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Penalized Empirical Risk Minimization (PERM)

Data form: (y , xT ): y - response (quantitative or nominal),
x = (x1, . . . , xp)T ∈ Rp: vector of predictors.
Penalized risk minimization framework:

Data = {(y1, xT
1·), . . . , (yn, xT

n·)} = Train⊕ Valid⊕ Test

β- model parameter, λ - penalty

Fitting: β̂(λ) = arg min
β

{err(β,Train) + penalty(β, λ)}

Selection: λ̂ = arg min
λ

err
(
β̂(λ),Valid

)
Assessment: êrr = err

(
β̂(λ̂),Test

)
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Penalized Empirical Risk Minimization

Empirical risk err is generalization of prediction error and
negative log-likelihood

err(β,Train) =
n∑

i=1

L(yi , f (xi·, β))

which is (usually) a convex function of β. L(y , f ): loss
function.

penalty(β, λ) =

p∑
j=1

Pλ(|βj |)

β = (β1, . . . , βp)T

λ1(t > 0) � Pλ(t) � λt2
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Classical Penalty Functions

Ridge Regression ≡ `2-penalty (Hoerl and Kennard
(1970))

Pλ(t) = λt2

Generalized Information Criterion (GIC 3 AIC,BIC)
≡ `0-penalty (Nishi (1970))

Pλ(t) = 2λ1(t > 0)

Chen, Donoho, 1995, Tibshirani, 1996: Lasso ≡
`1-penalty

Pλ(t) = λt

Important for high-dimensional problems: sparseness of
the solution for Lasso induced by P ′λ(0+) > 0.
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Validation criteria

Choice of penalty:

λ̂ = arg min
λ

err
(
β̂(λ),Valid

)
err(β̂) = Ê ||β̂ − β||2 (estimation error)

err(β̂) = Ê ||X (β̂ − β)||2 (prediction error)

err(β̂) = P̂(yxT β̂ < 0) (classification error)

err(β̂) = P̂(suppβ̂ 6= suppβ) (selection error)
others: FDR control etc.
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Selection consistency

Selection consistency

P(T̂ 6= T ) is negligible for large n

or equivalently
Type I and II errors negligible for large n.

Explanatory value;
Fundamental property for correctness of
post-model-selection inference.
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Linear predictive models

Why linear regression is so important ?

Linear predictive model is the cornerstone od prediction

Ŷ = g(X T β̂)

examples: neural nets, compressed sensing, generalized
linear models (GLM), ARMA models etc.
Linear model solution for two class classification problem
works well..

It is not a fluke !
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Linear model

y = (y1, . . . , yn)T , X = [x1., . . . , xn.]
T = [x.1, . . . , x.p].

yT 1n = 0 and the columns are standardized:
xT
.j 1n = 0, xT

.j x.j = 1 for j = 1, . . . ,p.

Linear Regression Model

yi =

p∑
j=1

βjxij + εi , i = 1, . . . ,n

ε = (ε1, . . . , εn)T ∈ Rn iid zero-mean errors.
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High dimensionality and sparsity

Aim. Operational algorithms of risk minimisation which
work in high-dimensional setting.
Two features of the problem:

High-dimensionality: p > n or p >> n
NP-dimensionality p ∼ exp(nα) for some α > 0;

Sparsity: active set T = {i : βi 6= 0} satisfies

|T | << min(n,p)

(bet on sparsity)
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Bet on sparsity
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Bet on sparsity (statistical insight)

Consider β̂OLS
T as an oracle benchmark. Then

E ||X β̂OLS
T − Xβ||2 = σ2 |T |

n
.

Useless when |T | ≈ n.
Simple approaches as OLS for all predictors p > n: not
working (perfect fit on training data).
Penalized approaches valuable as they can yield sparsity
of the solution.
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LASSO estimator in linear model

Least Absolute Shrinkage and Selection Operator:

β̂L ≡ β̂L(λ) = argminγ
{
‖y − Xγ‖2 + 2λ|γ|1

}
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Penalty Functions: Lasso versus Ridge

β
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Inclusion of predictors by Lasso for prostate data
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Lasso acts as selector T̂L = {β̂i,L 6= 0},however

Strong regularity conditions of moment matrix X T X are
needed to ensure selection consistency of Lasso

Lasso shrinks and selects at the same time. It tries to
compensate for shrinked coefficient of a true predictor by
incorporating a spurious predictor correlated with the true
one.

’Lasso is rather screening than selection operator’ .
(Bühlmann (2011)). Owns its popularity to easiness of
computation (LARS for linear regression, Coordinate
Descent for other frameworks)
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Post-Lasso World

Folded Concave Penalties (FCP):
Pλ(t) is increasing, concave and Pλ(0) = 0;
P ′λ(0+) > 0;
Pλ(t)= constant for t > γλ for some γ > 1;
...

Much more difficult algorithmically, but some approximate
solutions such as LLA exist.

SCAD,MCP, capped − `1 ∈ FCP

GIC � MCP � Lasso � RR

MCP approximates more closely `0 penalty then Lasso.
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Three properties of Lasso

which can be used (at a price of conditions !)
Selection Consistency (T = {i : βi 6= 0})

T̂L = T ≡ min
i∈T
|β̂L,i | > max

i∈T̄
|β̂L,i | = 0

Never satisfied under realistic assumptions.

Separation: Lasso separates T from T̄ :

min
i∈T
|β̂L,i | > max

i∈T̄
|β̂L,i |

Frequently fails (Su et al (2015)).
Screening: Lasso yields screening:

T̂L ⊃ T ≡ min
i∈T
|β̂L,i | > 0

Holds under much milder conditions, Zou, 2006.
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Our generic approach

SOS algorithm, P. Pokarowski, JM, JMLR(2015)

Use Lasso as a Screening Method;
Order the obtained variables;
Use Generalized Information Criterion.
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Screening-Selection (SS) procedure

Version of SOS (JMLR (2015)) with ’O’ removed ..

Algorithm 1 SS

Input: y , X and λ
Screening (Lasso)
β̂ ≡ β̂(λ) = argminγ

{
‖y − Xγ‖2 + 2λ|γ|1

}
;

order nonzero coefficients:
|β̂j1 | ≥ |β̂j2 | ≥ . . . ≥ |β̂js |, where s = |suppβ̂|;
set J = {{j1}, {j1, j2}, . . . , {j1, . . . , js}};
Selection (GIC)
T̂ = argminJ∈J

{
SSEJ + λ2|J|

}
Output: β̂SS = (X TbT XbT )−1X TbT y
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Limitations on selection consistency (statistical insight)

To detect active set: dependence between active set and
its complement has to be not to strong, or

X T X =
∂2

∂β∂βT ||y − Xβ||2/2

is not too degenerate.
What does this mean for p >> n?.
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Figure: Strict convexity of risk over a certain cone (Tibshirani et al 2015))
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Feasibility parameters

Sign-restricted identifiability factor (SCIF)

ζT ,a = inf
ν∈CT ,a

|X T Xν|∞
|ν|∞

where CT ,a for a ∈ (0,1) is a certain cone. Restriction to
CT ,a ensures ζT ,a > 0 for many high-dimensional designs.

Scaled K-L distance
Scaled K-L distance between T and its submodels is

δ̃T = min
J⊂T

||(I − HJ)XTβT ||2

|T \ J|
.
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Bound for P(T̂SS 6= T ) (PP & JM, 2015)

Theorem
Under mild assumptions on feasibility parameters we have

P(T̂SS 6= T ) ≤ p exp
(
− λ2

2σ2

)
(some constants are omitted)
For true regressors to be distinguishable from the noise

βmin = min
i∈T
|βi |

has to be sufficiently large. Thus the condition

ζ2
T ,aβ

2
min ≥ C > 0
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Algorithm 2 SSnet (Screening Selection algorithm on a net of λs)

Input: y , X and (λ0, λ1, . . . , λm)T

Screening (Lasso)
for k = 1 to m do
β̂(k) ≡ β̂(λk ) = argminγ

{
‖y − Xγ‖2 + 2λk |γ|

}
;

order nonzero coefficients:
|β̂(k)

j1 | ≥ |β̂
(k)
j2 | ≥ . . . ≥ |β̂

(k)
jsk
|,

where sk = |suppβ̂(k)|;
set Jk (y) =

{
{j1}, {j1, j2}, . . . , suppβ̂(k)

}
end for
Selection (GIC)
J(y) =

⋃m
k=1 Jk (y)

T̂ = argminJ∈J(y)

{
RJ + λ2

0|J|
}

Output: T̂ , β̂SSnet = (X TbT XbT )−1X TbT y
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SOSnet algorithm

Use Lasso with λi = 0,1, . . . ,m to choose set of
predictors Ii ;
Fit linear model y ∼ xIi ,i = 0,1, . . . ,m;
Order predictors according to (t-statistics)2;
ConstructM = ∪ nested models ;
Use GIC onM to choose a final model.
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Numerical experiments

Four groups of algorithms
SS, SSnet, SOSnet
MCP calibrated by GIC (sparsenet)
MCP calibrated by CV (sparsenet, two settings)
MCP (a = 1,5 and a = 3) (PLUS)

λ = σ
√

2 log(p),
Penalization term for GIC: cλ2 with three values of
c ∈ {1,1.5,2,2.5,3,3.5,4}.
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Experiments cont’d

M I: β1 = (3,1.5,0,0,2,0T
p−5)T from Wang et al (2013)

(p = 3000)
M II: β2 = (0T

p−10,±2, · · · ,±2)T Wang et al (2014)
(p = 2000)
signs ± chosen separately for every run.
x1, . . . , xp: normal with autoregressive (exp. a: ρ = 0.5 ,b:
ρ = 0.7 ) or equicorrelated (exp. c: ρ = 0.5 ,d: ρ = 0.7 )
structure.
n = 100 (M I) and n = 200 (M II).
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Table: True Model selection (TM) (%).

Exp 1a Exp 1b Exp 1c Exp 1d Exp 2a Exp 2b Exp 2c Exp 2d
SS c1 92.6 69.4 81.8 45.5 8.8 0.6 11.5 0.2
SS c2 95.7 81.9 80.1 45.4 6.5 0.5 4.8 0.1
SS c3 91.6 74.3 76.4 38.7 4.0 0.3 1.0 0.1

SSnet c1 89.1 57.8 83.1 42.9 54.4 4.5 84.8 28.9
SSnet c2 95.2 76.9 83.2 48.2 54.6 5.8 90.2 35.2
SSnet c3 91.3 72.2 79.3 42.0 54.4 5.9 89.3 31.5

SOSnet c1 85.7 45.6 83.9 39.0 74.1 7.0 85.5 34.6
SOSnet c2 94.8 73.3 86.5 52.8 74.7 10.1 96.1 53.8
SOSnet c3 91.2 71.0 82.8 46.6 73.0 8.9 94.7 44.2

sparsenet c1 81.9 28.8 83.2 36.0 68.5 0.4 86.4 36.3
sparsenet c2 91.2 39.1 86.3 51.7 68.4 0.5 96.6 49.8
sparsenet c3 89.3 39.7 82.7 47.2 67.6 0.3 95.1 43.9

sparsenet p.1se 76.4 29.1 71.3 30.7 32.6 0.0 88.8 30.6
sparsenet p.min 48.7 16.0 55.4 24.2 19.4 0.0 70.4 14.5

mcp 1.5 81.0 23.5 77.5 6.3
mcp 3 73.1 21.9 75.6 7.5 9.2 0.0 32.5
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Table: Relative Mean Squared Error (MSE)

Exp 1a Exp 1b Exp 1c Exp 1d Exp 2a Exp 2b Exp 2c Exp 2d
SS c1 1.5 2.7 4.2 9.8 20.0 19.8 13.2 21.1
SS c2 1.6 3.3 4.6 10.0 22.3 20.8 19.1 24.1
SS c3 2.5 4.8 5.1 10.6 25.0 21.9 24.9 25.9

SSnet c1 1.7 3.3 3.9 10.4 7.0 15.2 1.5 4.8
SSnet c2 1.7 3.5 4.1 9.8 7.6 15.5 1.4 5.2
SSnet c3 2.5 5.1 4.7 10.3 8.5 16.6 1.6 6.6

SOSnet c1 2.0 4.6 3.7 11.7 4.7 15.5 1.4 4.2
SOSnet c2 1.7 4.0 3.6 9.2 4.9 15.5 1.2 3.9
SOSnet c3 2.6 5.3 4.0 9.5 5.6 16.6 1.3 5.3

sparsenet c1 2.7 12.5 3.7 11.4 4.2 26.1 1.3 4.3
sparsenet c2 2.4 10.5 3.6 9.1 4.8 24.8 1.2 4.4
sparsenet c3 2.9 10.3 4.1 9.5 6.0 24.7 1.3 5.9

sparsenet p.1se 5.7 10.9 6.8 11.5 3.7 23.9 2.0 5.7
sparsenet p.min 3.7 6.4 5.1 10.0 2.8 20.5 1.6 4.7

mcp 1.5 2.9 13.3 5.5 20.1
mcp 3 7.6 14.6 8.6 19.7 25.9 28.2 16.8
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Comments on results

SOSnet: higher correct selection probability and lower
MSE simultaneously in almost all experimental setups.
The difference is most pronounced for higher
correlations.
Times for SOSnet > 2 times shorter than for
sparsenet + GIC, >4 times shorter than for sparsenet
+ CV , > 20 times shorter than for PLUS
implementation.
Sparsenet tuned by GIC works much better than
tuned by CV.
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Binary case: remarks

Conceptually the same. Change of a loss function,
usually to logistic. More difficult algorithmically.

Theoretical analysis more difficult due to
heteroscedasticity of response.
NP-dimensional case:
Filtering based on ranking of univariate fits (e.g.SIS,
Fan et al (2009)) and then PERM analysis to chosen
subset.
Fitting univariate (e.g. logistic) models to multivariate
logistic data is an ultimate type of model
misspecification.
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Misspecified logistic model

Different angle:

Logistic loss in empirical risk minimisation ≡ fitting a
logistic model.

Data comes from binary model

P(Y = 1|X ) = q(β0 + βT X )

X is random variable in Rp and q response function q 6= p,

p(β0 + βT x) =
exp(β0 + βT x)

1 + exp(β0 + βT x)

is most frequently used tool to model dependence of
binary outcome on attributes.

Mielniczuk Variable selection in high-dimensional regression problems



Important special cases: Omission of (some) valid
predictors from logistic model itself, filters in particular.

What happens when we misspecify response function
and use logistic response p instead of q ?
Some bias in estimation of β surely occurs, but how
important is an error ?
It is obvious that we cannot learn ||β|| when q is
arbitrary, but what about direction of β ?
Can we learn suppβ ?
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Yes, we can (frequently, at least)
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Simpler framework: minimization of empirical risk (p < n)

(β̂ML
0 , β̂ML) = arg minγ0,γ

err(γ0, γ).

Using (β̂ML
0 , β̂ML

0 ) we estimate not β0 and β but β∗0 and β∗
such that

(β∗0β
∗) = argminb0,b∈RpEX KL(q(β0 + X Tβ),p(b0 + X T b)),

where

KL(q,p) = q log
(

q
p

)
+ (1− q) log

(
1− q
1− p

)
is Kullback-Leibler distance between two Bernoulli
distributions with probabilities of success q and p.
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What can go wrong ...

X2 ∼ (X1 + ε)2, P(y = 1|x) = q(x1)

.
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Figure: Squares and triangles correspond to Y = 1 and Y = 0. Solid line
shows the direction of β̂

.
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Positive result: Ruud’s theorem (1983)

Assume that distribution of X is nondegenerate and such
that regressions with respect to βT X are linear

E(X |βT X ) = uβT X + u0. (R)

Then there exists η such that

β∗ = ηβ

Important:
η 6= 0?
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Relevance for selection of predictors (p < n)

Order variables according to their residual deviances

Devf\{i1} ≥ Devf\{i2} ≥ .. ≥ Devf\{ip}

and minimize GIC in the corresponding nested family.
Then if (R) is satisfied, q is strictly monotone and ..
T̂GIC is consistent (P. Teisseyre, JM (2015))

For the case when |η| > 1 we are frequently better off
when misspecifing the model then fitting the correct
one...
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Correct selection versus η
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PSR versus η
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FDR versus η
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For normal predictors we have

(M. Kubkowski, JM 2016)

η =
Eq′(β0 + βT X )

Ep′(β∗0 + β∗T X )
=

Eq′(β0 + βT X )

Ep′(β∗0 + ηβT X )

(Y ,X ) follow logistic model and β∗lin is a projection on a
linear model. Then

β∗lin = Ep′(β∗0 + β∗T X )β

i.e. direction β/||β|| of β can be recovered by fitting a
linear model.
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Machine Learning or Statistics ?
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Kilka prac z JMLR ..
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J. Jin and C-H. Zhang and Q. Zhang, Optimality of
Graphlet Screening in High Dimensional Variable
Selection, JMLR 2014
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Kilka prac z Annals of Statistics ..

P. Sherwood and L. Wang, Partially linear additive
quantile regression in ultra-high dimension, AS 2016
R. Barber and E. Candes Controlling the false
discovery rate via knockoffs AS 2015
Y. Yang and S. Tokdar Minimax-optimal
nonparametric regression in high dimensions, AS
2015
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Most cited statistical papers (Pokarowski, 2015)
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KaplanMeier’58______JASA__________________Total:39,4
CoxModel’72________JRSS−B________________Total:29,2
FDR’95____________JRSS−B_________________Total:18,7
EM’77_____________JRSS−B_________________Total:17,2
AIC’74_____________IEEE−TransAutomContr____Total:15,7
BIC’78_____________AnnStat_________________Total:12,0
RandomForests’01___MachLearn______________Total:7,6
SVM’95____________MachLearn______________Total:6,8
Lasso’96___________JRSS−B_________________Total:5,8
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Computational considerations

Lasso regularized path solution requires

O(np min(n,p))

flops using LARS;
Selection step requires

ns2, s = |suppβ̂L|

flops . Use QR decomposition. This follows since J is
nested !

Screening step is the most expensive in this and other
algorithms (to be presented).
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