Multi-Label Classification: Label Dependence, Loss Minimization, and Reduction Algorithms

Krzysztof Dembczyński

Intelligent Decision Support Systems Laboratory (IDSS), Poznań University of Technology, Poland

April 2013, Poznań, Poland

Multi-label classification (MLC) is a prediction problem in which several class labels are assigned to single instances simultaneously.

Object detection on images

FRIENDS

Characters:

• Ross, Rachel, Monica, Chandler, Phoebe, Joey

Multi-Label Classification

- Training data: $\{({m x}_1, {m y}_1), ({m x}_2, {m y}_2), \dots, ({m x}_n, {m y}_n)\}$, ${m y}_i \in \{0,1\}^m$.
- **Predict** the vector $\boldsymbol{y} = (y_1, y_2, \dots, y_m)$.

	X_1	X_2	Y_1	Y_2	 Y_m
x_1	5.0	4.5	1	1	0
x_2	2.0	2.5	0	1	0
÷	÷	÷	÷	÷	÷
$oldsymbol{x}_n$	3.0	3.5	0	1	1
\overline{x}	4.0	2.5	?	?	?

Multi-Label Classification

- Training data: $\{({m x}_1, {m y}_1), ({m x}_2, {m y}_2), \dots, ({m x}_n, {m y}_n)\}$, ${m y}_i \in \{0,1\}^m$.
- **Predict** the vector $\boldsymbol{y} = (y_1, y_2, \dots, y_m)$.

	X_1	X_2	Y_1	Y_2	 Y_m
x_1	5.0	4.5	1	1	0
x_2	2.0	2.5	0	1	0
÷	÷	÷	÷	÷	÷
$oldsymbol{x}_n$	3.0	3.5	0	1	1
\overline{x}	4.0	2.5	1	1	0

Straight-forward Approaches

- **Binary Relevance**: Decompose the problem to *m* binary classification problems.
- Label Powerset: Treat each label combination as a new meta-class and use any multi-class classification method.

	X_1	X_2	Y_1	Y_2	 Y_m
$oldsymbol{x}_1$	5.0	4.5	1	1	0
$oldsymbol{x}_2$	2.0	2.5	0	1	0
÷	÷	÷	÷	÷	÷
$oldsymbol{x}_n$	3.0	3.5	0	1	1
\boldsymbol{x}	4.0	2.5	?	?	?

Two Main Issues in Multi-Label Classification

- Exploiting interdependence between labels the different class labels have to be predicted simultaneously.
- A multitude of different loss functions different performance measures can be defined for multi-label predictions.

Theoretical Framework for Multi-Label Classification

Let us start with Conventional Classification

- Let Y be the random response variable and y its realization that take values from set $G = \{1, \dots, K\}$.
- Similarly, let X be a random vector of features describing examples, and x be a realization of the random vector.
- The task is to find a function h(x) that for a given object x predicts accurately the actual value of y.

Classification Problem

• We assume that data are coming from distribution

$$P(Y, \boldsymbol{X})$$
.

• Since we predict the value of Y for a given object x, we are interested in conditional distribution:

$$P(Y = k | \boldsymbol{X} = \boldsymbol{x}) = \frac{P(Y = k, \boldsymbol{X} = \boldsymbol{x})}{P(\boldsymbol{X} = \boldsymbol{x})}$$

• It is reasonable to choose response k for which $P(Y=k|\boldsymbol{X}=\boldsymbol{x})$ is the largest.

Prediction

• This corresponds to minimization of the so-called 0/1 loss function:

$$\ell_{0/1}(y, f(\boldsymbol{x})) = \begin{cases} 0, & \text{if } y = h(\boldsymbol{x}), \\ 1, & \text{otherwise}. \end{cases}$$

• The solution of the following **risk** minimization problem:

$$y^* = \arg\min_{h(\boldsymbol{x})} \mathbb{E}_{Y|\boldsymbol{x}} \ell_{0/1}(Y, h(\boldsymbol{x}))$$

=
$$\arg\min_{h(\boldsymbol{x})} \sum_{k \in G} P(Y = k | \boldsymbol{X} = \boldsymbol{x}) \ell_{0/1}(k, h(\boldsymbol{x}))$$

is, in fact, k for which the conditional probability is the largest:

$$y^* = \arg\max_k P(Y = k | \boldsymbol{X} = \boldsymbol{x})$$

Getting Back to Multi-Label Classification

- The difference to binary classification is that instead of random variable Y we have a random vector $\mathbf{Y} = (Y_1, Y_2, \dots, Y_m)$.
- Vector $\boldsymbol{y} = (y_1, y_2, \dots, y_m) \in \{0, 1\}^m$ is a realization of random vector \boldsymbol{Y} .
- So, data are coming from distribution

 $P(\boldsymbol{Y}, \boldsymbol{X})$.

 And the task is to find a function h(x) that for a given object x predicts accurately the actual value of y.

$$P(\boldsymbol{Y} = \boldsymbol{y} | \boldsymbol{X} = \boldsymbol{x}) = \frac{P(\boldsymbol{Y} = \boldsymbol{y}, X = \boldsymbol{x})}{P(\boldsymbol{X} = \boldsymbol{x})}$$

• Since we predict the value of Y for a given object x, we are interested in conditional distribution:

$$P(\boldsymbol{Y} = \boldsymbol{y} | \boldsymbol{X} = \boldsymbol{x}) = \frac{P(\boldsymbol{Y} = \boldsymbol{y}, X = \boldsymbol{x})}{P(\boldsymbol{X} = \boldsymbol{x})}$$

• It is reasonable to choose response \boldsymbol{y} for which

• Since we predict the value of Y for a given object x, we are interested in conditional distribution:

$$P(\boldsymbol{Y} = \boldsymbol{y} | \boldsymbol{X} = \boldsymbol{x}) = \frac{P(\boldsymbol{Y} = \boldsymbol{y}, X = \boldsymbol{x})}{P(\boldsymbol{X} = \boldsymbol{x})}$$

• It is reasonable to choose response y for which \ldots ?

$$P(\boldsymbol{Y} = \boldsymbol{y} | \boldsymbol{X} = \boldsymbol{x}) = \frac{P(\boldsymbol{Y} = \boldsymbol{y}, X = \boldsymbol{x})}{P(\boldsymbol{X} = \boldsymbol{x})}$$

- It is reasonable to choose response y for which ... ?
 - P(Y = y | X = x) is the largest?

$$P(\boldsymbol{Y} = \boldsymbol{y} | \boldsymbol{X} = \boldsymbol{x}) = \frac{P(\boldsymbol{Y} = \boldsymbol{y}, X = \boldsymbol{x})}{P(\boldsymbol{X} = \boldsymbol{x})}$$

- It is reasonable to choose response y for which ... ?
 - P(Y = y | X = x) is the largest?
 - $P(Y_i = y_i | \boldsymbol{X} = \boldsymbol{x})$ are the largest?

$$P(\boldsymbol{Y} = \boldsymbol{y} | \boldsymbol{X} = \boldsymbol{x}) = \frac{P(\boldsymbol{Y} = \boldsymbol{y}, X = \boldsymbol{x})}{P(\boldsymbol{X} = \boldsymbol{x})}$$

- It is reasonable to choose response y for which ... ?
 - P(Y = y | X = x) is the largest?
 - $P(Y_i = y_i | \boldsymbol{X} = \boldsymbol{x})$ are the largest?
 - ▶ ... ?
 - ▶ ...?
 - ▶ ...?

Multi-Label Loss Functions

• Subset 0/1 loss:

$$\ell_{0/1}(\boldsymbol{y},\boldsymbol{h}(\boldsymbol{x})) = \mathbb{1}[\boldsymbol{y} \neq \boldsymbol{h}(\boldsymbol{x})]$$

• Hamming loss:

$$\ell_H(\boldsymbol{y}, \boldsymbol{h}(\boldsymbol{x})) = rac{1}{m} \sum_{i=1}^m \mathbb{1}[y_i \neq h_i(\boldsymbol{x})]$$

• F-measure-based loss:

$$\ell_F = 1 - F(\boldsymbol{y}, \boldsymbol{h}) = 1 - \frac{2\sum_{i=1}^m y_i h_i}{\sum_{i=1}^m y_i + \sum_{i=1}^m h_i} \in [0, 1]$$

• Rank loss:

$$\ell_{\mathsf{rnk}}(\boldsymbol{y}, \boldsymbol{h}) = w(\boldsymbol{y}) \sum_{(i,j): \, y_i > y_j} \left(\mathbbm{1}[h_i(\boldsymbol{x}) < h_j(\boldsymbol{x})] + \frac{1}{2} \mathbbm{1}[h_i(\boldsymbol{x}) = h_j(\boldsymbol{x})] \right)$$

Reduction Algorithms

- Reduction: reusing solutions to simple, core problems in order to solve more complex problems. (ICML 2009 Tutorial)
- Properties of reduction algorithms:
 - Assumptions behind a given reduction algorithm,
 - Statistical consistency and regret bounds,
 - Generalization bounds,
 - Learning and inference complexity.

Binary Relevance

- BR trains for each label independent classifier:
 - Does BR assume label independence?
 - Is it consistent for any loss function?
 - What is its complexity?

Binary Relevance

• The risk minimizer

$$h^*(x) = \arg\min_{h} \mathbb{E}_{Y|x}\ell(Y,h),$$

for Hamming loss are the marginal modes:

$$h_i^*(\boldsymbol{x}) = \arg \max_{y_i \in \{0,1\}} P(Y_i = y_i | \boldsymbol{x}), \quad i = 1, \dots, m$$

- It can be proved that BR is **consistent** for Hamming loss **without** any additional assumption on **label independence**.
- Learning and inference is linear in m (however, faster algorithms exist).

Label Powerset

- LP treats each label combination as a new meta-class and use any multi-class classification method
 - What are the assumptions behind LP?
 - Is it consistent for any loss function?
 - What is its complexity?

Label Powerset

• The risk minimizer for subset 0/1 loss is the joint mode:

$$\boldsymbol{h}^*(\boldsymbol{x}) = \arg \max_{\boldsymbol{y} \in \{0,1\}^m} P(\boldsymbol{y} \,|\, \boldsymbol{x})$$

- Since LP treats the multi-label problem as a multi-class problem, it can be proved that LP is **consistent** for subset 0/1 loss.
- Moreover, if used with probabilistic multi-class classifier, it estimates the joint conditional distribution for given *x*.
- Unfortunately, learning and inference are basically exponential in *m* (however, this complexity is somehow constrained by the number of training examples).

Hamming Loss vs. Subset 0/1 Loss

• The risk minimizers of Hamming and subset 0/1 loss have a different structure: marginal modes vs. joint mode.

$oldsymbol{y}$	$P(oldsymbol{y})$		
0000	0.30		
$0\ 1\ 1\ 1$	0.17	Hamming loss minimizer:	$1 \ 1 \ 1 \ 1 \ 1$
$1 \ 0 \ 1 \ 1$	0.18	subset $0/1$ loss minimizer:	$0 \ 0 \ 0 \ 0$
$1 \ 1 \ 0 \ 1$	0.17		
1110	0.18		

- Under specific conditions, these two loss minimizers are provably equivalent: joint mode ≥ 0.5 , conditional independence.
- However, minimization of the subset 0/1 loss may result in a large error for the Hamming loss and vice versa.

Table:	Results	on	two	synthetic	data	sets.
--------	---------	----	-----	-----------	------	-------

classifier	Hamming loss	subset $0/1$ loss
BR LP	$0.4208(\pm .0014)$ $0.4212(\pm .0011)$	$0.8088(\pm .0020)$ $0.8101(\pm .0025)$
Bayes Optimal	0.4162	0.8016
	Conditional dependent	ce
classifier	Hamming loss	subset $0/1$ loss
BR LP	$0.3900(\pm .0015) \\ 0.4227(\pm .0019)$	$0.7374(\pm.0021)$ $0.6102(\pm.0033)$
Bayes Optimal	0.3897	0.6029

Conditional independence

Figure: Data set composed of two labels: the first label is obtained by a linear model, while the second label represents the XOR problem.

Table: Results of three classifiers on this data set.

classifier	Hamming loss	subset 0/1 loss
BR Linear SVM LP Linear SVM	$0.2399(\pm .0097)$ $0.0143(\pm .0020)$	$0.4751(\pm.0196)$ $0.0195(\pm.0011)$
Bayes Optimal	0	0

Table: Results of three classifiers on this data set.

classifier	Hamming loss	subset 0/1 loss
BR Linear SVM LP Linear SVM BR MLRules	0.2399(±.0097) 0.0143(±.0020) 0.0011(±.0002)	0.4751(±.0196) 0.0195(±.0011) 0.0020(±.0003)
Bayes Optimal	0	0

Benchmark Data

Figure: Results of three classifiers on 8 benchmark data sets.

Summary

- BR performs well for Hamming loss, but fails for subset 0/1 loss.
- LP takes the label dependence into account, but the conditional one: it is well-tailored for the subset 0/1 loss, but fails for the Hamming loss.
- LP may gain from the expansion of the feature or hypothesis space.
- One can easily tailor LP for solving the Hamming loss minimization problem, by marginalization of the joint probability distribution that is a by-product of this classifier.

Conclusions

- Modeling of label dependence,
- A multitude of loss functions,
- Reduction algorithms,
- Results presented for subset 0/1 loss and Hamming loss,
- Similar results for F-measure and rank loss.

This project is partially supported by the Foundation of Polish Science under the Homing Plus programme, co-financed by the European Regional Development Fund.

