
Robert Wrembel

Politechnika Poznańska

Instytut Informatyki

Robert.Wrembel@cs.put.poznan.pl

www.cs.put.poznan.pl/rwrembel

Data Warehouses and
Business Intelligence:

Big Data

2 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

 Introduction to Big Data

 Big Data Architectures

 GFS, HDFS, Hadoop

 Some other hot trends

Outline

Big Data

3 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

internal company BI
system

Big Data analytics

Big Data storage

hobbies + behaviour of customers 
targeted marketing
sentiment analysis  brand image
job seeking  employment trends
prices of goods  inflation

Big Data

 Huge Volume

 Every minute:

 48 hours of video are uploaded onto Youtube

 204 million e-mail messages are sent

 600 new websites are created

 600000 pieces of content are created

 over 100000 tweets are sent (~ 80GB daily)

 Sources:

 social data

 web logs

 machine generated

4 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Big Data

5 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

 Sensors

 mechanical installations (refineries, jet engines,
crude oil platforms, traffic monitoring, utility
installations, irrigation systems)

• one sensor on a blade of a turbine generates 520GB
daily

• a single jet engine can generate 10TB of data in 30
minutes

 telemedicine

 telecommunication

Big Data

 High Velocity of

 data volume growth

 uploading the data into an analytical system

 Variety (heterogeneity) of data formats

 structured - relational data and multidimensional
cube data

 unstructured or semistructured - text data

 semantic Web XML/RDF/OWL data

 geo-related data

 sensor data

 Veracity (Value) - the quality or reliability of data

6 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Big Data - Problems

 Storage

 volume

 fast data access

 fast processing

 Real-time analysis

 analyzing fast-arriving streams of data

7 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Types of processing

 Batch processing - standard DW refreshing

 Real-time / near real-time data analytics

 answers with the most updated data up to the moment the
query was sent

 the analytical results are updated after a query has been
executed

 Streaming analytics

 a system automatically updates results about the data
analysis as new pieces of data flow into the system

 as-it-occurs signals from incoming data without the need
to manually query for anything

8 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Real-time / Near real-time
architecture

9 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

data stream active component
main-memory engine

OLTP + OLAP

Real-time / Near real-time
refreshing

10 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

users

refreshing

traditional DW

users

refreshing

real-time DW

Big Data Architecture

11 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

clicks
tweets
facebook likes
location information
...

massive data processing server
- MDPS (aggregation, filtering)

analytics server -
AS

reporting server -
RS complex event processor

- CEP

real-time decision
engine - RTDE

12

Big Data Architecture

 Scalability

 RTDE - nb of events handled

 MDPS - volume of data and frequency of data
processing

 AS - complexity of computation, frequency of queries

 RS - types of queries, nb of users

 CEP - # events handled

 Type of data

 RTDE - unstructured, semistructured (texts, tweets)

 MDPS – semistructured, structured

 AS - structured

 RS - structured

 CEP - unstructured and structured

R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Big Data Architecture

 Workload

 RTDE - high write throughput

 MDPS - long-running data processing (I/O and CPU
intensive): data transformations, ...

 AS - compute intensive (I/O and CPU intensive)

 RS - various types of queries

 Technologies

 RTDE - key-value, in-memory

 MDPS - Hadoop

 AS - in-memory, columnar DBs

 RS - in-memory, columnar DBs

 Conclusion

 very complex architecture with multiple components

 the need of integration

 13 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

IBM Architecture

 Data warehouse augmentation: the queryable data store. IBM
software solution brief.

14 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Big Data Architecture

15 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

16 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Big Data Architecture

data ingest

high level language for
processing MapReduce

coordinate and schedule
workflows

columnar storage
and query

coordinate and manage all the components

http://www.cloudera.com/content/cloudera/en/resources/library/training/ap
ache-hadoop-ecosystem.html

Big Data Architecture

17 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

columnar storage
and query
based on BigTable
manages TB of data

coordinate and manage all the components
service discovery, distributed locking, ...

high level language for
processing MapReduce

SQL-like language for data analysis
supports selection, join, group by, ...

user interface to Hive

web log loader (log scrapper),
periodical loading into Hadoop
aggregating log entries (for offline
analysis)

Big Data Architecture

18 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

coordinate and schedule
workflows
schedule and manage Pig, Hive, Java,
HDFS actions

RDB-like interface to data stored
in Hadoop

high level languages for
processing MapReduce

distributed web log loader (log scrapper),
periodical loading into Hadoop (for offline
analysis)

Big Data Architecture

19 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

SQL to Hadoop: command line
tool for importing any JDBC
data source into Hadoop

distributed web log loader and
aggregator (in real time)

workflow (batch job) scheduler
(e.g., data extraction, loading into Hadoop)

table-like data storage + in memory
caching

managing the services, e.g., detercting addition or removal
of Kafka's brokers and consumers, load balancing

Big Data Architecture

20 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

workflow coordination
and scheduling

high level languages for
processing MapReduce

coordinate and manage all the components
distributed web log loader (log scrapper),
periodical loading into Hadoop (for offline
analysis)

UI for Hadoop (e.g., HDFS file
browser, MapReduce job
designer and browser, query
interfaces for Hive, Pig, Impala,
Oozie, application for creating
workflows, Hadoop API)

Big Data Architecture

21 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Windows Azure

Java OM
Streaming

OM
HiveQL PigLatin (T)SQL

.NET/C#/F

NOSQL ETL

Tomasz Kopacz - Microsoft Polska: prezentacja Windows Azure, Politechnika
Poznańska, czerwiec 2013

Data Ingest (ETL)

 Kafka

 Storm

 Flink

 Sqoop

 NiFi

22 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

23 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

 Kafka Streams

 event by event reading

 Java

 aggregation in a sliding window

 no built-in stream mining algorithms

 Spark Streaming

 micro batches

 built-in stream mining algorithms

23 © Robert Wrembel

24 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

NiFi

 Purpose: to automate the flow of data between multiple
systems → similar to ETL

 Asynchronous: for very high throughput and slow processing
buffering may be used

24 © Robert Wrembel

25 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

NiFi building blocks

25 © Robert Wrembel

 Processors

 process data delivered as FlowFiles

 FlowFile

 represents data moved within NiFi, represented as key-
value

 Connection

 connect processors, serves as a queue - buffering, different
processors may read from the queue at differing rates

 Flow Controller

 acts as a broker facilitating the exchange of FlowFiles
between processors

 Process Group

 is a set of processes and connections, which can receive
data via input ports and send data out via output ports

ETL for Big Data - Kafka

 Distributed queuing/messaging

 Handling 1 000 000 000 messages daily

 Used for transferring data from WEB logs in real
time

 Terms

 a topic: stream messages of particular type, divided
into partitions

 a producer: publishes a given topic

 a consumer: subscribes to one or more topics

 a broker: stores topics for their distribution to
consumers

26 R.Wrembel - Poznan University of Technology, Institute of Computing Science

Kafka

27 R.Wrembel - Poznan University of Technology, Institute of Computing Science

 Multiple brokers (broker cluster) for load balancing

broker1
topic1: partition1, partition2
topic2: partition1, partition2

broker2
topic1: partition1, partition2
topic2: partition1, partition2

broker3
topic1: partition1, partition2
topic2: partition1, partition2

consumer
subscribe: topic1

consumer
subscribe: topic2

consumer
subscribe: topic1

Kafka

 Consumer maintains the info about read topic's
partitions

 Broker deletes partitions after a given time period
regardless they have been read by a consumer or
not  possible data lost

 At-least-once delivery model in the case of
consumer failure

 after restart a consumer may re-read the last topic's
partition  duplicates

 The order of messages in a partition is preserved
within a delivery

 The order of inter-partition delivery from different
brokers is not preserved (e.g., read partition2 from
broker3 then read partition1 from broker2)

28 R.Wrembel - Poznan University of Technology, Institute of Computing Science

Hadoop Distributions

 Cloudera, MapR, Hortonworks, IBM, Pivotal
Software

29 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Data Stores

 NoSQL

 Key-value DB

 data structure  collection, represented as a pair:

key and value

 data have no defined internal structure  the

interpretation of complex values must be made by an
application processing the values

 operations  create, read, update (modify), and

delete (remove) individual data - CRUD

 the operations process only a single data item
selected by the value of its key

 Voldemort, Riak, Redis, Scalaris, Tokyo Cabinet,
MemcacheDB, DynamoDB

30 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Data Stores

 Column family (column oriented, extensible record,
wide column)

 definition of a data structure includes

• key definition

• column definitions

• column family definitions

31 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

column family CF1 column family CF2

row key K1

row key K2

row key K3

row key K4

row key Kn

Col1 Col2 Col3 Col4 Col5

value value value

value value value

value value value value value

value value

Data Stores

 column family  stored separately, common to all

data items (~ shared schema)

 column  stored with a data item, specific for the

data item

 CRUD interface

 HBase, HyperTable, Cassandra, BigTable, Accumulo,
SimpleDB

32 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Data Stores

 Document DB

 typically JSON-based structure of documents

 SimpleDB, MongoDB, CouchDB, Terrastore, RavenDB,
Cloudant

 Graph DB

 nodes, edges, and properties to represent and store
data

 every node contains a direct pointer to its adjacent
element

 Neo4j, FlockDB, GraphBase, RDF Meronymy SPARQL

33 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Performance evaluation

 A. Rusin, A. Szymczak: master level term project
(2015)

 HBase  Cassandra

 virtual machines 8 CPUs, 16 GBs RAM, 480 GB HDD

 Ubuntu (14.04.1 LTS)

 Cassandra 2.0.14

 HBase 1.0.0 + Hadoop 2.5.2

 2 Cassandra data nodes

 2 (HBase RegionServer + Hadoop DataNode) + 1
(HBase MasterServer + Hadoop NameNode)

 Yahoo Cloud Serving Benchmark with modified
workloads

34 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

HBase - Cassandra

35 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

 Read-only workload

 # of threads for HBase and Cassandra: 256

 cache size:

• HBase memstore: 2048 MB

• Cassandra memtable: 2048 MB

HBase - Cassandra

 Write-only workload

36 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

HBase - Cassandra

37 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

 Read-write workload

 data volume: 20 GB

GFS

 Google implementation of DFS (cf. The Google File System

- whitepaper)

 Distributed FS

 For distributed data intensive applications

 Storage for Google data

 Installation

 hundreds of TBs of storage, thousands of disks, over a
thousand cheep commodity machines

 The architecture is failure sensitive  therefore

 fault tolerance

 error detection

 automatic recovery

 constant monitoring is required

38 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

GFS

 Typical file size: multiple GB

 Operations on files

 mostly appending new data  multiple large

sequential writes

 no updates of already appended data

 mostly large sequential reads

 small random reads occur rarely

 file size at least 100MB

 millions of files

39 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

GFS

 Files are organized hierarchically in directories

 Files are identified by their pathnames

 Operations on files: create, delete, open, close, read,
write, snapshot (creates a copy of a file or a directory
tree), record append (appends data to the same file
concurrently by multiple clients)

 GFS cluster includes

 single master

 multiple chunk servers

40 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

GFS

41 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

S. Ghemawat, H. Gobioff, S-T. Leung. The Google File System.
http://research.google.com/archive/gfs.html

master client

chunk server chunk server

.....

chunk server

.....

1: file name, chunk index

2: chunk handle, chunk replica
locations

3: chunk handle,
byte range
sent to one replica

4: data

management + heartbit messages

HDFS

 Apache implementation of DFS

 http://hadoop.apache.org/docs/stable/hdfs_design.html

42 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Storage

 Distributed file systems

 Amazon Simple Storage Service (S3)

 Gluster

 Storage formats

 Apache Avro for storing serialized data in JSON for
Hadoop

 Apache Parquet - column oriented data store for
Hadoop

43 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Example

 In 2010 Facebook stored over 30PB in Hadoop

 Assuming:

 30,000 1TB drives for storage

 typical drive has a mean time between failure of
300,000 hours

 2.4 disk drive fails daily

44 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Integration with Hadoop

 IBM BigInsights  Cloudera distribution + IBM
custom version of Hadoop called GPFS

 Oracle BigData  appliance based on Cloudera for

storing unstructured content

 Informatica HParser  to launch Informatica

process in a MapReduce mode, distributed on the
Hadoop servers

 Microsoft  dedicated Hadoop version supported

by Apache for Microsoft Windows and for Azure

 EMC Greenplum, HP Vertica, Teradata Aster Data,
SAP Sybase IQ  provide connectors directly to

HDFS

45 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Integration with Hadoop

 M.Gualtieri, B. Hopkins: SQL-For-Hadoop: 14 Capable Solutions
Reviewed. Forrester, 2015

 Pure SQL for Hadoop

46 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Integration with Hadoop

 Boosted SQL for Hadoop

 Typically include: query parser and optimizer

 Require more strucutred data to exploit the power of SQL

47 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Integration with Hadoop

 Database + Hadoop

 Hadoop files accessed via external tables from a DB

48 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Integration with Hadoop

 SAP Vora: HANA + Spark + Hadoop

49 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

 The Contextual Data Lake. By SAP, available at:
https://tdwi.org/whitepapers/2015/10/the-contextual-data-lake.aspx

ETL

 The Five Most Common Big Data Integration Mistakes To Avoid.
ORACLE white paper, 2015

50 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Hadoop-based DWs

 Impala, Stinger, Apache Drill, Phoenix, Shark,
Hadapt

 Teradata SQL-H, EMC HAWQ, IBM BigSQL

51 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Data Lake

 A repository that stores a vast amount of raw data
in its native format until it is needed

 Each data element in a lake is assigned a unique
identifier and tagged with a set of metadata

 Often implemented based on Hadoop

 No schema on write schemas of data are not
defined (considered) while writing to a data lake

 The schema is obtained when data are queried →
schema on read

52 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Data Lake Architecture

 Image taken from: Putting the Data Lake to Work - a Guide to Best Practices.
CITO Research, April 2014

53 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

ETL for Big Data

54 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

streams:
simple records
 (sequences, time series)
images
sounds
videos
texts
 (unstruct., semi-struct.)

periodically uploaded

E(T)L

data lake

Data Lake

 No schema on write

 Schema on read

 the need to understand the content  metadata

 Data lake content

 relational tables

 WEB tables

 XML

 texts

 images, sounds, videos

 graphs

 ... any existing format

55 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Data Lake

 Querying a data lake

 a query language and query engine capable of
expressing and processing a query, possibly
expressed in a natural language

 finding relevant data sources for a query

• relevant "schema"/structure

• relevant content

• correlating multiple data sources of the same semantics

• selecting the most reliable data sources

 finding the relevant data sources quickly

56 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Data Lake

 Querying a data lake

 efficiently retrieving subsets of data for a query

• data of high quality

 transforming data on the fly (during a query
execution) into a common format

 integrating data on the fly

 choosing appropriate ways of visualizing the results

 scalability  performance

57 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Novel search methods

 Find colleagues of Robert Wrembel

58 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Novel search methods

59 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

busniess

busniess

busniess

research

research

social

Novel search methods

 Correlating and combining multiple data sources of
different formats

 Information about which DSs were used to answer
a query

 Information about the quality of the used DSs

60 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

find colleagues of Robert Wrembel
context business, research, social
output graph | table

Collaborative BI

 Annotating results of analyses

 Searching for the results of previous analyses

61 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Metadata

 Extensive usage of metadata

 schema/structure

• semantics of properties

 content

• semantics of values

 transformation rules

 visualization

 performance

 Data annotation during E(T)L

 Data profiling in a data lake

 Incremental maintenance of metadata

 Metadata standard?

 CWM for relational systems

 ? for data lakes

 62 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

RDBMS vs. NoSQL: the Future?

 TechTarget: Relational database management
system guide: RDBMS still on top

 http://searchdatamanagement.techtarget.com/essentialg
uide/Relational-database-management-system-guide-
RDBMS-still-on-top

 "While NoSQL databases are getting a lot of
attention, relational database management
systems remain the technology of choice for most
applications„

 S. Ghandeharizadeh: SQL, NoSQL, and Next
Generation Data Stores. Keynote talk at DEXA 2015

 RDBMS will be important components of IT
infrastructures

63 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

RDBMS vs. NoSQL: the Future?

 R. Zicari: Big Data Management at American
Express. Interview with Sastry Durvasula and Kevin Murray.

ODBMS Industry Watch. Trends and Information on Big Data,
New Data Management Technologies, and Innovation. Oct,
2014, available at:
http://www.odbms.org/blog/2014/10/big-data-
management-american-express-interview-sastry-durvasula-
kevin-murray/

 "The Hadoop platform indeed provides the ability to
efficiently process large-scale data at a price point
we haven’t been able to justify with traditional
technology. That said, not every technology process
requires Hadoop; therefore, we have to be smart
about which processes we deploy on Hadoop and
which are a better fit for traditional technology (for
example, RDBMS)."–Kevin Murray.

64 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Enterprise Data Warehouse

 The Contextual Data Lake. By SAP, available at:
https://tdwi.org/whitepapers/2015/10/the-contextual-
data-lake.aspx

 "... companies will retain an EDW as part of their overall
data architecture ..."

65 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

RDBMS

 Conceptual and logical modeling methodologies
and tools

 Rich SQL functionality

 Query optimization

 Concurrency control

 Data integrity management

 Backup and recovery

 Performance optimization

 buffers' tuning

 storage tuning

 advanced indexing

 in-memory processing

 Application development tools

66 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

NoSQL

 Flexible "schema"  suitable for unstructured data

 Massively parallel processing

 Cheap hardware + open source software

 Choosing the right NoSQL database for the job: a
quality attribute evaluation. Journal of Big Data;
http://www.journalofbigdata.com/content/2/1/18

67 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Gartner Report

68 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

 http://www.gartner.com/technology/reprints.do?id=1-
2PMFPEN&ct=151013&st=sb

Some other trends

 Apache Derby: Java-based ANSI SQL database

 Splice Machine

 Derby (redesigned query optimizer to support parallel
processing) on HBase (parallel processing) + Hadoop
(parallel storage and processing)

 Apache Phoenix

 relational-like DB on HBase

 SQL interface

 Virtuoso

69 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Some other trends

 Web Table: https://research.google.com/tables?hl=en

 Google Knowledge Graph

70 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Trends cont.

 Analyzing Twitter posts

 Google flu trend maps

• http://www.slate.com/blogs/moneybox/2014/04/04/
twitter_economics_university_of_michigan_stanford_r
esearchers_are_using.html

• "Google tracks flu activity around the world by
monitoring how many people are searching flu-related
terms in different areas, and with what frequency. “We
have found a close relationship between how many
people search for flu-related topics and how many
people actually have flu symptoms”"

 tweets on unemployment well correlate with real
governmental data

• http://www.washingtonpost.com/blogs/wonkblog/wp
/2014/05/30/the-weird-google-searches-of-the-
unemployed-and-what-they-say-about-the-economy/

71 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Trends cont.

 Big Data integration and cleaning  to get correct

data

 Text analytics

 summarization

 sentiment

 Tracking the evolution of entities in the Internet
over time

 ACM SIGMOD Blog

 http://wp.sigmod.org/

72 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Trends cont.

 Top 8 Big Data Trends for 2016
http://www.tableau.com/sites/default/files/media/top
8bigdatatrends2016_final_1.pdf

73 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

1. NoSQL 

2. Apache Spark - more efficient than Hadoop, the largest
big data open source project

3. Applying Hadoop to production

4. Hadoop becomes a standard component of Big Data
architectures

5. Fast data exploration capabilities and seeing Big Data
as OLAP cubes

6. Self-service data preparation tools

7. Massively Parallel Processing Data Warehouse (in a
cloud)

8. IoT  PB of data in a Cloud

Landscape: past

74 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

 Data models

 relational

 object-oriented

 semi-structured

 ...

 Data formats

 numbers, dates, strings

 ...

 Veolocity

 OLTP systems

http://www.tableau.com/sites/default/files/media/top8bigdatatrends2016_final_1.pdf
http://www.tableau.com/sites/default/files/media/top8bigdatatrends2016_final_1.pdf

Landscape: today

75 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

 Data models

 relational

 graphs

 NoSQL

 semi-structured

 unstructured

 ...

 Data formats

 numbers, dates, strings

 HTML, XML, JSON

 time series and sequences

 texts

 multimedia

 ...

 Veolocity

 frequently changing (e.g.,
Facebook)

 constantly changing
(streams)

Needs: today

 Storing efficiently (fast writes, compression)

 Retrieving efficiently (fast scans, fast search)

 Integrating for analysis

76 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Data integration: past

 Virtual integration

 federated

 mediated

 Physical integration

 ETL + data warehouse

 Common integration data model

 relational

 object-oriented

77 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Big Data integration

 Physical integration → data lake

 large repository of heterogeneous data (in multiple data
models/formats)

 no schema on write - schema on read

 typically based on a distributed file system

 need for refreshing

• how to detect changes?

• new algorithms for incremental refreshing?

• even incremental refreshing uploads large volumes of data

78 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

distributed file system (HDFS/GFS)

Big Data integration

 Logical integration → analogy to mediated/federated

architectures

 Polystore
 J. Duggan, A.J. Elmore, M. Stonebreaker, et. al.: The BigDAWG Polystore

System. SIGMOD Record, Vol. 44, No. 2, 2015

 federation of islands of information

 island of information: collection of storage engines
using the same data model (query language)

79 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

relational graph NoSQL

access layer access layer access layer

Big Data integration challenges (1)

1. How to (semi)-automatically discover data
sources?

 DS structure discovery

 DS content understanding

2. How to dynamically plug-in a DS into a
federation?

3. How to construct an integrated conceptual model?

4. What integration data model to use?

5. Global query processing?

 parsing, decomposing, translating into native
dialects, and routing

6. Global query optimization?

80 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Big Data integration challenges (2)

7. How to integrate (transform, clean, deduplicate,
integrate) on the fly data returned by local queries?

8. Performance optimization

 caching some results

• what to cache?

• how to store (RAM only vs. disk)?

 how to manage the cache (removing/adding data)?

9. New ways of querying

 fusion tables

81 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Big Data integration challenges (3)

10.User interface and visualization

 one wants to work graphs

 another wants to work with tables

 multiple (different) schemas needed for mutliple
users → multiple query languages?

11.Conceptual modeling for data warehouses

 facts and dimensions in XML, Graph, NoSQL →

already ongoing research

82 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Programming Languages

 Top Languages for analytics, data mining, data
science

 Sept 2013, source:

 http://www.datasciencecentral.com/profiles/blogs/top-languages-for-
analytics-data-mining-data-science

 The most popular languages continue to be

 R (61%)

 Python (39%)

 SQL (37%)

 SAS (20%)

83 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Programming Languages

 Growth from 2012 to 2013

 Pig Latin/Hive/other Hadoop-based languages 

19%

 R  16%

 SQL  14% (the result of increasing number of SQL

interfaces to Hadoop and other Big Data systems?)

 Decline from 2012 to 2013

 Lisp/Clojure  77%

 Perl  50%

 Ruby  41%

 C/C++  35%

 Unix shell/awk/sed  25%

 Java  22%

84 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

Top 10 Data Science Skills

85 R.Wrembel - Poznan University of Technology, Institute of Comuting Science

 Data Science Report. 2016, Crowd Flower

