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Motivation
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Kaggle Higgs Boson Machine Learning Challenge
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Data set and rules

Classes: “signal” (h→ τ+τ−) and “background”.

# events # features % signal weight
250 000 30 0.17

Evaluation: Approximate Median Significance (AMS):

AMS =

√
2(s+ b+ 10) log

(
1 +

s

b+ 10

)
− s

s, b – weight of signal/background events classified as signal.
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How to optimize AMS?

Research Problem

How to optimize a global function of true/false positives/negatives,
not decomposable into individual losses over the observations?

Most popular approach:
Sort classifier’s scores and threshold to maximize AMS.

classifier’s score
threshold

classified as negative classified as positive

AMS not used while training, only for tuning the threshold.

Is this approach theoretically justified?
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Optimization of generalized performance metrics

Wojciech Kotłowski and Krzysztof Dembczyński. Surrogate regret bounds
for generalized classification performance metrics. In ACML, volume 45 of
JMLR W&C Proc., pages 301–316, 2015 [Best Paper Award]
Wojciech Kotłowski. Consistent optimization of AMS by logistic loss
minimization. In NIPS HEPML Workshop, volume 42 of JMLR W&C
Proc., pages 99–108, 2015
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Generalized performance metrics for binary classification

Given a binary classifier
h : X → {−1, 1}, define:

Ψ(h) = Ψ

(
FP(h),FN(h)

)
,

where:

FP(h) = Pr(h(x) = 1 ∧ y = −1),

FN(h) = Pr(h(x) = −1 ∧ y = 1).

predicted ŷ = h(x)

−1 +1 total

true y
−1 TN FP 1− P
+1 FN TP P

Goal: maximize Ψ(h).

We assume Ψ is non-increasing in FP and FN.
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Linear-fractional performance metric

Definition

Ψ(FP,FN) =
a0 + a1FP + a2FN

b0 + b1FP + b2FN
,

Examples

Accuracy Acc = 1− FN− FP

Fβ-measure Fβ = (1+β2)(P−FN)
(1+β2)P−FN+FP

Jaccard similarity J = P−FN
P+FP

AM measure AM = 1− 1
2P FN− 1

2(1−P )FP

Weighted accuracy WA = 1− w−FP− w+FN
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Convex performance metrics

Definition

Ψ(FP,FN) is jointly convex in FP and FN.

Example: AMS2 score

AMS2(TP,FP) = 2

(
(TP + FP) log

(
1 +

TP

FP

)
− TP

)
.
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Example - F1-measure

FP

FN

F
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Example - AMS2 score

FP

FN

A
M

S
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A simple approach to optimization of Ψ(h)

training data

learn real-valued f(x)
(using standard classification tool)

f(x)

validation data

learn a threshold θ on f(x)
by optimizing Ψ(hf,θ)

f(x)

θ

hf,θ(x) = −1 hf,θ(x) = +1
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Our results

Algorithm training set f(x)

validation set

hf,θ(x)
θ

1 Learn f minimizing a surrogate loss on the training sample.
2 Given f , tune a threshold θ on f on a the validation sample by

direct optimization of Ψ.

Our results (informally)

Assumptions:
the surrogate loss is strongly proper composite
(e.g., logistic, exponential, squared-error loss),
Ψ is linear-fractional or jointly convex,

Claim:
If f is close to the minimizer of the surrogate loss,
then hf,θ is close to the maximizer of Ψ.
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Ψ-regret and `-regret

Ψ-regret of a classifier h : X → {−1, 1}:

RegΨ(h) = Ψ(h∗)−Ψ(h) where h∗ = argmax
h

Ψ(h).

Measures suboptimality.

Surrogate loss `(y, f(x)) of a real-valued function f : X → R.
Used in training: logistic loss, squared loss, hinge loss, . . .

Expected loss (`-risk) of f :

Risk`(f) = E(x,y) [`(y, f(x))] .

`-regret of f :

where f∗ = argmin
f

Risk`(f).
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Examples of surrogate losses

Logistic loss

`(y, ŷ) = log
(

1 + e−yŷ
)
.

Risk minimizer f∗(x):

f∗(x) = log
η(x)

1− η(x)
, where η(x) = Pr(y = 1|x).

Invertible function of conditional probability η(x).

Hinge loss

`(y, ŷ) = (1− yŷ)+ .

Its risk minimizer f∗(x) is non-invertible:

f∗(x) = sgn(η(x)− 1/2).
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Examples of surrogate losses

−3 −2 −1 0 1 2 3 4

0.
0
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5

1.
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3.
0

yf(x)

lo
ss

0/1 loss
squared error loss
logistic loss
hinge loss
exponential loss
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Examples of surrogate losses

loss f∗(η) = ψ(η) η(f∗) = ψ−1(f∗)

squared error 2η − 1 1+f∗

2

logistic log η
1−η

1
1+e−f∗

exponential 1
2 log η

1−η
1

1+e−2f∗

hinge sgn(η − 1/2) doesn’t exist
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Proper composite losses

`(y, f) is proper composite if there exists a strictly increasing link
function ψ, such that:

f∗(x) = ψ(η(x)), where η(x) = Pr(y = 1|x).

Minimizing proper composite losses implies probability estimation.

18 / 36



Strongly proper composite losses [Agarwal, 2014]

`(y, f) is λ-strongly proper composite if it is proper composite and
for any f , x, and distribution y|x:

Ey|x [`(y, f(x))− `(y, f∗(x))] ≥ λ

2

(
η(x)− ψ−1(f(x))

)2
.

Technical condition.
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Strongly proper composite losses: Examples

loss f∗(η) = ψ(η) η(f∗) = ψ−1(f∗) λ

squared error 2η − 1 1+f∗

2 8

logistic log η
1−η

1
1+e−f∗

4

exponential 1
2 log η

1−η
1

1+e−2f∗ 4
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Main result

Theorem for linear fractional measures

If:
Ψ(FP,FN) is linear-fractional, non-increasing in FP and FN,
` is λ-strongly proper composite,

Then, there exists a threshold θ∗, such that for any real-valued
function f ,

RegΨ(hf,θ∗) ≤ CΨ

√
2
λ

√
Reg`(f).

metric CΨ

Fβ-measure 1+β2

β2P

Jaccard similarity J∗+1
P

AM measure 1
2P (1−P )

Similar theorem for convex performance
metrics (such as AMS2)
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Explanation of the theorem

The maximizer of Ψ is h∗(x) = sgn(η(x)− η∗) for some η∗.

The minimizer of ` is f∗(x) = ψ(η(x)) for invertible ψ.

Thresholding f∗(x) at θ∗ = ψ(η∗) ≡ Thresholding η(x) at η∗.

f∗(x)
-3.5 -2.5 -2 -1 -0.5 0.5 1.5 2 3

θ∗ = ψ(η∗)

η∗

η(x) = 1

1+e−f∗(x)

0.03 0.08 0.12 0.27 0.38 0.62 0.82 0.88 0.95

Gradients of Ψ and λ measure local variations of Ψ and `
when f is not equal to f∗.
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The optimal threshold θ∗

Ψ = classification accuracy =⇒ θ∗ = 0 (η∗ = 1
2).

Ψ = weighted accuracy =⇒ η∗ = w−
w+ +w−

.

More complex Ψ =⇒ θ∗ unknown (depends on Ψ∗). . .

=⇒ estimate θ∗ from validation data
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Tuning the threshold

Corollary

Given real-valued function f , validation sample of size m, let:

θ̂ = argmax
θ

Ψ̂(hf,θ) (Ψ̂ = estimate of Ψ)

Then, under the same assumptions and notation:

RegΨ(hf,θ̂) ≤ CΨ

√
2
λ

√
Reg`(f) +O

(
1√
m

)
.

Learning standard binary classifier and tuning the threshold
afterwards is able to recover the maximizer of Ψ in the limit.
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Multilabel classification

A vector of m labels y = (y1, . . . , ym) for each x.
Multilabel classifier h(x) = (h1(x), . . . , hm(x)).
False positive/negative rates for each label:

FPi(hi) = Pr(hi = 1, yi = −1),

FNi(hi) = Pr(hi = −1, yi = 1).

How to use binary classification Ψ in the multilabel setting?
We extend our bounds to cover micro- and macro-averaging.
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Micro- and macro-averaging

Macro-averaging

Average outside Ψ:

Ψmacro(h) =

m∑
i=1

Ψ
(
FPi(hi),FNi(hi)

)
.

Our bound suggests that a separate threshold needs to be tuned for
each label.

Micro-averaging

Average inside Ψ:

Ψmicro(h) = Ψ

(
1

m

m∑
i=1

FPi(hi),
1

m

m∑
i=1

FNi(hi)

)
.

Our bound suggests that all labels share a single threshold.
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Experiments

27 / 36



Experimental results

Two synthetic and two benchmark data sets.
Surrogates: Logistic loss (LR) and hinge loss (SVM).
Performance metrics: F-measure and AM measure.
Minimize ` (logistic or hinge) on training data + tune the
threshold θ̂ on validation data (optimizing the metrics).
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Synthetic experiment I

X = {1, 2, . . . , 25} with Pr(x) uniform.
For each x ∈ X, η(x) ∼ Unif[0, 1].

logistic loss surrogate
(converges as expected)
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(does not converge)
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Synthetic experiment II

X = R2, x ∼ N(0, I).
Logistic model: η(x) = (1 + exp(−a0 − a>x))−1.

Convergence of
F-measure
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Convergence of
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Benchmark data experiment – a bit of surprise

dataset #examples #features

covtype.binary 581,012 54
gisette 7,000 5,000

covtype.binary gisette
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Logistic loss as expected, but also hinge loss surprisingly well.
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Multilabel classification

data set # labels # training examples # test examples #features

scene 6 1211 1169 294
yeast 14 1500 917 103
mediamill 101 30993 12914 120

Surrogates: Logistic loss (LR) and hinge loss (SVM).
Performance metrics: F-measure and AM measure.
Macro-averaging (separate threshold for each label) and
micro-averaging (single threshold for all labels).
Cross-evaluation of algorithms tuned for micro-averaging in
terms of macro-averaged metrics, and vice versa.
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Multilabel classification: F measure
F-macro F-micro
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Multilabel classification: AM measure
AM-macro AM-micro
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Open problem

Ψ(h∗)−Ψ(h) ≤ const ·
√

Risk`(f)− Risk`(f∗)

f∗ is the minimizer over all functions

We often optimize within some class F (e.g., linear functions).
If f∗ /∈ F ⇒ r.h.s. does not converge to 0.
This can be beneficial non non-proper losses (e.g., hinge loss).
Most often f∗ /∈ F , and a theory for this is needed.
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Summary

Theoretical analysis of the two-step approach to optimize
generalized performance metrics for classification.
Regret bounds for linear-fractional and convex functions
optimized by means of strongly proper composite surrogates.
The theorem relates convergence to the global risk minimizer.

Can we say anything about convergence to the risk minimizer
within some class of functions?

Why does hinge loss perform so well if the risk minimizer is
outside the family of classification functions.
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