A personal Introduction to Quantum Information Theory

Karol Žyczkowski (UJ/CFT PAN) QIPLSIGML, Cracow, April 27 2018

Otton Nikodym and Stefan Banach talking in Cracow Planty Garden, summer 1916

Classical Information

= sequence of bits

 $bit (binary unit) = \{0,1\}$

Logical bit

0

physical realizations notation

| 0 | | 0 |

1

 $1\rangle$

classical

one *bit* — 2 states: {0, 1}

bits — *4* states:

bits → 8 states:

n bits 2^n states: $\{00^{m}0, ..., 11^{m}1\}$ forming a hypercube =

Cartesian product: {0,1} x n

Quantum physics is applicable at micro scale:

particle - wave duality explains

interference effects:

constructive destructive

Young 's experiment (1807) with waves and two slits

Optical double slit experiment: a single photon displays interference fringes

Quantum State $|\psi\rangle$: mathematical tool allowing one to compute probability of results measured

particle: wave function

$$|\psi(x)\rangle$$

bit (binary unit) = $\{0,1\}$

qubit = quantum bit =

a quantum system with two distinguishable states

$$\begin{array}{l} \text{complex} \\ \text{vector} \end{array} |\psi\rangle = \begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = c_0 |0\rangle + c_1 |1\rangle$$

Components of the vector $|\psi angle=({c_0\atop c_1})$

determine probability to obtain a given outcome $p_0=|c_0|^2, p_1=|c_1|^2$

state of a
qubit =
point at the
Bloch

sphere

Normalization of the state:

$$p_0 + p_1 = |c_0|^2 + |c_1|^2 = 1$$

Classical states: | 0>, | 1>

Non - classical : $|+\rangle$, $|-\rangle$, $|\psi\rangle$

Quantum superposition – a pure state $|\psi\rangle$ differs from a classical mixture of quantum states

(a point inside the Bloch ball)

Theory of classical information: works with classical bits: {0,1}

Theory of quantum information:

relies of qubits:

$$|\psi_1\rangle, |\psi_2\rangle, |\psi_3\rangle\dots$$

Advantages:

- a) Larger space of states allowed
- b) Larger set of operations available

Bipartite systems : {A,B}

a) Separable (product) state - no correlations!

$$|\psi_{\rm sep}\rangle = |\psi_A, \psi_B\rangle = |\psi_A\rangle \otimes |\psi_B\rangle$$

b) Entangled state (not product) - shows correlations

$$|\psi_{\rm ent}\rangle \neq |\psi_A, \psi_B\rangle = |\psi_A\rangle \otimes |\psi_B\rangle$$

Superposition of two bipartite states example: the Bell state

$$\boxed{|\psi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)}$$

Entangled state reveals quantum correlations present due to previous interactions between subsystems

Schrödinger cat

Quantum superposition:

entangled state

Haroche (et al.) 2008

"About your cat, Mr. Schrödinger-I have good news and bad news."

Polarisation of light

and entangled states of two photons

conversion: 1 blue photon

entangled state:

2 red photons

1. Quantum Entanglement: correlations between results measured by two detectors

2. Analogy to the Schrödinger cat

3. Existence of entangled states does not violate relativistic rules:

No superluminal information transmission!

4. Entangled states do exist,
but they are fragile:
they are destroyed by interaction with an
environment and any quantum measurement!

Quantum information processing

makes use of:

superposition of states

$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

and entanglement

Applications:

- * quantum teleportation
- * quantum computing
- * quantum cryptography

quantum metrology, simmulations quantum games, finances, quantum

Quantum information processing makes use of:

superposition of states

$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

 $|00\rangle + |11\rangle$

and entanglement

Applications:

- * quantum teleportation
- * quantum computing
- * quantum cryptography

quantum metrology, simmulations quantum games, finances quantum machine learning!

Scheme of quantum teleportation

Making use of a Bell state
Alice sends her unknown
state C reconstructed by Bob

What is teleported?

Scheme of quantum teleportation

Bennett et al. 1993

Making use of a Bell state
Alice sends her unknown
state C reconstructed by Bob

What is teleported?

Quantum information!

quantum teleportation theory: Bennett et. al. 1993

quantum teleportation at 143 km, Canary Islands European Space Agency, 2012

Quantum dynamics:

$|\psi'\rangle = U|\psi\rangle$

example of a non-classical 1-qubit (local) gate:

S =square root of NOT gate $=> S^2 = NOT$

Unitary evolution matrix *U* can be decomposed into elementary local gates and 2-qubit Control NOT gate

1-qubit **Hadamard** gate
$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

induces superposition,
$$H|0> = |+> = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

2-qubit **Control NOT** gate is non-local, and it
$$U_{CNOT} = \begin{bmatrix} 1 & 0 \\ 0 & \sigma_x \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

creates entanglement,

$$U_{\text{CNOT}}|+,0> = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = |\psi^{+}\rangle$$

universal quantum computation scheme

Measurement brings inherent randomness:

for state $|\psi\rangle=c_0|0\rangle+c_1|1\rangle$ probability $\mathbf{p_0}=|\mathbf{c_0}|^2$

Example: Shor's algorithm (1994)

Factorization of a number M is as difficult as finding the period T of a periodic function, f(x) = f(x+T)

Quantum Fourier transform (QFT)

a unitary operation acting on n qubits with $M < 2^n$

Complexity measured by number of operations:

classical ~
$$\exp(M^{1/3})$$
 quantum ~ $M^3 \log M$

quantum cryptography: key idea

- a) If we measure a quantum state, we alter it
- b) **Observation** of a quantum system **modifies** it
- c) Any action of an evesdropper can be detected

quantum key generation (truly random digits) quantum key distribution (ensures security)

quantum cryptography: key idea

- a) If we measure a quantum state, we alter it.
- b) **Observation** of a quantum system **modifies** it.
- c) Any action of an evesdropper can be detected.

quantum key generation (truly random digits) quantum key distribution (ensures security)

Commercial products, e.g.

ID Quantique (Geneve)

Current trends in theory of quantum information:

seach for new

- algorithms for quantum computing
- ideas to demonstrate quantum supremacy
- techniques to process quantum information
- original applications
- but also preparatory work
- studies on quantum states and operations
- investigations of correlations and entanglement
- foundations of quantum theory
- mathematics motivated by quantum information

-

Theory of quantum information:

some features (and problems):

- a) results are probabilistic need for repetitions
- b) quantum superposition gets spoiled due to interaction of a qubit with an environment

decoherence:
a pure state |ψ>
is transformed
into a classical
mixed state

To describe interaction with environment one applies formalism of **density matrices** – so called **mixed states**

Set \mathcal{M}_N of all mixed states of size N

$$\mathcal{M}_{N} := \{ \rho : \mathcal{H}_{N} \to \mathcal{H}_{N}; \rho = \rho^{\dagger}, \rho \geq 0, \operatorname{Tr} \rho = 1 \}$$

example: $\mathcal{M}_2 = B_3 \subset \mathbb{R}^3$ - Bloch ball with all pure states at the boundary

The set \mathcal{M}_N is compact and convex: $\rho = \sum_i a_i |\psi_i\rangle\langle\psi_i|$, where $a_i \geq 0$ and $\sum_i a_i = 1$.

It has N^2-1 real dimensions, $\mathcal{M}_N\subset\mathbb{R}^{N^2-1}$.

What the set of all N=3 mixed states looks like?

An 8-dimensional convex set with only 4-dimensional subset of pure (extremal) states, which belong to its 7-dim boundary

The set \mathcal{M}_N of quantum mixed states:

What it looks like for (for $N \ge 3$)

?

An apophatic approach:

We wish to improve our understanding

of the geometry of the set of quantum states

Book published by Cambridge University Press in 2006,

by Ingemar Bengtsson (Stockholm) and K.Ż.

Entanglement of mixed quantum states

Mixed states of a bi-partite system, (A, B)

- separable mixed states: $\rho_{\rm sep} = \sum_j \rho_j \rho_j^A \otimes \rho_j^B$ (**)
- entangled mixed states: all states not of the above product form.

How to find, whether a given density matrix ρ can be written in the form (**) and is **separable**?

The **separability problem** is solved only for the simplest cases of 2×2 and 2×3 problems...

How to detect quantum entanglement?

Positive partial transpose: Two-qubit mixed states

Peres – Horodeccy criterion (1996): $(\mathbb{I} \otimes T)\rho = \rho^{T_2} \geq 0 \Leftrightarrow \rho \text{ is separable.}$

The set of separable states of two–qubit system arises as an intersection of $\mathcal{M}^{(4)}$ and its mirror image with respect to partial transposition $T_A(\mathcal{M}^{(4)})$.

How the set of separable / entangled states looks like?

Two-qubit mixed states

The maximal ball inscribed into $\mathcal{M}^{(4)}$ of radius $r_4 = 1/\sqrt{12}$ centred at $\rho_* = 1/4$ is separable!

thetrahedron of eigenvalues

K. Z, P. Horodecki, M. Lewenstein, A. Sanpera, 1998

How to quantify entanglement?

Two-qubit mixed states

Degree of entanglement: a distance to the closest separable state

(E = Entanglement of formation)

K. Ż, M. Kuś, 2001

How to describe non-unitary quantum dynamics?

Quantum maps

Quantum operation: linear, completely positive trace preserving map

 $\Phi: \mathcal{M}_2 \rightarrow \mathcal{M}_2$

positivity: $\Phi(\rho) \geq 0$, $\forall \rho \in \mathcal{M}_N$

complete positivity: $[\Phi \otimes \mathbb{1}_K](\sigma) \geq 0$, $\forall \sigma \in \mathcal{M}_{KN}$ and K = 2, 3, ...

Environmental form (interacting quantum system !)

$$\rho' = \Phi(\rho) = \operatorname{Tr}_{E}[U(\rho \otimes \omega_{E}) U^{\dagger}].$$

where ω_E is an initial state of the environment while $UU^{\dagger} = 1$.

How entanglement evolves in time?

Dynamics of entanglement

Entanglement of formation E as a function of time t_n

for some initially pure states of a two-qubit system.

revivals of entanglement

Dynamics of entanglement

Entanglement of formation E as a function of time t_n

for some initially pure states of a two-qubit system.

K. Ż, P. Horodecki, M. Horodecki, R. Horodecki, Phys. Rev. A 2001 the name sudden death coined by Yau and Eberly, who reported this effect in 2003.

How entanglement evolves in time?

Trajectories of quantum dynamics on the complex plane

$$z(t) = \langle \psi(t) | A | \psi(t) \rangle$$

a) sketch of the problem; b) data for 2×2 system with initial separable pure state $|\psi(0)\rangle$ and suitably chosen (non–Hermitian !) operator A of size N=4 visualize possible behaviour of quantum entanglement...

How entanglement evolves in time?

Trajectories of quantum dynamics on the complex plane

$$z(t) = \langle \psi(t) | A | \psi(t) \rangle$$

a) sketch of the problem; b) data for 2×2 system with initial separable pure state $|\psi(0)\rangle$ and suitably chosen (non–Hermitian !) operator A of size N=4 visualize possible behaviour of quantum entanglement...

Z. Puchała, J.A. Miszczak, P. Gawron, C. Dunkl J. Holbrook, K.Ż. (2012)

GHZ state of three qubits:

(Greenberger-Horne-Zeilinger)

$$|GHZ\rangle = \frac{1}{\sqrt{2}}(|0,0,0\rangle + |1,1,1\rangle)$$

enjoys properties analogous to

as a single ring is broken, two other are not connected any more.

GHZ state of three qubits:

$$|GHZ\rangle = \frac{1}{\sqrt{2}}(|0,0,0\rangle + |1,1,1\rangle)$$

enjoys properties analogous to Borromean Rings:

as a single ring is broken, two other are not connected any more.

Geometry of Quantum States
Ingemar Bengtsson, K.Ż.
Il second extended edition
Cambridge University Press, 2017

Which state is the most entangled?

bi-partite systems: $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

- separable pure states: $|\psi\rangle = |\phi_A\rangle \otimes |\phi_B\rangle$
- entangled pure states: all states not of the above product form.

Two–qubit system: $2 \times 2 = 4$

Maximally entangled **Bell state** $|\varphi^{+}\rangle := \frac{1}{\sqrt{2}} \Big(|00\rangle + |11\rangle \Big)$

Schmidt decomposition & Entanglement measures

Any pure state from $\mathcal{H}_A \otimes \mathcal{H}_B$ can be written as

$$|\psi\rangle = \sum_{ij} G_{ij} |i\rangle \otimes |j\rangle = \sum_{i} \sqrt{\lambda_{i}} |i'\rangle \otimes |i''\rangle$$
, where $|\psi|^{2} = \text{Tr} GG^{\dagger} = 1$.

The partial trace, $\sigma = \text{Tr}_B |\psi\rangle\langle\psi| = GG^{\dagger}$, has spectrum given by the

Schmidt vector $\{\lambda_i\}$ = squared **singular values** of G.

Entanglement entropy of $|\psi\rangle$ is equal to **von Neumann entropy** of the reduced state σ

$$E(|\psi\rangle) := -\text{Tr } \sigma \ln \sigma = S(\lambda).$$

Multipartite pure quantum states

are determined by a **tensor**:

e.g.
$$|\Psi_{ABC}\rangle = \sum_{i,j,k} T_{i,j,k} |i\rangle_A \otimes |j\rangle_B \otimes |k\rangle_C$$
.

Mathematical problem: in general for a **tensor** there is no (unique) **Singular Value Decomposition** and it is not simple to find the **tensor rank** or **tensor norms** (nuclear, spectral).

Open question: Which state of N subsystems with d-levels each is the **most entangled** ?

example for **three qubits**, $\mathcal{H}^{A}\otimes\mathcal{H}^{B}\otimes\mathcal{H}^{C}=\mathcal{H}_{2}^{\otimes 3}$

GHZ state, $|GHZ\rangle = \frac{1}{\sqrt{2}}(|0,0,0\rangle + |1,1,1\rangle)$ has a similar property: all three one-partite reductions are **maximally mixed** $\rho_A = Tr_{BC}|GHZ\rangle\langle GHZ| = \mathbb{1}_2 = \rho_B = Tr_{AC}|GHZ\rangle\langle GHZ|.$

(what is **not** the case e.g. for $|W\rangle = \frac{1}{\sqrt{3}}(|1,0,0\rangle + |0,1,0\rangle + |0,0,1\rangle)$

Absolutely maximally entangled (AME) states

Higher dimensions: AME(4,3) state of four qutrits

From OA(9,4,3,2) we get a 2-uniform state of 4 qutrits:

$$\begin{array}{rcl} |\Psi_{3}^{4}\rangle & = & |0000\rangle + |0112\rangle + |0221\rangle + \\ & & |1011\rangle + |1120\rangle + |1202\rangle + \\ & & |2022\rangle + |2101\rangle + |2210\rangle. \end{array}$$

This state is also encoded in a pair of orthogonal Latin squares of size 3,

0α	1β	2γ		A♠	K ♣	$Q\diamondsuit$	
1γ	2α	0β	=	K◊	$Q \spadesuit$	A.] .
2β	0γ	1α		Q	$A \diamondsuit$	K♠	

Corresponding **Quantum Code**:
$$|0\rangle \rightarrow |\tilde{0}\rangle := |000\rangle + |112\rangle + |221\rangle$$

 $|1\rangle \rightarrow |\tilde{1}\rangle := |011\rangle + |120\rangle + |202\rangle$
 $|2\rangle \rightarrow |\tilde{2}\rangle := |022\rangle + |101\rangle + |210\rangle$

Time scale of the Second Quantum Revolution

recent significant progress and fierce competition

Martinis (Google)

ionQ

IBM cloud computer

DWAVE2

Rigetti

Wawel Castle in Cracow

Theorem of Danuta & Krzysztof Ciesielscy:

Ciesielscy theorem: with probability 1-ε the bench, Stefan Banach talked to Otto Nikodym in 1916 was located in η – neighborhood of the red arrow

Table memorizing the discussion of Banach and Nikodym

LETNIM WIECZOREM 1916 ROKU DWAJ MŁODZI KRAKOWIANIE,

STEFAN BANACH I OTTON NIKODYM,

NA LAWCE NA PLANTACH ROZMAWIALI O MATEMATYCE.

DO DYSKUSJI WŁĄCZYŁ SIĘ PRZECHODZĄCY OBOK MATEMATYK,

DR HUGO STEINHAUS.

TAK ZOSTAŁ ODKRYTY NIEZWYKŁY MATEMATYCZNY TALENT STIFANA BANACHA.
JEDNEGO Z NAJWYBITNIEJSZYCH POLSKICH UCZONYCH.

OTTON NIKODYM

IN CONVERSATION ABOUT MATHEMATICS.

THIS BENCH MEMORISES THEIR FAMOUS MEETING WITH HUGO STEINHAUS IN THE

PLANTY GARDEN IN SUMMER 1916.

Concluding remarks

Quantum information evolves rapidly

- new theoretical ideas are currently developed due to a constructive interference of physics, mathematics and computer science,
- fast progress of quantum technology allows us to witness their for practical implementation,
- there are still several inspiring problems open:

You are welcome to contribute to the field!

Quantum information in Poland

National Center of Quantum Informatics Sopot / Gdańsk University

National Lab of Atomic and Molecular Physics Copernicus University,

Toruń

theoretical groups in Cracow, Gliwice, Łódź, Katowice, Poznań, Warsaw, Wrocław...

Bench memorizing the discussion between Otton Nikodym & Stefan Banacha (Cracow 1916)

sculpture: Stefan Dousa fot.: Andrzej Kobos

Cracow Planty Garden, close to the Wawel Castle

VOLUME 39 NUMBER 1 SPRING 2017 THE Mathematical PRING 2017

Banach tells his side of the story