Surrogate regret bounds for generalized classification performance metrics

Wojciech Kotłowski Krzysztof Dembczyński

Poznań University of Technology

PL-SIGML, Częstochowa, 14.04.2016

Motivation

Kaggle Higgs Boson Machine Learning Challenge

Completed • \$13,000 • 1,785 teams

Higgs Boson Machine Learning Challenge

Mon 12 May 2014 - Mon 15 Sep 2014 (18 months ago)

Dashboard

Home Data Make a submission	€
Information Description Evaluation Rules Prizes About the Sponsors Timeline Winners	Θ
Forum	9
Leaderboard Public Private	=

Private Leaderboard

Gábor Melis
 Gábor Melis
 Tim Salimans
 nihkShaze
 ChoKo Team
 cheng chen
 c, quantify
 Stanislav Semenov & Co (HSE

• Classes: "signal" $(h \rightarrow \tau^+ \tau^-)$ and "background".

# events	# features	% signal weight
250 000	30	0.17

• Classes: "signal" $(h \rightarrow \tau^+ \tau^-)$ and "background".

# events	# features	% signal weight
250 000	30	0.17

Evaluation: Approximate Median Significance (AMS):

AMS =
$$\sqrt{2(s+b+10)\log\left(1+\frac{s}{b+10}\right)-s}$$

s, b – weight of signal/background events classified as signal.

How to optimize AMS?

Research Problem

How to optimize a global function of true/false positives/negatives, not decomposable into individual losses over the observations?

How to optimize AMS?

Research Problem

How to optimize a global function of true/false positives/negatives, not decomposable into individual losses over the observations?

Most popular approach:

Sort classifier's scores and threshold to maximize AMS.

AMS not used while training, only for tuning the threshold.

How to optimize AMS?

Research Problem

How to optimize a global function of true/false positives/negatives, not decomposable into individual losses over the observations?

Most popular approach:

Sort classifier's scores and threshold to maximize AMS.

AMS not used while training, only for tuning the threshold.

Is this approach theoretically justified?

Optimization of generalized performance metrics

- Wojciech Kotłowski and Krzysztof Dembczyński. Surrogate regret bounds for generalized classification performance metrics. In ACML, volume 45 of JMLR W&C Proc., pages 301–316, 2015 [Best Paper Award]
- Wojciech Kotłowski. Consistent optimization of AMS by logistic loss minimization. In NIPS HEPML Workshop, volume 42 of JMLR W&C Proc., pages 99–108, 2015

Given a binary classifier $h \colon X \to \{-1, 1\}$, define:

$$\Psi(h) = \Psi\left(\operatorname{FP}(h), \operatorname{FN}(h)\right),$$

	predicted $\hat{y} = h(x)$			
		-1	+1	total
true y -	-1	ΤN	FP	1 - P
	+1	FN	ΤP	P

where:

$$FP(h) = Pr(h(x) = 1 \land y = -1),$$

$$FN(h) = Pr(h(x) = -1 \land y = 1).$$

Goal: maximize $\Psi(h)$.

We assume Ψ is non-increasing in FP and FN.

Linear-fractional performance metric

Definition

$$\Psi(\text{FP}, \text{FN}) = \frac{a_0 + a_1 \text{FP} + a_2 \text{FN}}{b_0 + b_1 \text{FP} + b_2 \text{FN}},$$

Linear-fractional performance metric

Definition

$$\Psi(\text{FP}, \text{FN}) = \frac{a_0 + a_1 \text{FP} + a_2 \text{FN}}{b_0 + b_1 \text{FP} + b_2 \text{FN}},$$

Examples

Accuracy	Acc = 1 - FN - FP
F_{eta} -measure	$F_{\beta} = \frac{(1+\beta^2)(P-\text{FN})}{(1+\beta^2)P-\text{FN}+\text{FP}}$
Jaccard similarity	$J = \frac{P - \text{FN}}{P + \text{FP}}$
AM measure	$\mathbf{A}\mathbf{M} = 1 - \frac{1}{2P}\mathbf{F}\mathbf{N} - \frac{1}{2(1-P)}\mathbf{F}\mathbf{P}$
Weighted accuracy	$WA = 1 - w_{-}FP - w_{+}FN$

Definition

 $\Psi(\mathrm{FP},\mathrm{FN})$ is jointly convex in FP and $\mathrm{FN}.$

Definition

 $\Psi(\mathrm{FP},\mathrm{FN})$ is jointly convex in FP and $\mathrm{FN}.$

Example: AMS² score

$$AMS^{2}(TP, FP) = 2\left((TP + FP)\log\left(1 + \frac{TP}{FP}\right) - TP\right)$$

Example - F_1 -measure

$Example - AMS^2$ score

- **I** Learn f minimizing a surrogate loss on the training sample.
- 2 Given f, tune a threshold θ on f on a the validation sample by direct optimization of Ψ .

- **1** Learn *f* minimizing a surrogate loss on the training sample.
- 2 Given f, tune a threshold θ on f on a the validation sample by direct optimization of Ψ.

Our results (informally)

Assumptions:

- the surrogate loss is strongly proper composite (e.g., logistic, exponential, squared-error loss),
- Ψ is linear-fractional or jointly convex,

Claim:

If f is close to the minimizer of the surrogate loss, then $h_{f,\theta}$ is close to the maximizer of Ψ .

• Ψ -regret of a classifier $h: X \to \{-1, 1\}$:

$$\operatorname{Reg}_{\Psi}(h) = \Psi(h^*) - \Psi(h)$$
 where $h^* = \underset{h}{\operatorname{argmax}} \Psi(h)$.

Measures suboptimality.

• Ψ -regret of a classifier $h: X \to \{-1, 1\}$:

 $\operatorname{Reg}_{\Psi}(h) = \Psi(h^*) - \Psi(h)$ where $h^* = \underset{h}{\operatorname{argmax}} \Psi(h)$.

Measures suboptimality.

Surrogate loss $\ell(y, f(x))$ of a real-valued function $f: X \to \mathbb{R}$. Used in training: logistic loss, squared loss, hinge loss, ...

• Ψ -regret of a classifier $h: X \to \{-1, 1\}$:

 $\operatorname{Reg}_{\Psi}(h) = \Psi(h^*) - \Psi(h)$ where $h^* = \underset{h}{\operatorname{argmax}} \Psi(h)$.

Measures suboptimality.

Surrogate loss $\ell(y, f(x))$ of a real-valued function $f: X \to \mathbb{R}$. Used in training: logistic loss, squared loss, hinge loss, ...

■ Expected loss (*l*-risk) of *f*:

 $\operatorname{Risk}_{\ell}(f) = \mathbb{E}_{(x,y)} \left[\ell(y, f(x)) \right].$

• Ψ -regret of a classifier $h: X \to \{-1, 1\}$:

 $\operatorname{Reg}_{\Psi}(h) = \Psi(h^*) - \Psi(h)$ where $h^* = \underset{h}{\operatorname{argmax}} \Psi(h)$.

Measures suboptimality.

Surrogate loss $\ell(y, f(x))$ of a real-valued function $f: X \to \mathbb{R}$. Used in training: logistic loss, squared loss, hinge loss, ...

• Expected loss (ℓ -risk) of f:

$$\operatorname{Risk}_{\ell}(f) = \mathbb{E}_{(x,y)} \left[\ell(y, f(x)) \right].$$

• ℓ -regret of f:

$$\operatorname{Reg}_{\ell}(f) = \operatorname{Risk}_{\ell}(f) - \operatorname{Risk}_{\ell}(f^*)$$
 where $f^* = \operatorname{argmin}_{f} \operatorname{Risk}_{\ell}(f)$.

• Ψ -regret of a classifier $h: X \to \{-1, 1\}$: where $h^* = \operatorname{argmax} \Psi(h)$. $\operatorname{Reg}_{\Psi}(h) = \Psi(h^*)$ Measures suboptimality. Surrogate loss $\ell(y, f(x))$ of a real-valued function $f: X \to \mathbb{R}$. Used in tra Relate Ψ -regret of $h_{f,\theta}$ to ℓ -regret of fExpected Id $\operatorname{Risk}_{\ell}(f) = \mathbb{E}_{(x,y)}\left[\ell(y, f(x))\right].$ • ℓ -regret of f: where $f^* = \operatorname{argmin} \operatorname{Risk}_{\ell}(f)$. $\operatorname{Reg}_{\ell}(f) = \operatorname{Risk}_{\ell}(f) - \operatorname{Risk}_{\ell}(f^*)$

Examples of surrogate losses

Logistic loss

$$\ell(y,\widehat{y}) = \log\left(1 + e^{-y\widehat{y}}\right).$$

Risk minimizer $f^*(x)$:

$$f^*(x) = \log rac{\eta(x)}{1 - \eta(x)}, \qquad ext{where} \quad \eta(x) = \Pr(y = 1|x).$$

Invertible function of conditional probability $\eta(x)$.

Examples of surrogate losses

Logistic loss

$$\ell(y,\widehat{y}) = \log\left(1 + e^{-y\widehat{y}}\right).$$

Risk minimizer $f^*(x)$:

$$f^*(x) = \log \frac{\eta(x)}{1 - \eta(x)}, \quad \text{where } \eta(x) = \Pr(y = 1|x).$$

Invertible function of conditional probability $\eta(x)$.

Hinge loss

$$\ell(y,\widehat{y}) = (1 - y\widehat{y})_+ \,.$$

Its risk minimizer $f^*(x)$ is non-invertible:

$$f^*(x) = \operatorname{sgn}(\eta(x) - 1/2).$$

Examples of surrogate losses

loss	$f^*(\eta)=\psi(\eta)$	$\eta(f^*)=\psi^{-1}(f^*)$
squared error	$2\eta - 1$	$\frac{1+f^*}{2}$
logistic	$\log \frac{\eta}{1-\eta}$	$\frac{1}{1+e^{-f^*}}$
exponential	$\frac{1}{2}\log\frac{\eta}{1-\eta}$	$\frac{1}{1+e^{-2f^*}}$
hinge	$\operatorname{sgn}(\eta - 1/2)$	doesn't exist

 $\ell(y,f)$ is proper composite if there exists a strictly increasing link function $\psi,$ such that:

$$f^*(x) = \psi(\eta(x)),$$
 where $\eta(x) = \Pr(y = 1|x).$

Minimizing proper composite losses implies probability estimation.

 $\ell(y, f)$ is λ -strongly proper composite if it is proper composite and for any f, x, and distribution y|x:

$$\mathbb{E}_{y|x}\left[\ell(y, f(x)) - \ell(y, f^*(x))\right] \ge \frac{\lambda}{2} \left(\eta(x) - \psi^{-1}(f(x))\right)^2.$$

Technical condition.

loss	$f^*(\eta) = \psi(\eta)$	$\eta(f^*)=\psi^{-1}(f^*)$	λ
squared error	$2\eta - 1$	$\frac{1+f^*}{2}$	8
logistic	$\log \frac{\eta}{1-\eta}$	$\frac{1}{1+e^{-f^*}}$	4
exponential	$\frac{1}{2}\log\frac{\eta}{1-\eta}$	$\frac{1}{1+e^{-2f^*}}$	4

Main result

Theorem for linear fractional measures

If:

- $\blacksquare~\Psi({\rm FP},{\rm FN})$ is linear-fractional, non-increasing in ${\rm FP}$ and ${\rm FN},$
- ℓ is λ -strongly proper composite,

Then, there exists a threshold $\theta^*,$ such that for any real-valued function f,

$$\operatorname{Reg}_{\Psi}(h_{f,\theta^*}) \leq C_{\Psi} \sqrt{\frac{2}{\lambda}} \sqrt{\operatorname{Reg}_{\ell}(f)}.$$

Main result

Theorem for linear fractional measures

lf:

 $\blacksquare~\Psi({\rm FP},{\rm FN})$ is linear-fractional, non-increasing in ${\rm FP}$ and ${\rm FN},$

• ℓ is λ -strongly proper composite,

Then, there exists a threshold $\theta^*,$ such that for any real-valued function f,

$$\operatorname{Reg}_{\Psi}(h_{f,\theta^*}) \leq C_{\Psi} \sqrt{\frac{2}{\lambda}} \sqrt{\operatorname{Reg}_{\ell}(f)}.$$

metric	C_{Ψ}
F_{eta} -measure	$\tfrac{1+\beta^2}{\beta^2 P}$
Jaccard similarity	$\frac{J^*+1}{P}$
AM measure	$\frac{1}{2P(1-P)}$

Main result

Theorem for linear fractional measures If: • $\Psi(FP, FN)$ is linear-fractional, non-increasing in FP and FN, • ℓ is λ -strongly proper composite, Then, the function f Similar theorem for convex performance metrics (such as AMS²) $\operatorname{Reg}_{\Psi}(h_{f,\theta^*}) \leq C_{\Psi}\sqrt{\frac{2}{\lambda}\sqrt{\operatorname{Reg}_{\ell}(f)}}$.

metric	C_{Ψ}
F_{eta} -measure	$\frac{1+\beta^2}{\beta^2 P}$
Jaccard similarity	$\frac{J^*+1}{P}$
AM measure	$\frac{1}{2P(1-P)}$

• The maximizer of Ψ is $h^*(x) = \operatorname{sgn}(\eta(x) - \eta^*)$ for some η^* .

Explanation of the theorem

- The maximizer of Ψ is $h^*(x) = \operatorname{sgn}(\eta(x) \eta^*)$ for some η^* .
- The minimizer of ℓ is $f^*(x)=\psi(\eta(x))$ for invertible $\psi.$

Explanation of the theorem

- The maximizer of Ψ is $h^*(x) = \operatorname{sgn}(\eta(x) \eta^*)$ for some η^* .
- The minimizer of ℓ is $f^*(x) = \psi(\eta(x))$ for invertible ψ .
- Thresholding $f^*(x)$ at $\theta^* = \psi(\eta^*) \equiv$ Thresholding $\eta(x)$ at η^* .

Explanation of the theorem

- The maximizer of Ψ is $h^*(x) = \operatorname{sgn}(\eta(x) \eta^*)$ for some η^* .
- The minimizer of ℓ is $f^*(x) = \psi(\eta(x))$ for invertible ψ .
- Thresholding $f^*(x)$ at $\theta^* = \psi(\eta^*) \equiv$ Thresholding $\eta(x)$ at η^* .

 Gradients of Ψ and λ measure local variations of Ψ and ℓ when f is not equal to f*.

• $\Psi = \text{classification accuracy} \implies \theta^* = 0 \ (\eta^* = \frac{1}{2}).$

• $\Psi = \text{classification accuracy} \implies \theta^* = 0 \ (\eta^* = \frac{1}{2}).$ • $\Psi = \text{weighted accuracy} \implies \eta^* = \frac{w_-}{w_+ + w_-}.$

23 / 36

- $\Psi = \text{classification accuracy} \implies \theta^* = 0 \ (\eta^* = \frac{1}{2}).$
- $\Psi =$ weighted accuracy $\implies \eta^* = \frac{w_-}{w_+ + w_-}$.
- More complex $\Psi \implies \theta^*$ unknown (depends on Ψ^*)...

- $\Psi = \text{classification accuracy} \implies \theta^* = 0 \ (\eta^* = \frac{1}{2}).$
- $\Psi =$ weighted accuracy $\implies \eta^* = \frac{w_-}{w_+ + w_-}.$
- More complex $\Psi \implies \theta^*$ unknown (depends on Ψ^*)...

 \Longrightarrow estimate θ^* from validation data

Tuning the threshold

Corollary

Given real-valued function f, validation sample of size m, let:

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \widehat{\Psi}(h_{f,\theta}) \qquad \quad (\widehat{\Psi} = \mathsf{estimate of } \Psi)$$

Then, under the same assumptions and notation:

$$\mathrm{Reg}_{\Psi}(h_{f,\hat{\theta}}) \leq C_{\Psi} \sqrt{\tfrac{2}{\lambda}} \sqrt{\mathrm{Reg}_{\ell}(f)} + O\left(\tfrac{1}{\sqrt{m}}\right).$$

Tuning the threshold

Corollary

Given real-valued function f, validation sample of size m, let:

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \widehat{\Psi}(h_{f,\theta}) \qquad (\widehat{\Psi} = \mathsf{estimate of } \Psi)$$

Then, under the same assumptions and notation:

$$\mathrm{Reg}_{\Psi}(h_{f,\hat{\theta}}) \leq C_{\Psi} \sqrt{\tfrac{2}{\lambda}} \sqrt{\mathrm{Reg}_{\ell}(f)} + O\left(\tfrac{1}{\sqrt{m}}\right).$$

• Learning standard binary classifier and tuning the threshold afterwards is able to recover the maximizer of Ψ in the limit.

- A vector of m labels $\boldsymbol{y} = (y_1, \dots, y_m)$ for each x.
- Multilabel classifier $h(x) = (h_1(x), \dots, h_m(x)).$
- False positive/negative rates for each label:

$$FP_i(h_i) = Pr(h_i = 1, y_i = -1),$$

 $FN_i(h_i) = Pr(h_i = -1, y_i = 1).$

- A vector of m labels $\boldsymbol{y} = (y_1, \dots, y_m)$ for each x.
- Multilabel classifier $h(x) = (h_1(x), \dots, h_m(x)).$
- False positive/negative rates for each label:

$$FP_i(h_i) = Pr(h_i = 1, y_i = -1),$$

 $FN_i(h_i) = Pr(h_i = -1, y_i = 1).$

How to use binary classification Ψ in the multilabel setting?
We extend our bounds to cover micro- and macro-averaging.

Micro- and macro-averaging

Macro-averaging

Average outside Ψ :

$$\Psi_{\text{macro}}(\boldsymbol{h}) = \sum_{i=1}^{m} \Psi(\operatorname{FP}_{i}(h_{i}), \operatorname{FN}_{i}(h_{i})).$$

Our bound suggests that a separate threshold needs to be tuned for each label.

Micro- and macro-averaging

Macro-averaging

Average outside Ψ :

$$\Psi_{\text{macro}}(\boldsymbol{h}) = \sum_{i=1}^{m} \Psi(FP_i(h_i), FN_i(h_i)).$$

Our bound suggests that a separate threshold needs to be tuned for each label.

Micro-averaging

Average inside Ψ :

$$\Psi_{\text{micro}}(\boldsymbol{h}) = \Psi\left(\frac{1}{m}\sum_{i=1}^{m} \text{FP}_{i}(h_{i}), \frac{1}{m}\sum_{i=1}^{m} \text{FN}_{i}(h_{i})\right)$$

Our bound suggests that all labels share a single threshold.

Experiments

- Two synthetic and two benchmark data sets.
- Surrogates: Logistic loss (LR) and hinge loss (SVM).
- Performance metrics: F-measure and AM measure.
- Minimize ℓ (logistic or hinge) on training data + tune the threshold $\hat{\theta}$ on validation data (optimizing the metrics).

Synthetic experiment I

• $X = \{1, 2, \dots, 25\}$ with Pr(x) uniform. • For each $x \in X$, $\eta(x) \sim Unif[0, 1]$.

Regret of F-measure, the AM measure, and logistic loss 0.00 0.02 0.04 0.06 0.08 0.10 Logistic regret F-measure regret AM regret logistic loss surrogate (converges as expected) 2000 4000 6000 8000 10000 # of training examples Regret of F-measure, the AM measure and hinge loss 00 0.02 0.04 0.06 0.08 0.10 Hinge regret F-measure regret AM regret hinge loss surrogate (does not converge) 8

0

2000

6000

of training examples

8000

10000

Synthetic experiment II

Benchmark data experiment – a bit of surprise

dataset	#examples	#features
covtype.binary	581,012	54 5.000
BIJCILC	1,000	5,000

Logistic loss as expected, but also hinge loss surprisingly well.

data set	# labels	# training examples	# test examples	#features
scene	6	1211	1169	294
yeast	14	1500	917	103
mediamill	101	30993	12914	120

- Surrogates: Logistic loss (LR) and hinge loss (SVM).
- Performance metrics: F-measure and AM measure.
- Macro-averaging (separate threshold for each label) and micro-averaging (single threshold for all labels).
- Cross-evaluation of algorithms tuned for micro-averaging in terms of macro-averaged metrics, and vice versa.

Multilabel classification: F measure

33 / 36

Multilabel classification: AM measure

$$\Psi(h^*) - \Psi(h) \leq \text{const} \cdot \sqrt{\text{Risk}_{\ell}(f) - \text{Risk}_{\ell}(f^*)}$$

$$f^* \text{ is the minimizer over all functions}$$

35 / 36

- We often optimize within some class \mathcal{F} (e.g., linear functions).
- If $f^* \notin \mathcal{F} \Rightarrow r.h.s.$ does not converge to 0.
- This can be beneficial non non-proper losses (e.g., hinge loss).
- Most often $f^* \notin \mathcal{F}$, and a theory for this is needed.

- Theoretical analysis of the two-step approach to optimize generalized performance metrics for classification.
- Regret bounds for linear-fractional and convex functions optimized by means of strongly proper composite surrogates.
- The theorem relates convergence to the global risk minimizer.
 - Can we say anything about convergence to the risk minimizer within some class of functions?
- Why does hinge loss perform so well if the risk minimizer is outside the family of classification functions.