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Multi-label classification (MLC) is a prediction problem
in which several class labels are assigned to single instances
simultaneously.
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Object detection on images

-f/"e-r\/ p-

Characters:
e Ross, Rachel, Monica, Chandler, Phoebe, Joey
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Multi-Label Classification

e Training data: {(z1,y,), (€2,Y2),---,(Tn,¥,)} y; € {0,1}™ .
¢ Predict the vector y = (y1,y2, -, Ym) -

X1 Xo Yi Yo ... Y,
xz1 50 45 1 1 0
xy 2.0 25 0 1 0
xz, 3.0 35 0 1 1

xz 40 25 77 ?
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Straight-forward Approaches

¢ Binary Relevance: Decompose the problem to m binary
classification problems.

e Label Powerset: Treat each label combination as a new meta-class
and use any multi-class classification method.

X1 Xy i Y» ... Y,
x1 5.0 45 1 1 0
xz2 2.0 25 0 1 0
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Two Main Issues in Multi-Label Classification

¢ Exploiting interdependence between labels — the different class
labels have to be predicted simultaneously.

¢ A multitude of different loss functions — different performance
measures can be defined for multi-label predictions.
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Theoretical Framework for Multi-Label Classification

~
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Let us start with Conventional Classification

e Let Y be the random response variable and y its realization that take
values from set G = {1,..., K}.

e Similarly, let X be a random vector of features describing examples,
and x be a realization of the random vector.

e The task is to find a function h(x) that for a given object x predicts
accurately the actual value of y.



Classification Problem

o \We assume that data are coming from distribution
PY,X).

e Since we predict the value of Y for a given object x, we are interested
in conditional distribution:
PY=kX=nux)
P(X =)

P(Y =kl X =x) =

e It is reasonable to choose response k for which P(Y = k| X = x) is
the largest.



Prediction

e This corresponds to minimization of the so-called 0/1 loss function:

o1 (4. f(@)) = { 0, if y=ha),

1, otherwise.

e The solution of the following risk minimization problem:

*

y- = arg I}f(lg)l Ey|zlo/1 (Y, h(z))

= argmin » P(Y = k|X =)l (k, h(z))
M) e

is, in fact, k for which the conditional probability is the largest:

Y= argm]?XP(Y =kl X =x)
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Getting Back to Multi-Label Classification

e The difference to binary classification is that instead of random
variable Y we have a random vector Y = (Y71, Ys,...,Y,,).

e Vector y = (y1,92,...,Ym) € {0,1}" is a realization of random
vector Y.

e So, data are coming from distribution
PY,X).

e And the task is to find a function h(x) that for a given object x
predicts accurately the actual value of y.
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Multi-Label Classification Problem

e Since we predict the value of Y for a given object x, we are
interested in conditional distribution:

PY =yl X =2) = PX —2)
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Multi-Label Loss Functions

e Subset 0/1 loss:

bo/1(y, h(z)) =1y # h(z)]

¢ Hamming loss:

1 m
¢ — i 7 hi(
H m; y #
e F-measure-based loss:
25" yih;
lp=1-F(y,h)=1- == 7— €[0,1
(v, ) Yo Yit D iy h 0.1]

e Rank loss:
1
by ) = wly) 3 (i) < (o) + 10u(a) = @)
(i,j)3y7;>yj
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Reduction Algorithms

e Reduction: reusing solutions to simple, core problems in order to solve
more complex problems. (ICML 2009 Tutorial)
e Properties of reduction algorithms:
» Assumptions behind a given reduction algorithm,

» Statistical consistency and regret bounds,
» Generalization bounds,

» Learning and inference complexity.
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Binary Relevance

e BR trains for each label independent classifier:

» Does BR assume label independence?
» Is it consistent for any loss function?
» What is its complexity?
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Binary Relevance

e The risk minimizer
h*(x) = arg m}in Ey (Y, h),
for Hamming loss are the marginal modes:

hi(x) =arg max P(Y;=vy;|x), i=1,....,m
yiE{Oyl}

o It can be proved that BR is consistent for Hamming loss without
any additional assumption on label independence.

e Learning and inference is linear in m (however, faster algorithms
exist).
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Label Powerset

e LP treats each label combination as a new meta-class and use any
multi-class classification method
» What are the assumptions behind LP?
» Is it consistent for any loss function?
» What is its complexity?
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Label Powerset

The risk minimizer for subset 0/1 loss is the joint mode:

h* () = P
(z) arg max (y|x)

Since LP treats the multi-label problem as a multi-class problem, it
can be proved that LP is consistent for subset 0/1 loss.

Moreover, if used with probabilistic multi-class classifier, it estimates
the joint conditional distribution for given x.

Unfortunately, learning and inference are basically exponential in m
(however, this complexity is somehow constrained by the number of
training examples).
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Hamming Loss vs. Subset 0/1 Loss

e The risk minimizers of Hamming and subset 0/1 loss have a different
structure: marginal modes vs. joint mode.

¥y Pl
0000 0.30
0111 0.17 Hamming loss minimizer: 1111
1011 0.18 subset 0/1 loss minimizer: 0000
1101 0.17
1110 0.18

o Under specific conditions, these two loss minimizers are provably
equivalent: joint mode > 0.5, conditional independence.

e However, minimization of the subset 0/1 loss may result in a large
error for the Hamming loss and vice versa.
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Synthetic Data

Table: Results on two synthetic data sets.

Conditional independence

classifier

Hamming loss

subset 0/1 loss

BR
LP

0.4208(+.0014)
0.4212(+.0011)

0.8088(£.0020)
0.8101(.0025)

Bayes Optimal

0.4162

0.8016

Conditional dependence

classifier

Hamming loss

subset 0/1 loss

BR
LP

0.3900(+.0015)
0.4227(+.0019)

0.7374(+.0021)
0.6102(+.0033)

Bayes Optimal

0.3897

0.6029
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Synthetic Data

Figure: Data set composed of two labels: the first label is obtained by a linear
model, while the second label represents the XOR problem.
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Synthetic Data

Table: Results of three classifiers on this data set.

classifier

Hamming
loss

subset 0/1
loss

BR Linear SVM
LP Linear SVM

0.2399(+.0097)
0.0143(.0020)

0.4751(4.0196)
0.0195(4.0011)

Bayes Optimal




Synthetic Data

Table: Results of three classifiers on this data set.

classifier

Hamming
loss

subset 0/1
loss

BR Linear SVM
LP Linear SVM

BR MLRules

0.2399(+.0097)
0.0143(.0020)

0.0011(~.0002)

0.4751(4.0196)
0.0195(4.0011)

0.0020(+.0003)

Bayes Optimal

0

0




Benchmark Data

Figure: Results of three classifiers on 8 benchmark data sets.
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Summary

BR performs well for Hamming loss, but fails for subset 0/1 loss.

LP takes the label dependence into account, but the conditional one:
it is well-tailored for the subset 0/1 loss, but fails for the Hamming
loss.

LP may gain from the expansion of the feature or hypothesis space.

One can easily tailor LP for solving the Hamming loss minimization
problem, by marginalization of the joint probability distribution that is
a by-product of this classifier.
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Conclusions

e Modeling of label dependence,
e A multitude of loss functions,
e Reduction algorithms,

Results presented for subset 0/1 loss and Hamming loss,

Similar results for F-measure and rank loss.
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