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Rules - preliminaries 
• Rules → the most popular symbolic representation of knowledge 

derived from data;

• Natural and easy form of representation → possible inspection 
by human and their interpretation.

• More comprehensive than any other knowledge representation!
• Standard form of rules 

IF Conditions THEN Class
• Other forms: Class IF Conditions; Conditions → Class 

Example: The set of decision rules induced from PlaySport:
if outlook = overcast then Play = yes

if temperature = mild and humidity = normal then Play = yes

if outlook = rainy and windy = FALSE then Play = yes

if humidity = normal and windy = FALSE then Play = yes

if outlook = sunny and humidity = high then Play = no

if outlook = rainy and windy = TRUE then Play = no



Rules – more formal notations
• A rule corresponding to class Kj is represented as

if P then Q
where P = w1 and w2 and … and wm is a condition part and Q is a 
decision part (object x satisfying P is assigned to class Kj)

• Elementary condition wi (a rel v), where a∈A and v is its 
value (or a set of values) and rel stands for an operator as 
=,<, ≤, ≥ , >. 

• [P] is a cover of a condition part of a rule → a subset of 
examples satisfying P.

• if (a2 = small) and (a3 ≤ 2) then (d = C1)    {x1,x7}
• A rule is certain / discriminant in DT iff [P]=⎧⎫ [wi]⊆ [Kj ],

otherwise (P∩ Kj ≠∅) the rule is partly discriminating.



An example of rules induced from data table

Minimal set of rules
• if (a2 = s) ∧ (a3 ≤ 2) then (d = C1)    

{x1,x7}

• if (a2 = n) ∧ (a4 = c) then (d = C1)    
{x3,x4}

• if (a2 = w) then (d = C2)    {x2,x6}

• if (a1 = f) ∧ (a4 = a) then (d = C2)    
{x5,x8}

Partly discriminating rule:
• if (a1=m) then (d=C1)   

{x1,x3,x7 | x6}   3/4 C2a3sfx8

C1b2smx7

C2c2wmx6

C2a2nfx5

C1c2nfx4

C1c3nmx3

C2b1wfx2

C1a1smx1

da4a3a2a1id.



Why Decision Rules?Why Decision Rules?
• Decision rules are more compact.
• Decision rules are more understandable and natural for human.
• Better for descriptive perspective in data mining.
• Can be nicely combined with background knowledge and more 

advanced operations, …

Example: Let X ∈{0,1}, Y ∈{0,1}, 
Z ∈{0,1}, W ∈{0,1}. The rules are:

if X=1 and Y=1 then 1

if Z=1 and W=1 then 1

Otherwise 0;
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How to learn decision rules?

• Typical algorithms based on the scheme of a sequential 
covering and heuristically generate a minimal set of rule 
covering examples:
• see, e.g., AQ, CN2, LEM, PRISM, MODLEM, Other ideas – PVM, 

R1 and RIPPER).

• Other approaches to induce „richer” sets of rules:
• Satisfying some requirements (Explore, BRUTE, or modification 

of association rules, „Apriori-like”).

• Based on local „reducts” → boolean reasoning or LDA.

• Specific optimization, eg. genetic approaches.

• Transformations of other representations:

• Trees → rules.

• Construction of (fuzzy) rules from ANN.



Covering algorithms
• A strategy for generating a rule set directly from data: 

• for each class in turn find a rule set that covers all examples 
in it (excluding examples not in the class).

• The main procedure is iteratively repeated for each class.
• Positive examples from this class vs. negative examples.

• This approach is called a covering approach because at 
each stage a rule is identified that covers some of the 
examples (then these examples are skipped from 
consideration for the next rules).

• A sequential approach.
• For a given class it  conducts in a stepwise way a general to 

specific search for the best rules (learn-one-rule) guided by 
the evaluation measures. 



General schema of inducing minimal set of rules

• The procedure conducts a general to specific (greedy) search 
for the best rules (learn-one-rule) guided by the evaluation 
measures. 

• At each stage add to the current condition part next elementary 
tests that optimize possible rule’s evaluation (no backtracking).

Procedure Sequential covering (Kj Class; A attributes; E examples, 
τ - acceptance threshold);
begin

R := ∅;      {set of induced rules}
r := learn-one-rule(Yj Class; A attributes; E examples)
while evaluate(r,E) > τ do
begin

R := R ∪ r;
E := E \ [R];        {remove positive examples covered by R}
r := learn-one-rule(Kj Class; A attributes; E examples);

end;
return R
end.



The contact lenses data

NoneReducedYesHypermetropePre-presbyopic 
NoneNormalYesHypermetropePre-presbyopic
NoneReducedNoMyopePresbyopic
NoneNormalNoMyopePresbyopic
NoneReducedYesMyopePresbyopic
HardNormalYesMyopePresbyopic
NoneReducedNoHypermetropePresbyopic
SoftNormalNoHypermetropePresbyopic

NoneReducedYesHypermetropePresbyopic
NoneNormalYesHypermetropePresbyopic

SoftNormalNoHypermetropePre-presbyopic
NoneReducedNoHypermetropePre-presbyopic
HardNormalYesMyopePre-presbyopic
NoneReducedYesMyopePre-presbyopic
SoftNormalNoMyopePre-presbyopic

NoneReducedNoMyopePre-presbyopic
hardNormalYesHypermetropeYoung
NoneReducedYesHypermetropeYoung
SoftNormalNoHypermetropeYoung

NoneReducedNoHypermetropeYoung
HardNormalYesMyopeYoung
NoneReducedYesMyopeYoung 
SoftNormalNoMyopeYoung

NoneReducedNoMyopeYoung

Recommended 
lenses

Tear production rateAstigmatismSpectacle prescriptionAge



Inducing rules by PRISM from contact lens data

• Rule we seek:

• Possible conditions:

4/12Tear production rate = Normal

0/12Tear production rate = Reduced

4/12Astigmatism = yes

0/12Astigmatism = no

1/12Spectacle prescription = Hypermetrope

3/12Spectacle prescription = Myope

1/8Age = Presbyopic

1/8Age = Pre-presbyopic

2/8Age = Young

If ?
then recommendation = hard

ACK: slides coming from witten&eibe WEKA

PRISM - Evaluation of 
candidates for a rule:

High accuracy 
P(K|R);
High coverage 
|[P]I



Modified candidate for a rule and covered data

• Condition part of the rule with the best elementary
condition added:

• Examples covered by the first condition part:

NoneReducedYesHypermetropePre-presbyopic 
NoneNormalYesHypermetropePre-presbyopic
NoneReducedYesMyopePresbyopic
HardNormalYesMyopePresbyopic
NoneReducedYesHypermetropePresbyopic
NoneNormalYesHypermetropePresbyopic

HardNormalYesMyopePre-presbyopic
NoneReducedYesMyopePre-presbyopic
hardNormalYesHypermetropeYoung
NoneReducedYesHypermetropeYoung
HardNormalYesMyopeYoung
NoneReducedYesMyopeYoung 

Recommended 
lenses

Tear production rateAstigmatismSpectacle prescriptionAge

If astigmatism = yes 
then recommendation = hard



Further specialization of conditions

• Current state:

• Possible conditions:

4/6Tear production rate = Normal

0/6Tear production rate = Reduced

1/6Spectacle prescription = Hypermetrope

3/6Spectacle prescription = Myope

1/4Age = Presbyopic

1/4Age = Pre-presbyopic

2/4Age = Young

If astigmatism = yes
and ? 

then recommendation = hard



Two conditions in the rule

• The rule with the next best condition added:

• Examples covered by modified rule:

NoneNormalYesHypermetropePre-presbyopic
HardNormalYesMyopePresbyopic
NoneNormalYesHypermetropePresbyopic

HardNormalYesMyopePre-presbyopic
hardNormalYesHypermetropeYoung
HardNormalYesMyopeYoung

Recommended 
lenses

Tear production rateAstigmatismSpectacle prescriptionAge

If astigmatism = yes
and tear production rate = normal 

then recommendation = hard



Further specialization of the candidate for a rule

• The current state:

• Possible conditions:

• Tie between the first and the fourth test
• We choose the one with greater coverage

1/3Spectacle prescription = Hypermetrope

3/3Spectacle prescription = Myope

1/2Age = Presbyopic

1/2Age = Pre-presbyopic

2/2Age = Young

If astigmatism = yes 
and tear production rate = normal
and ?

then recommendation = hard



The result for class „hard”

• Final rule:

• Second rule for recommending “hard lenses”:
(built from instances not covered by first rule)

• These two rules cover all “hard lenses”:
• Process is repeated with other two classes

If astigmatism = yes
and tear production rate = normal
and spectacle prescription = myope
then recommendation = hard

If age = young and astigmatism = yes
and tear production rate = normal
then recommendation = hard

Thnaks to witten&eibe



A search in a simple covering algorithm

• Generates a rule by adding tests that maximize 
rule’s accuracy

• Similar to situation in decision trees: problem of 
selecting an attribute to split on

• But: decision tree inducer maximizes overall purity

• Each new term reduces

rule’s coverage:

space of 
examples

rule so far

rule after 
adding new 
term



LEM2 algorithm with rough approximations
• Grzymala 92; - induces rules from rough sets approximations of 

inconsistent decision classes.

• Sequential covering (similar to PRISM but another evaluation 
criteria)

• A heuristic approach to minimal set of rules; it is based on iterative 
computing the single local covering T (see it as a set of cond. parts) 
of each concept (approximation) in a decision table

• T is a local covering of K iff

Each member T∈ T is minimal

T is minimal, i.e. contains the smallest number of  elements T.

KTT =∈U T ][



LEM2 – An Example (1)
U Headache Nausea Temp. Flu 
x1 no no normal No 
x2 yes no high Yes 
x3 yes yes high Yes 
x4 yes no normal No 
x5 no no high No 
x6 no no high Yes 

 

IND: {x1}, {x2}, {x3}, {x4}, {x5,x6}
YES: lower appr. {x2,x3}

upper {x2,x3,x5,x6}
NO: lower approx. {x1,x4}

upper {x1,x4,x5,x6}
Inconsistent boundary {x5,x6}

Certajn rules for (Flue=Yes): Concept {x2,x3}

(headache,yes) {x2,x3+ ; x4-}
(nausea,no) {x2+ ; x1,x4,x5,x6-}
(nausea,yes) {x3+ }
(temperature,high) {x2,x3+ ; x5,x6-}

Choose t1 (headache,yes) but it {x2,x3+ ; x4-}  ⊄ {x2,x3}, so look for next, 
new condition ; Add (temperature,high), 
now t1∩t2= {x2,x3+ ; x4-} ∩ {x2,x3+ ; x5,x6-} ⊆ {x2,x3}
Finally, the rule (headache=yes) ∩ (temperature=high) →(Flue=Yes)
describes all examples from this concept



LEM2 – An Example (2)
U Headache Nausea Temp. Flu 
x1 no no normal No 
x2 yes no high Yes 
x3 yes yes high Yes 
x4 yes no normal No 
x5 no no high No 
x6 no no high Yes 

 

IND: {x1}, {x2}, {x3}, {x4}, {x5,x6}
YES: lower appr. {x2,x3}

upper {x2,x3,x5,x6}
NO: lower approx. {x1,x4}

upper {x1,x4,x5,x6}

Certajn rules for (Flue=No): Concept {x1,x4}
(headache,no} {x1+; x5,x6-}
(headache,yes) {x4+ ; x2,x3-}
(nausea,no) {x1,x4+;x2,x5,x6-}
(temperature,normal) {x1,x4+ ; ∅}

Choose t1 (temperature,normal), 
now t1= {x1,x4+ ; ∅-} ⊆ {x1,x4}
Finally, the rule (temperature=normal) →(Flue=No) describes all
examples from this concept



MODLEM − Algorithm for rule induction

• MODLEM [Stefanowski 98] generates a minimal set of rules.
• Its extra specificity – handling directly numerical attributes 

during rule induction; elementary conditions, e.g. (a ≥ v), 
(a < v), (a ∈ [v1,v2)) or (a = v).

• Elementary condition evaluated by one of three measures: 
class entropy, Laplace accuracy or Grzymala 2-LEF.

obj. a1  a2  a3  a4  D
x1   m   2.0   1   a   C1       if (a1 = m) and (a2 ≤ 2.6) then (D = C1)   {x1,x3,x7}
x2   f     2.5   1   b   C2       if (a2 ∈ [1.45, 2.4]) and (a3 ≤ 2) then (D = C1) 
x3   m   1.5   3   c   C1           {x1,x4,x7}
x4   f     2.3   2   c   C1       if (a2 ≥ 2.4) then (D = C2)     {x2,x6}
x5   f     1.4   2   a   C2       if (a1 = f) and (a2 ≤ 2.15) then (D = C2)    {x5,x8}
x6   m   3.2   2   c   C2
x7   m   1.9   2   b   C1
x8   f     2.0   3   a   C2



Mushroom data (UCI Repository)
• Mushroom records drawn from The Audubon Society Field 

Guide to North American Mushrooms (1981). 
• This data set includes descriptions of hypothetical samples 

corresponding to 23 species of mushrooms in the Agaricus and  
Lepiota Family.  Each species is identified as definitely edible, 
definitely poisonous, or of unknown edibility. 

• Number of examples: 8124. 
• Number of attributes: 22 (all nominally valued)
• Missing attribute values: 2480 of them. 
• Class Distribution:   

-- edible: 4208 (51.8%)   

-- poisonous: 3916 (48.2%)



MOLDEM rule set (Implemented in WEKA)
=== Classifier model (full training set) ===

Rule 1.(odor is in: {n, a, l})&(spore-print-color is in: {n, k, b, h, o, u, y, w})&(gill-size = b) 
=> (class = e); [3920, 3920, 93.16%, 100%]

Rule 2.(odor is in: {n, a, l})&(spore-print-color is in: {n, h, k, u}) => (class = e); [3488, 
3488, 82.89%, 100%]

Rule 3.(gill-spacing = w)&(cap-color is in: {c, n}) => (class = e); [304, 304, 7.22%, 
100%]

Rule 4.(spore-print-color = r) => (class = p); [72, 72, 1.84%, 100%]
Rule 5.(stalk-surface-below-ring = y)&(gill-size = n) => (class = p); [40, 40, 1.02%, 

100%]
Rule 6.(odor = n)&(gill-size = n)&(bruises? = t) => (class = p); [8, 8, 0.2%, 100%]
Rule 7.(odor is in: {f, s, y, p, c, m}) => (class = p); [3796, 3796, 96.94%, 100%]

Number of rules: 7
Number of conditions: 14



Approaches to Avoiding Overfitting

• Pre-pruning: stop learning the decision rules 
before they reach the point where they 
perfectly classify the training data

• Post-pruning: allow the decision rules to 
overfit the training data, and then post-prune 
the rules.



Pre-Pruning

The criteria for stopping learning rules can be:

• minimum purity criterion requires a certain 
percentage of the instances covered by the 
rule to be positive;

• significance test determines if there is a 
significant difference between the distribution 
of the instances covered by the rule and the 
distribution of the instances in the training 
sets.



Post-Pruning (Grow, IREP)

1. Split instances into Growing Set and Pruning Set;

2. Learn set SR of rules using Growing Set;

3. Find the best simplification BSR of SR.

4. while (Accuracy(BSR, Pruning Set) >

Accuracy(SR, Pruning Set) )      do
4.1            SR = BSR;

4.2            Find the best simplification BSR of SR.

5.     return BSR;



Applying rule set to classify objects

• Matching a new object description x to condition parts of 
rules.

• Either object’s description satisfies all elementary 
conditions in  a rule, or not.

IF (a1=L) and (a3≥ 3) THEN Class +

x → (a1=L),(a2=s),(a3=7),(a4=1)

• Two ways of assigning x to class K depending on the set 
of rules:

• Unordered set of rules (AQ, CN2, PRISM, LEM)

• Ordered list of rules (CN2, c4.5rules)



Applying rule set to classify objects
• The rules are ordered into priority decision list!

Another way of rule induction – rules are learned by first 
determining Conditions and then Class (CN2)

Notice: mixed sequence of classes K1,…, K in a rule list
But: ordered execution when classifying a new instance: rules 

are sequentially tried and the first rule that ‘fires’ (covers the 
example) is used for final decision

Decision list {R1, R2, R3, …, D}: rules Ri are
interpreted as if-then-else rules

If no rule fires, then DefaultClass (majority class in input data)



Applying unordered rule set to classify objects
• An unordered set of rules → three situations:

• Matching to rules indicating the same class.

• Multiple matching to rules from different classes.

• No matching to any rule.
• An example:
• e1={(Age=m), (Job=p),(Period=6),(Income=3000),(Purpose=K)}

• rule 3: if (Period∈[3.5,12.5)) then (Dec=d) [2]

• Exact matching to rule 3. → Class (Dec=d)
• e2={(Age=m), (Job=p),(Period=2),(Income=2600),(Purpose=M)}

• No matching!



Solving conflict situations
• LERS classification strategy (Grzymala 94)

• Multiple matching 
• Two factors: Strength(R) – number of learning examples 

correctly classified by R and final class Support(Yi):

• Partial matching
• Matching factor MF(R) and 

• e2={(Age=m), (Job=p), (Period=2),(Income=2600),(Purpose=M)}

• Partial matching to rules 2 , 4 and 5 for all with MF = 0.5

• Support(r) = 0.5⋅2 =1 ; Support(d) = 0.5⋅2+0.5⋅2=2

• Alternative approaches – e.g. nearest rules (Stefanowski 95)

• Instead of MF use a kind of normalized distance x to conditions of r

∑ Yifor   R rules matching )(RStrength

∑ ⋅Yifor   R rules match.partially )()( RStrengthRMF



Different perspectives of rule application

• In a descriptive perspective

• To present, analyse the relationships between 
values of attributes, to explain and understand 
classification patterns

• In a prediction/classification perspective,

• To predict value of decision class for new 
(unseen) object)

Perspectives are different; 
Moreover rules are evaluated in a different ways!



Explore algorithm (Stefanowski, Vanderpooten)

• Another aim of rule induction 
• to extract from data set inducing all rules that satisfy some user’s 

requirements connected with his interest (regarding, e.g. the 
strength of the rule, level of confidence, length, sometimes also 
emphasis on the syntax of rules).

• Special technique of exploration the space of possible 
rules:
• Progressively generation rules of increasing size using in the most 

efficient way some 'good' pruning and stopping condition that reject 
unnecessary candidates for rules.

• Similar to adaptations of Apriori principle for looking 
frequent itemsets [AIS94]; Brute [Etzioni]



Any questions, remarks?


