Quantum-Enhanced Machine Learning in Practice

Peter Wittek

Academic Director, Quantum Machine Learning Initiative Creative Destruction Lab University of Toronto

27 April 2018

Landscape of commercial quantum computing

Investments in quantum computing

Private equity funding:

- €1 billion quantum flagship by the European Union.
- September 2017: China invests \$10 billion in research centre for quantum technologies.
- October 2017: Alibaba invests \$15 billion in quantum computing.

The Virtuous Cycle!

- •Reinforcement learning in control problems
- •Deep learning and neural networks as representation

FAQ

- When can we start using quantum computers? Right now.
- When can we expect any tangible advantage? 3-4 years.
- **6** Can we just call a Python API? $\frac{|yes\rangle+|no\rangle}{\sqrt{2}}$.

The Holy Grail: Universal Quantum Computers

- Like in digital computers, a finite set of gates is sufficient for universality.
- This is a surprising result.
- Gate-based model.
- Quantum computation **etransformation of probability distribution.
- Notoriously hard engineering challenge.

Quantum Annealing

- An analogue paradigm with no classical equivalent.
- It essentially solves a binary optimization problems.
- Could be equivalent to a gate-based model.
- Most advanced implementation today.
 - Up to 2048 superconducting qubits.
 - It is not an 'ideal' quantum annealer.

Continuous-Variable Systems

- Natural fit for simulating bosonic systems:
 - Electromagnetic fields
 - Harmonic oscillators
 - phonons
 - Bose-Einstein condensates
- Position & momentum operators.
- Room-temperature photonic implementations.

Why Quantum-Enhanced Machine Learning?

- Intermediate step between now and perfect, scalable universal quantum computers.
 - It also provides a use case for universal quantum computers.
- It also works well for current quantum annealing technologies.
 - Which suffer from many problems: noise, finite temperature, precision of digital-analogue converters. . .
- Tangible benefits are within three to four years.

In the Wild!

- The first-ever incubator program in the world for QML startups!
- Includes:
 - Technical training and continued support by leading scientists.
 - Business guidance and investor access.
 - Pre-seed investment up to \$80k from three Silicon Valley venture capital firms.

Brave Enough Hardware Partners

• The CDL is also host of the largest ML startup accelerator in the world.

More on Adiabatic Quantum Computing

- Generic procedure: map learning problem to an Ising model.
 - $H(\sigma) = -\sum_{\langle ij \rangle} J_{ij}\sigma_i\sigma_j \mu \sum_j h_j\sigma_j$
- Current solid-state implementation:
 - Qubits have a connectivity structure.
 - Number of gubits remains limited.
 - Temperature too high, speed too fast, too much noise.
- Do we need the actual ground state?

Gate-based approach to optimization

Grover's search:

- Find an element in an unordered set in $O(\sqrt{n})$ steps.
- Given: (unitary) oracle. $O|x\rangle = \begin{cases} -|\omega\rangle & \text{for } x = \omega \\ |x\rangle & \text{for } x \neq \omega \end{cases}$
- Also works for finding minimum or maximum.

Grover's search as a building block:

- Discrete search space.
- Quantum associative memories.

Learning and Grover's search

- Without decoherence, Grover's search finds an element in an unordered set quadratically faster than the classical limit.
- Variant for finding minimum and maximum.
- It is a plug-and-play method.
- Implementations are not quite clear on actual speedup.
 - Overcooking the search.
 - Real system: decoherence.

Gate-model search on contemporary quantum computers

Quantum approximate optimization algorithm (QAOA)

- Designed for imperfect quantum computers.
 - This is a whole new trend in quantum computing.
- Classical-quantum hybrid algorithm.
- Shallow circuit depth.
- One of the most immediate pathways to tangible quantum supremacy.

Image credit: Rigetti.

Discrete optimization in machine learning?

- Deep learning is out.
- Ensemble models: reduce risk by using several learning models.
- Democracy?
- Democracy?
- Weighted average: discrete weights.

Quantum annealing and Gibbs sampling

Real-world quantum annealing is noisy. So what can we do?

Sampling is the **most useful** quantum-enhanced routine for ML today.

A love affair with Boltzmann machines

- Generative models are hard by backprop.
- Unsupervised feature extraction is not easy either.
- BMs are out fashion because of the limitations of contrastive divergence.
- Great advantage: perfect fit for contemporary quantum annealers.
- Replace contrastive divergence by sampling.

Quantum Boltzmann machines

- Boltzmann machine corresponds to a classical Ising model.
- Add a noncommuting term (a transverse field) to get a quantum variant.
- Right way of thinking of quantum-enhanced learning protocols.

Probabilistic Graphical Models

- Uncertainty (probabilities) and logical structure (independence constraints).
- Goal: compact representation of a joint probability distribution.
 - For $\{X_1, \dots, X_N\}$ binary random variables, there are 2^N assignments.
- Complexity is dealt through graph theory.
- Factorization: compactness.
- Inference: reassembling factors.
- Conditional independence $(X \perp Y|W)$:

$$P(X = x, Y = y | W = w) = P(X = x | W = w)P(Y = y | W = w)$$

 $\forall x \in X, y \in Y, w \in W$

Markov Networks

- Aka Markov random fields
 - Direction may not be important.
 - E.g., computer vision.
 - See also pattern recognition.
- D: set of random variables. Ideally a clique in the graph.
- Factor: $\pi: Val(D) \mapsto \mathbb{R}^+$
- A distribution factorizes over G if:
 - $P(X_1,...,X_N) = \frac{1}{Z}P'(X_1,...,X_N)$, where
 - $P'(X_1,\ldots,X_N) = \pi_1[C_1] \times \ldots \times \pi_k[C_k]$ and
 - C_i is a clique in G.
- If all probabilities are positive:

$$P(\mathbf{X} = \mathbf{x}) = \frac{1}{Z} \exp(\sum_k w_j g_j(\mathbf{x})).$$

Connection to Boltzmann machines

Probabilistic Inference

- How to apply the learned model?
- NP-hard, in fact, it is in #P.
 - Contrast this to the cost of applying a model in other machine learning models.
- Two types of queries:
 - Conditional probability: $P(Y|E=e) = \frac{P(Y,e)}{P(e)}$.
 - Maximum a posteriori: $\operatorname{argmax}_{y} P(y|e) = \operatorname{argmax}_{y} \sum_{W} P(y, W|e)$.
- Inference by Markov chain Monte Carlo Gibbs sampling.

Markov Logic Networks

- Real world can never match a KB.
- Weight each formula in a KB: high weight indicates high probability.

Markov Logic Network

Apply a KB $\{F_i\}$ with matching weights $\{w_i\}$ to a finite set of constants C to define a Markov network:

- Add a binary node for each possible grounding for each atom.
- Add a binary feature for each possible grounding of each formula F_i .
- It is like a template to generate Markov networks.

Tons of untapped potential

This is an area where we will see a constant-time speedup in five years with the highest probability.

Look for learning algorithms and probabilistic methods where sampling helps.

arXiv:1611.08104

When You Have Coherent Quantum Data

Exponential speedup:

- Quantum principal component analysis and quantum singular value decomposition.
- Quantum support vector machines: sparsity lost.
- Topological data analysis.
- Quantum anomaly detection.

Core idea: do linear algebra exponentially faster.

• Quantum matrix inversion is fast: HHL algorithm.

Where Do You Get Quantum Data From?

- State preparation from classical data.
 - Reverse is hard: state tomography.
 - This is why exponential speedup claims have to be taken with a pinch of salt.
- Quantum simulations.
 - For example, drive the design of new materials based on quantum mechanical properties.
- Internal working of a quantum computer.

ProteinQure

DAYAQWLKDGGPSSGRPPPS

Lattice-based protein folding with quantum annealing and reinforcement learning.

Everettian

Reduce variance on estimations of financial assets by hybrid quantum algorithms.

OTI Luminoics

OTI Lumionics

Computational Design

Quantum Simulations

Machine Learning

Massive reduction of computational time in material design by quantum simulations.

How Can I Get Started?

- Keep an eye on the ICFO QML reading group: https://github.com/peterwittek/qml-rg
- Keep another eye on the PhysicsML page: https://physicsml.github.io/.
- Check out open source software related to quantum computing: https://github.com/markf94/os_quantum_software
- Join the QML group on LinkedIn: https://www.linkedin.com/groups/8592758

Take-Home Message

- First application area of imperfect quantum computers is machine learning with **hybrid classical-quantum algorithms**.
- Whatever happens today in QML is 80-90 % classical.
- Target: constant-times speedup in three-four years.
- Complementary to current state-of-the-art machine learning.
- Recruitment of second QML cohort in the Creative Destruction Lab:
 - Deadline: May 30.
 - Start: June 25.
 - Both individuals and startups are welcome.
 - https://creativedestructionlab.com/quantum
- QML Workshop at KDD-18:
 - Submissions: May 8.
 - Notifications: June 8.
 - Workshop: August 19.
 - https://www.quantummachinelearning.org/qmlkdd2018.html