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MC approaches: Model selection for linear regression -
Random Subspace Method (RSM)

Mielniczuk and Teisseyre (2011) and (2013): Let Ti ,m be a
t-statistic for i-th predictor in a linear regression model m with |m|
predictors. We have:

T 2
i ,m

n − |m|
=
RSSm−{i} − RSSm

RSSm

It follows that the value of T 2
i ,m can serve as a measure of,

simulatneously, the importance of the i-th predictor in model m
and the quality of this very model.
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MC approaches: Model selection for linear regression -
Random Subspace Method (RSM)

In the RSM, a random subset m of features (predictors), of size
|m| smaller than the number of all features d and a number of
observations n, is chosen. The model is fitted in the reduced
feature space by OLS. Each of the selected features is assigned a
weight describing its relevance in the considered submodel.

Random selection of features is repeated many times,
corresponding submodels are fitted and the final weights (scores)
of all d features are computed on the basis of all submodels.

The final model can then be constructed based on predetermined
number of the most significant predictors or using a selection
method applied to the nested list of models given by the ordering
of predictors.
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MC approaches: MCFS-ID Algorithm of Draminski et al.:
the Monte Carlo Feature Selection (or MCFS) part

In what follows we begin with a brief description of an effective
method for ranking features according to their importance for
classification regardless of a classifier to be later used. Our
procedure is conceptually very simple, albeit computer-intensive.

We consider a particular feature to be important, or informative, if
it is likely to take part in the process of classifying samples into
classes ”more often than not”.

This ”readiness” of a feature to take part in the classification
process, termed relative importance of a feature, is measured via
intensive use of classification trees. When assessing relative
importance of a feature, the aforementioned ”readiness” of the
feature to appear in a given tree is suitably moderated by the
(weighted) accuracy this tree.
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MC approaches: MCFS-ID Algorithm: the MCFS part

In the main step of the procedure, we estimate relative importance
of features by constructing thousands of trees for randomly
selected subsets of features.

More precisely, out of all d features, s subsets of m features are
selected, m being fixed and m << d , and for each subset of
features, t trees are constructed and their performance is assessed.
Each of the t trees in the inner loop is trained and evaluated on a
different, randomly selected training and test sets which come from
a split of the full set of training data into two subsets: each time,
out of all n samples, about 66% of samples are drawn at random
for training (in such a way as to preserve proportions of classes
from the full set of training data) and the remaining samples are
used for testing.
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MC approaches: MCFS-ID Algorithm: the MCFS part
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MC approaches: Interdependency Discovery, i.e., the ID
part of the MCFS-ID Algorithm

This approach to interdependency discovery is significantly
different from known approaches which consist in finding
correlations between features or finding groups of features that
behave similarly in some sense across samples (e.g., as in finding
co-regulated features).

The focus is on identifying features that ”cooperate” in
determining that a sample belongs to a particular class. A directed
graph of such ”cooperating” features is constructed.

For an exposition of the MCFS-ID algorithm, see Draminski et al.
(2008), (2010) and (2016).
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Regularization approaches: Model selection for linear
regression - `1 regularization

The Lasso (Least Absolute Selection Operator) for linear models:

As usual, we are given n observations, each with d explanatory
variables (predictors), (xi1, xi2, . . . , xid), and one response variable,
yi ,

yi = β0 + β1xi1 + β2xi2 + . . .+ βdxi ,d + εi , i = 1, 2, . . . , n,

where εi are i.i.d. random errors with mean 0 and unknown
variance σ2, and β0, . . . , βd are unknown parameters.

Minimize

{
n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2}

subject to
p∑

j=1

|βj | ¬ t.
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Regularization approaches: `1 regularization

The Lasso, in contrast to ridge regression (i.e., `2 regularization),
eliminates for small t some variables from the model. It can thus
be used as a feature selection method, although one should be
aware that the method is likely to include too many variables.

For exhaustive account of the Lasso and related approaches see
Bühlmann and van de Geer (2011) and Hastie, Tibshirani and
Wainwright (2015). For an important extension of the idea see
Pokarowski and Mielniczuk (2015), where a three-stage algorithm
for selecting a regression model is proposed, with LASSO used in
the 1st stage for screening of predictors (features). See also
Bogdan et al. (2015), where the regularizer is a sorted `1 norm.
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Regularization approaches: Support Vector Machines - `2
regularization. And more

We skip an exposition of SVMs. Regarding their use for Big Data
Analytics, we refer to Tan et al. (2014) and to Priyadarshini and
Agarwal (2015).

There are more statistical approaches to dealing with
high-dimensional data than those already hinted to and the
Bayesian ones. See Bühlmann and van de Geer (2011) for an
approach which stems from undirected graphical modeling and is
based on inferring zero partial correlations for variable selection
(the so-called PC-simple algorithm).

A still another and promising approach, which builds on ranking
the marginal correlations and is referred to as sure independence
screening, has been introduced by Fan and Lv (2008); see also Fan
and Song (2010).
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Model selection for linear regression - Bayesian approaches

Broman and Speed (2002): Let

yi = µ+
d∑

j=1

βjxij + εi ,

where xij = 1 or xij = 0 and the εi are i.i.d. and normally
distributed, N(0, σ2) (in fact, xij represents genotype at marker j
for individual i). The task is to select a model for which Schwarz’s
Bayesian Information Criterion (BIC) assumes the minimal value;

BIC = n · logRSS(β) + 1
2
k logn,

where k is the number of parameters βj in the model. It was
observed by Broman i Speed that the BIC tends to overestimate
the number of parameters in the model. Accordingly, they
proposed the 1st modification of the BIC.
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Model selection for linear regression - Bayesian approaches

The Bayesian model selection advocates choosing the model M
that maximizes posterior probability of the model given the data,
this probability being proportional to

L(y |M)π(M),

where π(M) is a prior probability for model M (Schwartz assumed
noninformative uniform prior π), and

L(y |M) =

∫
L(y |M, β)f (β|M)dβ,

f (β|M) being some prior distribution on the vector of model
parameters; for a wide class of these distributions one gets

logL(y |M) = logL(y |β)− 1
2
(k + 2)logn.

For the family of normal linear regression models, maximization of
this last expression is equivalent to minimization of the BIC.
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Model selection for linear regression - Bayesian approaches

Bogdan et al. (2004) introduced another modification of BIC
(mBIC), assuming binomial prior distribution, Bin(d , c/d), with
some fixed c , for the model size. See Bogdan et al. (2011) for later
developments and Frommlet et al. (2012) for application of their
approach to Genome-Wide Association Studies.

It is easy to extend the outlined approach to include regression
models with interactions. It is also possible to extend it to include
generalized linear models (possibly with constraints on the model’s
parameters).

The outlined approach is by far not the only one possible among
this strand of Bayesian approaches; e.g., a similar approach is that
based on the extended BIC, and a completely different approach,
which bears some relationship with support vector machines, is
that of relevance vector machines. (See, e.g., Chen and Chen
(2008) and (2011), and Tipping (2001), Fletcher (2010) and
Saarela et al. (2010).)
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Nonparametric Bayesian approaches

Let Y be a response and X = (X (1), . . . ,X (p) ∈ Rp be explanatory
variables. Assume

Y = f (X ) + ε,

with ε normally distributed, N(0, σ2).

Usually, a Gaussian Process (GP) prior for f is assumed to have
zero mean and square exponential covariance function (kernel
function) exp(−‖x − x ′‖2/c). Such processes are smooth in a
well-known sense. Other kernels can be used, and another
smoothness conditions on f can be imposed.

It should be emphasized that the above mentioned use of a kernel
function casts the whole approach into the area of ML with kernels
(kernel machines). Indeed, some far reaching similarities (and
differences) with ridge regression, SVMs, as well as with spline
models are obvious and deserve separate analysis.
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Nonparametric Bayesian approaches, contd.

An excellent exposition of Gaussian processes for ML is given in
Rasmussen and Williams (2006); another excellent, albeit short,
introduction to GPs in ML can be found in Bishop (2006). In
neither of these expositions problems pertaining to dealing with
Big Data are addressed, although Rasmussen and Williams (2006)
has a chapter titled Approximation Methods for Large Datasets.

Jacek Koronacki i Jerzy Stefanowski Big Data: Dodatek statystyczny



Nonparametric Bayesian approaches, contd.

However interesting GPs for ML are, within the context of Big
Data Analytics, special emphasis has to be placed on variable
selection and/or variable projections. Loosely speaking, such
mechanisms can be included into the nonparametric Bayesian
approach by adding more randomness into the process, i.e.,
introducing suitable hyperparameters. See Tokdar (2011) for
variable selection and linear projection proposals which have been
shown to give consistent (in probability, and at a known rate)
estimators of an unknown f ; e.g., for f depending on d < p
variables, the rate of convergence is

n−
α

2α+d (log n)k

for any k > p + 1.

Yang (2014) has noticed that Tokdar’s proposal can be considered
effective only if d << p.
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Nonparametric Bayesian approaches, contd.

Yang (2014) has provided a general framework to assess the
minimax risks for regression problems under `2 loss (see there for
an excellent account of earlier, sometimes pioneering, results in the
area). He has introduced a general class of Bayesian sieve
estimators which, under certain (more or less restrictive)
conditions, achieve the optimal minimax risk when f depends on
d << min{n, p} variables or is a sum of finitely many, k ,
functions, each of which depends on ds << min{n, p} variables.

He has shown also that a GP regression approach can lead to the
minimax optimal adaptive rate in estimating f under some
conditions when the function’s domain lies on a Riemannian
manifold.

See also Yang and Dunson (2014) and Yang and Tokdar (2015).
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