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Multi-label classification (MLC) is a prediction problem
in which several class labels are assigned to single instances
simultaneously.
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Object detection on images

Characters:

• Ross, Rachel, Monica, Chandler, Phoebe, Joey
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Multi-Label Classification

• Training data: {(x1,y1), (x2,y2), . . . , (xn,yn)}, yi ∈ {0, 1}m .

• Predict the vector y = (y1, y2, . . . , ym) .

X1 X2 Y1 Y2 . . . Ym

x1 5.0 4.5 1 1 0
x2 2.0 2.5 0 1 0
...

...
...

...
...

...
xn 3.0 3.5 0 1 1

x 4.0 2.5 ? ? ?
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Straight-forward Approaches

• Binary Relevance: Decompose the problem to m binary
classification problems.

• Label Powerset: Treat each label combination as a new meta-class
and use any multi-class classification method.

X1 X2 Y1 Y2 . . . Ym

x1 5.0 4.5 1 1 0
x2 2.0 2.5 0 1 0
...

...
...

...
...

...
xn 3.0 3.5 0 1 1

x 4.0 2.5 ? ? ?
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Two Main Issues in Multi-Label Classification

• Exploiting interdependence between labels – the different class
labels have to be predicted simultaneously.

• A multitude of different loss functions – different performance
measures can be defined for multi-label predictions.
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Theoretical Framework for Multi-Label Classification
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Let us start with Conventional Classification

• Let Y be the random response variable and y its realization that take
values from set G = {1, . . . ,K}.

• Similarly, let X be a random vector of features describing examples,
and x be a realization of the random vector.

• The task is to find a function h(x) that for a given object x predicts
accurately the actual value of y.
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Classification Problem

• We assume that data are coming from distribution

P (Y,X) .

• Since we predict the value of Y for a given object x, we are interested
in conditional distribution:

P (Y = k|X = x) =
P (Y = k,X = x)

P (X = x)

• It is reasonable to choose response k for which P (Y = k|X = x) is
the largest.
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Prediction

• This corresponds to minimization of the so-called 0/1 loss function:

`0/1(y, f(x)) =

{
0, if y = h(x) ,
1, otherwise .

• The solution of the following risk minimization problem:

y∗ = argmin
h(x)

EY |x`0/1(Y, h(x))

= argmin
h(x)

∑
k∈G

P (Y = k|X = x)`0/1(k, h(x))

is, in fact, k for which the conditional probability is the largest:

y∗ = argmax
k

P (Y = k|X = x)
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Getting Back to Multi-Label Classification

• The difference to binary classification is that instead of random
variable Y we have a random vector Y = (Y1, Y2, . . . , Ym).

• Vector y = (y1, y2, . . . , ym) ∈ {0, 1}m is a realization of random
vector Y .

• So, data are coming from distribution

P (Y ,X) .

• And the task is to find a function h(x) that for a given object x
predicts accurately the actual value of y.
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Multi-Label Classification Problem

• Since we predict the value of Y for a given object x, we are
interested in conditional distribution:

P (Y = y|X = x) =
P (Y = y, X = x)

P (X = x)

• It is reasonable to choose response y for which . . . ?
I P (Y = y|X = x) is the largest?
I P (Yi = yi|X = x) are the largest?
I . . . ?
I . . . ?
I . . . ?
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Multi-Label Loss Functions

• Subset 0/1 loss:

`0/1(y,h(x)) = 1[y 6= h(x)]

• Hamming loss:

`H(y,h(x)) =
1

m

m∑
i=1

1[yi 6= hi(x)]

• F-measure-based loss:

`F = 1− F (y,h) = 1−
2
∑m

i=1 yihi∑m
i=1 yi +

∑m
i=1 hi

∈ [0, 1]

• Rank loss:

`rnk(y,h) = w(y)
∑

(i,j) : yi>yj

(
1[hi(x) < hj(x)] +

1

2
1[hi(x) = hj(x)]

)

13 / 25



Reduction Algorithms

• Reduction: reusing solutions to simple, core problems in order to solve
more complex problems. (ICML 2009 Tutorial)

• Properties of reduction algorithms:
I Assumptions behind a given reduction algorithm,
I Statistical consistency and regret bounds,
I Generalization bounds,
I Learning and inference complexity.
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Binary Relevance

• BR trains for each label independent classifier:
I Does BR assume label independence?
I Is it consistent for any loss function?
I What is its complexity?
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Binary Relevance

• The risk minimizer

h∗(x) = argmin
h

EY |x`(Y ,h) ,

for Hamming loss are the marginal modes:

h∗i (x) = arg max
yi∈{0,1}

P (Yi = yi |x), i = 1, . . . ,m

• It can be proved that BR is consistent for Hamming loss without
any additional assumption on label independence.

• Learning and inference is linear in m (however, faster algorithms
exist).
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Label Powerset

• LP treats each label combination as a new meta-class and use any
multi-class classification method

I What are the assumptions behind LP?
I Is it consistent for any loss function?
I What is its complexity?
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Label Powerset

• The risk minimizer for subset 0/1 loss is the joint mode:

h∗(x) = arg max
y∈{0,1}m

P (y |x)

• Since LP treats the multi-label problem as a multi-class problem, it
can be proved that LP is consistent for subset 0/1 loss.

• Moreover, if used with probabilistic multi-class classifier, it estimates
the joint conditional distribution for given x.

• Unfortunately, learning and inference are basically exponential in m
(however, this complexity is somehow constrained by the number of
training examples).
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Hamming Loss vs. Subset 0/1 Loss

• The risk minimizers of Hamming and subset 0/1 loss have a different
structure: marginal modes vs. joint mode.

y P (y)

0 0 0 0 0.30
0 1 1 1 0.17
1 0 1 1 0.18
1 1 0 1 0.17
1 1 1 0 0.18

Hamming loss minimizer: 1 1 1 1
subset 0/1 loss minimizer: 0 0 0 0

• Under specific conditions, these two loss minimizers are provably
equivalent: joint mode ≥ 0.5, conditional independence.

• However, minimization of the subset 0/1 loss may result in a large
error for the Hamming loss and vice versa.
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Synthetic Data

Table: Results on two synthetic data sets.

Conditional independence

classifier Hamming loss subset 0/1 loss

BR 0.4208(±.0014) 0.8088(±.0020)
LP 0.4212(±.0011) 0.8101(±.0025)

Bayes Optimal 0.4162 0.8016

Conditional dependence

classifier Hamming loss subset 0/1 loss

BR 0.3900(±.0015) 0.7374(±.0021)
LP 0.4227(±.0019) 0.6102(±.0033)

Bayes Optimal 0.3897 0.6029
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Synthetic Data

Figure: Data set composed of two labels: the first label is obtained by a linear
model, while the second label represents the XOR problem.
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Synthetic Data

Table: Results of three classifiers on this data set.

classifier Hamming subset 0/1
loss loss

BR Linear SVM 0.2399(±.0097) 0.4751(±.0196)
LP Linear SVM 0.0143(±.0020) 0.0195(±.0011)

Bayes Optimal 0 0
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Synthetic Data

Table: Results of three classifiers on this data set.

classifier Hamming subset 0/1
loss loss

BR Linear SVM 0.2399(±.0097) 0.4751(±.0196)
LP Linear SVM 0.0143(±.0020) 0.0195(±.0011)

BR MLRules 0.0011(±.0002) 0.0020(±.0003)

Bayes Optimal 0 0
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Benchmark Data

Figure: Results of three classifiers on 8 benchmark data sets.
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Summary

• BR performs well for Hamming loss, but fails for subset 0/1 loss.

• LP takes the label dependence into account, but the conditional one:
it is well-tailored for the subset 0/1 loss, but fails for the Hamming
loss.

• LP may gain from the expansion of the feature or hypothesis space.

• One can easily tailor LP for solving the Hamming loss minimization
problem, by marginalization of the joint probability distribution that is
a by-product of this classifier.

24 / 25



Conclusions

• Modeling of label dependence,

• A multitude of loss functions,

• Reduction algorithms,

• Results presented for subset 0/1 loss and Hamming loss,

• Similar results for F-measure and rank loss.

This project is partially supported by the Foundation of Polish Science under the
Homing Plus programme, co-financed by the European Regional Development Fund.
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