerardo Flores', Gavin E. Duggan', Jamie Iry

Kurt Litsch', Alexander Mossin', Justin Tansuwan', De Wang', James Wexler', Jimbo Wilson', Dana Ludwig?, Sam 216.221 patients
Katherine Chou', Michael Pearson', Srinivasan Madabushi', Nigam H. Shah®, Atul J. Butte?, Michael D. Howell', & d

Greg S. Corrado' and Jeffrey Dean'’ 46,864’534,945 data pOintS
(tokens)

Predictive modeling with electronic health record (EHR) data is anticipated to drive personalized medicine and i

quality. Constructing predictive statistical models typically requires extraction of curated predictor variables from

data, a labor-intensive process that discards the vast majority of information in each patient’s record. We propose a repres
of patlents entire raw EHR records based on the Fast Healthcare Interoperablllty Resources (FHIR) format We demonstr:

centers without site-specific data harmonization. We validated our approach using de-identified EHR data from two US academic
medical centers with 216,221 adult patients hospitalized for at least 24 h. In the sequential format we propose, this volume of EHR
data unrolled into a total of 46,864,534,945 data points, including clinical notes. Deep learning models achieved high accuracy for
tasks such as predicting: in-hospital mortality (area under the receiver operator curve [AUROC] across sites 0.93-0.94), 30-day
unplanned readmission (AUROC 0.75-0.76), prolonged length of stay (AUROC 0.85-0.86), and all of a patient’s final discharge
diagnoses (frequency-weighted AUROC 0.90). These models outperformed traditional, clinically-used predictive models in all cases.
We believe that this approach can be used to create accurate and scalable predictions for a variety of clinical scenarios. In a case
study of a particular prediction, we demonstrate that neural networks can be used to identify relevant information from the
patient’s chart.

npj Digital Medicine (2018)1:18; doi:10.1038/s41746-018-0029-1




Application of deep learning
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Fig. 4 Data from each health system were mapped to an appropriate FHIR (Fast Healthcare Interoperability Resources) resource and placed in
temporal order. This conversion did not harmonize or standardize the data from each health system other than map them to the appropriate
resource. The deep learning model could use all data available prior to the point when the prediction was made. Therefore, each prediction,

regardless of the task, used the same data

prediction

1

Health systems collect and store
electronic health records in various
formats in databases.

All available data for each patient is
converted to events recorded in
containers based on the Fast
Healthcare Interoperability Resource
(FHIR) specification.

The FHIR resources are placed in
temporal order, depicting all events
recorded in the EHR (i.e. timeline).
The deep learning model uses this
full history to make each prediction.

An ensemble of 3
“time-aware” deep neural
networks
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Integration of textual and non-textual data

At 24 hours after admission,
Admitted predicted risk of inpatient
to hospital mortality: 19.9%.
. Patient dies 10 days later.
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Fig.3 The patient record shows a woman with metastatic breast cancer with malignant pleural effusions and empyema. The patient timeline
at the top of the figure contains circles for every time-step for which at least a single token exists for the patient, and the horizontal lines show
the data type. There is a close-up view of the most recent data points immediately preceding a prediction made 24 h after admission. We
trained models for each data type and highlighted in red the tokens which the models attended to—the non-highlighted text was not
attended to but is shown for context. The models pick up features in the medications, nursing flowsheets, and clinical notes relevant to the
prediction



