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Motivation
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Kaggle Higgs Boson Machine Learning Challenge

Hig gs Iﬂ Higgs Boson Machine Learning Challenge

challenge
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Competition Details » Getthe Data » Make a submission

Use the ATLAS experiment to identify the
Higgs boson
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Data set and rules

m Classes: “signal” (h — 7777) and “background”.

# events  # features % signal weight
250 000 30 0.17
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Data set and rules

m Classes: “signal” (h — 7777) and “background”.

# events  # features % signal weight
250 000 30 0.17

m Evaluation: Approximate Median Significance (AMS):

S
AMS = \/2(s—|—b+10)log (1+[)—i-—1()) — S

s, b — weight of signal/background events classified as signal.
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How to optimize AMS?

Research Problem

How to optimize a global function of true/false positives/negatives,
not decomposable into individual losses over the observations?
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How to optimize AMS?

Research Problem

How to optimize a global function of true/false positives/negatives,
not decomposable into individual losses over the observations?

Most popular approach:
Sort classifier's scores and threshold to maximize AMS.

threshold
' classifier's score
900000 00 900 O—0O0—
1
classified as negative classified as positive

AMS not used while training, only for tuning the threshold.

Is this approach theoretically justified?
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Optimization of generalized performance metrics

= Wojciech Kottowski and Krzysztof Dembczynski. Surrogate regret bounds
for generalized classification performance metrics. In ACML, volume 45 of
JMLR W&C Proc., pages 301-316, 2015 [Best Paper Award|

= Wojciech Kottowski. Consistent optimization of AMS by logistic loss
minimization. In NIPS HEPML Workshop, volume 42 of JMLR W& C
Proc., pages 99-108, 2015
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Given a binary classifier
h: X — {—1,1}, define:

U(h) = \II(FP(h),FN(h)),

where:

Goal: maximize ¥(h).

We assume ¥ is non-increasing in FP and FN.

true y

Generalized performance metrics for binary classification

predicted § = h(x)

-1 | +1 total
-1 | TN | FP | 1—-P
+1 FN TP P
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Linear-fractional performance metric

ag + a1FP + asFN

VU (FP,FN) =
(FP,FN) bo + b1FP + boFN’
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Linear-fractional performance metric

ag + a1FP + asFN
U(FP,FN) =
(FP, FN) by + b1FP 4+ boFN '’

Accuracy Acc=1—-FN-FP
_ _(148*)(P-FN)
Fﬁ—measure Fﬁ = (I-FBZ)P——FN-FFP
Jaccard similarity J = %
AM measure AM=1-— #FN — ﬁFP

Weighted accuracy WA =1—w_FP —w,FN
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Convex performance metrics

U (FP,FN) is jointly convex in FP and FN.
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Convex performance metrics

U (FP,FN) is jointly convex in FP and FN.

Example: AMS? score

AMS?*(TP,FP) = 2 ((TP + FP)log (1 + %) - TP) .
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Example - AMS? score
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A simple approach to optimization of W(h)

training data
o o9
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A simple approach to optimization of W(h)

training data
o * )

@0 o ©
Q

o %0

(using standard classification tool)

‘ learn real-valued f(x)
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A simple approach to optimization of W(h)

training data
o * )

@0 o ©
Q

o %0

iidation dat (using standard classification tool)
validation data

‘ learn real-valued f(x)

/()
|

‘Iearn a threshold 0 on f(z)

by optimizing W(hy,e)
10
1
1

' /()

hfyg(l‘) = -1 hfﬂ(x) =+1
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Our results

Algorithm waining et |—(_f () J———{hya(v)
validation set

Learn f minimizing a surrogate loss on the training sample.
Given f, tune a threshold € on f on a the validation sample by
direct optimization of W.
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Our results

Algorithm

validation set

Learn f minimizing a surrogate loss on the training sample.
Given f, tune a threshold € on f on a the validation sample by
direct optimization of W.

Our results (informally)

Assumptions:

m the surrogate loss is strongly proper composite
(e.g., logistic, exponential, squared-error loss),

m VU is linear-fractional or jointly convex,
Claim:

m If f is close to the minimizer of the surrogate loss,

then hy g is close to the maximizer of W.
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W-regret and (-regret

m U-regret of a classifier h: X — {-1,1}:

Regy (h) = U(h*) — ¥(h) where h* = argmax W(h).
h

Measures suboptimality.
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m U-regret of a classifier h: X — {-1,1}:

Regg(h) = U(h*) — ¥(h) where h* = argmax W(h).
h

Measures suboptimality.

m Surrogate loss £(y, f(x)) of a real-valued function f: X — R.
Used in training: logistic loss, squared loss, hinge loss, ...

m Expected loss (/-risk) of f:

Risky(f) = Eay) [((y, f(2))] -

m (-regret of f:

Reg,(f) = Riske(f)—Riske(f*) where [* = arg]{nin Risks(f).
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W-regret and (-regret

m U-regret of a classifier h: X — {—1,1}:

Regg(h) = U(h*) — ¥ (h) where h* = argmax U(h).
h

Measures suboptimality.

m Surrogate loss ¢

(y, f(x)) of a real-valued function f: X — R.
Used in tra .

Relate W-regret of hyg to (-regret of f
m Expected l¢

m [-regret of f:

EEGOA S SREA RGOS where  f* = argmin Risky(f).
!
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Examples of surrogate losses

Logistic loss

Uy,y) = log <1 + e_yﬂ) .

Risk minimizer f*(x):

n(z)

f(x) =log where 7(z) = Pr(y = 1|x).

1—n(z)’

Invertible function of conditional probability n(x).
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Examples of surrogate losses

Logistic loss

Uy,y) = log <1 +e yy)

Risk minimizer f*(x):

n(z)
1—n(z)’

Invertible function of conditional probability n(x).

f(x) =log where 7(z) = Pr(y = 1|x).

Hinge loss

Ly, y) =1 —yy), .

Its risk minimizer f*(x) is non-invertible:

fH(x) = sgn(n(z) —1/2).
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Examples of surrogate losses

o
2 - /
P 0/1 loss
[\
—— squared error loss
g _ —— logistic loss
" —— hinge loss
g f - —— exponential loss
R U
i
10
2
e
< | | | | | | |
-3 —2 —1 0 1 2 3 4
yf(x)
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Examples of surrogate losses

loss fr(n) =v(n) n(f*) =¥ (f")
squared error 2n —1 1+2f*
logistic log 1—77_77 1+e1—f*
exponential %log 1—77% i
hinge sgn(n —1/2) doesn't exist
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Proper composite losses

L(y, f) is proper composite if there exists a strictly increasing link
function ), such that:

fH(x) =¢M(x)),  where n(z) = Pr(y = 1fz).

Minimizing proper composite losses implies probability estimation.
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Strongly proper composite losses [Agarwal, 2014]

£(y, f) is A-strongly proper composite if it is proper composite and
for any f, z, and distribution y|z:

By [€(y, f(2)) = Ly, ()] =

Technical condition.
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Strongly proper composite losses: Examples

loss frm)=vm) n(f)=¢(f) A

squared error 2n —1 1+2f* 8
isti _n 1

logistic log = L 4

exponential 3 log % 1+e+2f* 4
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Main result

Theorem for linear fractional measures

If:
m U(FP,FN) is linear-fractional, non-increasing in FP and FN,

m / is A-strongly proper composite,

Then, there exists a threshold 6*, such that for any real-valued
function f,

Regy(hzo-) < Cu/3v/Rege()-
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Main result

Theorem for linear fractional measures

If:

m U(FP,FN) is linear-fractional, non-increasing in FP and FN,
m / is A-strongly proper composite,

Then, the Sartller alued

: theorem for convex performance
function

metrics (such as AMS?)

Regy (hro-) < Cuy/3v/Regy(f).

metric Cy
1432
Fz-measure 5P
Jaccard similarity J*;,rl
1
AM measure SP(1=P)
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Explanation of the theorem

m The maximizer of ¥ is h*(z) = sgn(n(z) — n*) for some n*.
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Explanation of the theorem

m The maximizer of ¥ is h*(z) = sgn(n(z) — n*) for some n*.
® The minimizer of ¢ is f*(x) = 1(n(z)) for invertible 1).
m Thresholding f*(z) at 6* = ¢)(n*) = Thresholding n(x) at n*.

VAN

-3.5

_ 1
T T T T n(z)—m

0.03 0. 08 0 12 0.62 0.82 0.88 0.95
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Explanation of the theorem

m The maximizer of ¥ is h*(z) = sgn(n(z) — n*) for some n*.
® The minimizer of ¢ is f*(x) = 1(n(z)) for invertible 1).
m Thresholding f*(z) at 6* = ¢)(n*) = Thresholding n(x) at n*.

0" =p(n*)

7N N\

003008012

-3.5

- 1+e f T1te—F*(x)
082 088 095

m Gradients of ¥ and \ measure local variations of ¥ and ¢
when f is not equal to f*.
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The optimal threshold 6*

= U = classification accuracy = 6* =0 (n* = 3).
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The optimal threshold 6*

= U = classification accuracy = 6* =0 (n* = 3).
w—

m U = weighted accuracy = n* = T
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The optimal threshold 6*

I 1

m ¥ = classification accuracy = 6* =0 (n* = 3).
w—

wy +w-_

m More complex ¥ = 6* unknown (depends on ¥*). ..

m U = weighted accuracy =— 7n* =
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The optimal threshold 6*

I 1

m ¥ = classification accuracy = 6* =0 (n* = 3).
w—

wy +w-_

m More complex ¥ = 6* unknown (depends on ¥*). ..

m U = weighted accuracy =— 7n* =

— estimate 6* from validation data
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Tuning the threshold

Corollary

Given real-valued function f, validation sample of size m, let:

0 = argmax (I\f(hfyg) (U = estimate of W)
0

Then, under the same assumptions and notation:

Regy (h;5) < C\If\/g\/We(fH‘ o (ﬁ) :
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Tuning the threshold

Corollary

Given real-valued function f, validation sample of size m, let:

0 = argmax (I\f(hfyg) (U = estimate of W)
0

Then, under the same assumptions and notation:

Regy (h;5) < C\If\/g\/We(fH‘ o (ﬁ) :

m Learning standard binary classifier and tuning the threshold
afterwards is able to recover the maximizer of ¥ in the limit.

24 /36



Multilabel classification

= A vector of m labels y = (y1,...,ym) for each z.
m Multilabel classifier h(z) = (hi(x),..., hn(z)).

m False positive/negative rates for each label:
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Multilabel classification

A vector of m labels y = (y1,...,ym) for each x.
Multilabel classifier h(z) = (h1(z),. .., hm(x)).

False positive/negative rates for each label:

How to use binary classification ¥ in the multilabel setting?

We extend our bounds to cover micro- and macro-averaging.

25/36



Micro- and macro-averaging

Macro-averaging

Average outside U:

m

Uinacro(h) = > W (FP;(h;), FN;(h;)).
=1

Our bound suggests that a separate threshold needs to be tuned for
each label.
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Micro- and macro-averaging

Macro-averaging

Average outside U:

m

Uinacro(h) = > W (FP;(h;), FN;(h;)).
=1

Our bound suggests that a separate threshold needs to be tuned for
each label.

Micro-averaging

Average inside W:

Upiero (h) = (% i FP,(hy), % i FNi(hi)> .
g=il =1

Our bound suggests that all labels share a single threshold.
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Experiments
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Experimental results

m Two synthetic and two benchmark data sets.
m Surrogates: Logistic loss (LR) and hinge loss (SVM).
= Performance metrics: F-measure and AM measure.

= Minimize ¢ (logistic or hinge) on training data + tune the
threshold 6 on validation data (optimizing the metrics).
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Synthetic experiment |

m X ={1,2,...,25} with Pr(z) uniform.
m For each z € X, n(x) ~ Unif|0, 1].

logistic loss surrogate
(converges as expected)

hinge loss surrogate
(does not converge)

002 004 006 008 010
L L L L L

Regret of F-measure, the AM measure, and logistic loss

000
L

— Logistic regret
— F-measure regret
— AMregret

°

2000

T T
4000 6000
# of training examples

004 006 008 010
L L L L

Regret of F-measure, the AM measure and hinge loss
002
L

0.00
L

0 2000

T T
4000 6000
#of training examples

8000 10000
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Synthetic experiment ||

m X =R% 2z~ N(0,I).
m Logistic model: n(z) = (1 + exp(—ag — a'z))~L.

— Logistic regret (LR)
— Hinge regret (SVM)

—— F-measure regret (LR)
— F-measure regret (SVM)

T T T T T T T
0 500 1000 1500 2000 2500 3000
# of training examples

015
L

Convergence of
F-measure

Regret of the F-measure and surrogate losses
005 010
L L

0.00
L

020
L

— Logistic regret (LR)
—— Hinge regret (SVM)
—— AMregret (LR)
—  AM regret (SVM)

Convergence of
AM measure

005
L

Regret of the AM measure and surrogate losses
010 0.15
L L

0.00
L

T T T T
1000 1500 2000 2500 3000
#of training examples

c.
H
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Benchmark data experiment — a bit of surprise

dataset #examples  F#features

covtype.binary 581,012 54
gisette 7,000 5,000

covtype.blnary gisette
B J 3 ]
S S
0 81
25 go
g g4
g g
E Eo
ie | L2
S
asure (LR) — F-measure (LR)
asure (SVM) 28 — easure (SVM)
2| S
S
4 50000 100000 150000 200000 4 1000 2000 3000 4000
# of training examples # of training examples
2 8 ]
=
2l w
S S
°
57 23]
3
w
37 w
° AM (LR) 84
— AM (sVM) — AM(sVM)
=8|
Sl T T T T T T T
4 50000 150000 200000 4 1000 3000 4000

100000 2000
#of training examples #of training examples

Logistic loss as expected, but also hinge loss surprisingly well.
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Multilabel classification

data set # labels  # training examples  # test examples  #features
scene 6 1211 1169 294
yeast 14 1500 917 103
mediamill 101 30993 12914 120

m Surrogates: Logistic loss (LR) and hinge loss (SVM).
m Performance metrics; F-measure and AM measure.

m Macro-averaging (separate threshold for each label) and
micro-averaging (single threshold for all labels).

m Cross-evaluation of algorithms tuned for micro-averaging in
terms of macro-averaged metrics, and vice versa.
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Multilabel classification: F measure

scene

yeast

iamill

med

Macro F-measure
060 065 0.7C
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Macro F-measure.
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—— SVM Macro-F 2
— LR Micro—F —— LR Micro-F
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Multilabel classification: AM measure

scene

yeast

iamill

med

Macro AM
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Open problem

U(h*) —W(h) < const-+/Risk(f) — Risky(f*)

f* is the minimizer over all functions
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Open problem

U(h*) —W(h) < const-+/Risk(f) — Risky(f*)

f* is the minimizer over all functions

= We often optimize within some class F (e.g., linear functions).
m If f*¢ F = r.h.s. does not converge to 0.

m This can be beneficial non non-proper losses (e.g., hinge loss).
m Most often f* ¢ F, and a theory for this is needed.
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m Theoretical analysis of the two-step approach to optimize
generalized performance metrics for classification.

m Regret bounds for linear-fractional and convex functions
optimized by means of strongly proper composite surrogates.

m The theorem relates convergence to the global risk minimizer.

m Can we say anything about convergence to the risk minimizer
within some class of functions?

m Why does hinge loss perform so well if the risk minimizer is

outside the family of classification functions.
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