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Multi-Class and Multi-Label Classification

• Multi-class classification (MCC): a classification task with one
target variable belonging to more than two classes.

• Multi-label classification (MLC): variant of the classification
problem where none, one or more class labels are assigned to single
instances simultaneously.
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Example

Multi-class classification

Target: forest OR path OR

dog OR . . .

Multi-label classification

Target 1: forest yes/no
Target 2: path yes/no
Target 3: dog yes/no
. . . . . . . . .
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MCC and MLC More Formally

• Multi-class classification: For a feature vector x predict accurately
one response y using a function h(x):

x = (x1, x2, . . . , xp)
h(x)−−−−−→ y ∈ {1, . . . , k}

• Multi-label classification: For a feature vector x predict accurately
a vector of responses y using a function
h(x) = (h1(x), h2(x), . . . , hm(x)):

x = (x1, x2, . . . , xp)
h(x)−−−−−→ y = (y1, y2, . . . , ym) ∈ {0, 1}m
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Multi-Label Classification – Simple Approach

Binary relevance: Decomposes the problem to m independent binary
classification problems:

(x,y) −→ (x, y = yi), i = 1, . . . ,m

y1 y2 . . . ym

x

P (y1 = 0 |x)

y1 = 0

P (y1 = 1 |x)

y1 = 1

x

P (y2 = 0 |x)

y2 = 0

P (y2 = 1 |x)

y2 = 1
. . .

x

P (ym = 0 |x)

ym = 0

P (ym = 1 |x)

ym = 1

Challenges:

• How to model dependencies between labels?

• What about loss function defined over the binary vectors?
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Label Tree Classifiers for MLC

• Example: m = 2, Y = {0, 1}2
• 2m − 1 classifiers on the tree (m levels); m-classifier trick with m

classifiers (one per level)

• 2m leaves of the all possible vectors of responses

x

P (y1 = 0 |x)

P (y2=0 | y1=0,x)

y={0, 0}

y2 = 0

P (y2=1 | y1=0,x)

y={0, 1}

y2 = 1

y1 = 0

P (y1 = 1 |x)

P (y2=0 | y1=1,x)

y={1, 0}

y2 = 0

P (y2=1 | y1=1,x)

y={1, 1}

y2

y1

y2 = 1

y1 = 1
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Label Tree Classifiers for MCC

• We assign each class an integer from 0 to k − 1 and code it by its
binary representation on m bits.

• Example: k = 4, Y = {0, 1, 2, 3}
• k − 1 classifiers on the tree; trick with log k classifiers (one per level)

• k leaves, one for each class

x

P (0 |x)

P (0 | 0,x)

y=002=0

0

P (1 | 0,x)

y=012=1

1

0

P (1 |x)

P (0 | 1,x)

y=102=2

0

P (1 | 1,x)

y=112=3

1

1
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Classifier Regret

• The prediction accuracy of h is measured in terms of its risk, that is,
its expected loss

L(h, P )=E [`(Y ,h(X))]=

∫
`(y,h(x)) dP (x,y) ,

where ` is a loss function.

• Here, we consider the 0/1 loss:

`0/1(y,h(x)) = Jy 6= h(x)K
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Classifier Regret

• The optimal Bayes classifier minimizes the risk:

h∗(x) = argmin
h∈Y

∫ ∑
y∈Y

`0/1(y,h)P (y |x) dP (x) .

• The Bayes classifier for the 0/1 loss has the form of a joint mode:

h∗(x) = argmax
y

P (y |x)

• We note that h∗ is in general not unique. However, the risk of h∗,
denoted L∗(P ), is unique, and is called the Bayes risk.

• The regret of h on P (X,Y ) is defined as:

reg0/1(h, P ) = L0/1(h, P )− L∗0/1(P )

• The goal is to train a classifier h with a small regret, ideally equal to
zero.
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Label Tree Classifiers – Conventional Training and Classification

Definition of Consistency

We say that the reduction algorithm is consistent if zero regret solution on
the reduced problem implies zero regret on the original problem.

• The Label Tree Classifiers ensure consistency when the perfect (zero
regret) classifier in each node of the tree guarantees the perfect
global classification of a test example.

• The conventional training and classification procedures for Label Tree
Classifiers do not ensure consistency!

0.38

0.95

0.02

0.05

0.4

0.24

0.4

0.36

0.6

0.6

10 / 20



Label Tree Classifiers – Conventional Training and Classification

Definition of Consistency

We say that the reduction algorithm is consistent if zero regret solution on
the reduced problem implies zero regret on the original problem.

• The Label Tree Classifiers ensure consistency when the perfect (zero
regret) classifier in each node of the tree guarantees the perfect
global classification of a test example.

• The conventional training and classification procedures for Label Tree
Classifiers do not ensure consistency!

0.38

0.95

0.02

0.05

0.4

0.24

0.4

0.36

0.6

0.6

10 / 20



Label Tree Classifiers – Conventional Training and Classification

Definition of Consistency

We say that the reduction algorithm is consistent if zero regret solution on
the reduced problem implies zero regret on the original problem.

• The Label Tree Classifiers ensure consistency when the perfect (zero
regret) classifier in each node of the tree guarantees the perfect
global classification of a test example.

• The conventional training and classification procedures for Label Tree
Classifiers do not ensure consistency!

0.38

0.95

0.02

0.05

0.4

0.24

0.4

0.36

0.6

0.6

10 / 20



Label Tree Classifiers – Conventional Training and Classification

Definition of Consistency

We say that the reduction algorithm is consistent if zero regret solution on
the reduced problem implies zero regret on the original problem.

• The Label Tree Classifiers ensure consistency when the perfect (zero
regret) classifier in each node of the tree guarantees the perfect
global classification of a test example.

• The conventional training and classification procedures for Label Tree
Classifiers do not ensure consistency!

0.38

0.95

0.02

0.05

0.4

0.24

0.4

0.36

0.6

0.6

10 / 20



Can Label Tree Classifiers be consistent?

Two approaches...
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Filter Trees (FT) 1

• Bottom-up learning algorithm to train binary classifiers of the tree.
• Single elimination tournament on the set of label combinations.
• The node classifiers hyi are trained as before to predict yi+1,

where yi = (y1, . . . , yi).
• FT implicitly transforms the underlying distribution P over multi-label

examples into a specific distribution PFT
yi

over binary examples at

each node yi.
• This transformation for the 0/1 loss filters out all examples that are

misclassified by the lower-level classifiers.
• hyi(x) predicts yi+1 given that all classifiers below predict the

subsequent labels correctly:

hyi : x 7→ (yi+1 | yj+1 = hyj (x) : j = i+ 1, . . . ,m)

• The inference procedure of FT is straight-forward and uses the greedy
search (which is sufficient for obtaining consistent predictions).

1A. Beygelzimer, J. Langford, and P.D. Ravikumar, Error-correcting tournaments. In
ALT, pp. 247262, 2009
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Filter Trees – Example

hy0

hy1

hy2

0 1

0

hy2

0

↑
(x,y)

1

1

0

hy1

hy2

0 1

0

hy2

0 1

1

1
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Filter Trees – Consistency

Theorem 2

For all binary classifiers h and distributions P ,

reg0/1(h, P ) ≤ mreg0/1(h, P
FT )

2A. Beygelzimer, J. Langford, and P.D. Ravikumar, Error-correcting tournaments. In
ALT, pp. 247262, 2009
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Probabilistic Classifier Trees (PCT)

• Probabilistic binary classifiers on the tree (e.g., logistic regression).

• Each node classifier hyi delivers estimates of conditional probability:

hyi : x 7→ P (yi+1 = 1|x,yi)

We denote these estimates by Q(yi+1 = 1|x,yi).

• Training phase as in the conventional Label Tree Classifiers (can be
easily parallelized).

• More complex inference procedure (the greedy approach does not
guarantee to find the optimal solution).
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Probabilistic Classifier Trees – ε-approximate inference

1: Input: x, priority lists: Q ← {y0}, K ← {}, ε← 2−c with c ≤ m
2: while Q 6= ∅ do
3: v ← pop first element in Q
4: if v is a leaf then delete all elements in K and break
5: v1 ← (v, 1) (left child of v) and v0 ← (v, 0) (right child of v)
6: compute Q(v1 |x) and Q(v0 |x) recursively from Q(v |x)
7: if Q(v1 |x) ≥ ε then add v1 to Q sorted in desc. order of Q
8: if Q(v0 |x) ≥ ε then add v0 to Q sorted in desc. order of Q
9: if v1 and v0 are not in Q then add v to K in desc. order of Q

10: end while
11: ε← 0
12: while K 6= ∅ do
13: v′ ← pop first element in K
14: v′ ← apply greedy search downward on v′

15: if Q(v′ |x) ≥ ε then v ← v′ and ε← Q(v′ |x)
16: end while
17: return v = (y1, ..., ym)
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Probabilistic Classifier Trees – Consistency

Theorem

For all binary probabilistic classifiers h and distributions the total regret of
P , PCT with ε-approximate inference:

reg0/1(h, P ) ≤
√

2mreglog(h, P ) + 2−c − 2−m
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Experimental Results

0/1[%] ttrain ttest A min max 1q 2q 3q P@5

Y
ea

st
m

=
1
4

BR 85.06 18 0.18 14 14 14 14 14 14 –
FT 78.30 16 0.17 14 14 14 14 14 14 –
PCTε=0.5 79.17 21 0.19 14 14 14 14 14 14 –
PCTε=0.25 77.54 21 0.32 23 14 42 15 26 28 –
PCTε=0.0 76.34 21 0.37 25 14 61 17 23 30 –

E
n

ro
n

m
=

5
3

BR 86.36 66 1.62 53 53 53 53 53 53 –
FT 82.56 76 1.57 53 53 53 53 53 53 –
PCTε=0.5 83.77 92 1.49 53 53 53 53 53 53 –
PCTε=0.25 82.73 92 1.82 72 54 147 54 54 58 –
PCTε=0.0 81.87 92 3.12 144 53 888 73 106 175 –

M
ed

ia
m

il
l

m
=

1
0
1

BR 92.96 4947 26.20 101 101 101 101 101 101 –
FT 89.86 7551 27.76 101 101 101 101 101 101 –
PCTε=0.5 90.33 8695 30.73 101 101 101 101 101 101 –
PCTε=0.25 90.12 8695 40.86 125 101 260 102 102 102 –
PCTε=0.0 90.07 8695 54.51 208 101 1756 149 182 228 –

IL
S

V
R

2
0

1
0

k
=

1
0
0
0

1vsA 91.80 13435 581.43 1000 1000 1000 1000 1000 1000 19.75
FT 95.77 1051 24.50 10 10 10 10 10 10 –
PCTε=0.5 96.92 1148 27.18 10 10 10 10 10 10 3.08
PCTε=0.25 94.99 1148 43.60 22 10 30 21 21 21 5.55
PCTε=0.0 92.93 1148 69.56 55 10 192 38 52 69 15.16
PCT’ε=0.0 92.66 2379 109.55 94 17 237 75 91 111 19.75

18 / 20



Conclusions

Filter Trees

• Logarithmic prediction time in
the number of classes or label
combinations.

• FT can be used with any type of
binary classifiers.

• To guarantee the consistency of
the greedy prediction it requires
more demanding training.

• Filtering may reduce the
number of training examples in
the top levels of the tree.

• There is no option to predict
top classes with the highest
conditional probabilities.

Probabilistic Classifier Trees

• The prediction can be longer
than for FT.

• The complexity of the
classification is connected with
the noise of data.

• PCT requires the use of
probabilistic classifiers.

• The learning is much simpler
and can be easily parallelized.

• The probabilistic nature allows
to deliver a list of top classes.
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Thank you!

Questions?

For more check: www.cs.put.poznan.pl/ajachnik

or contact me: ajachnik@cs.put.poznan.pl

This project is partially supported by the Foundation of Polish Science under the
Homing Plus programme, co-financed by the European Regional Development Fund.
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