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 Introduction to Big Data 

 Big Data Architectures 

 GFS, HDFS, Hadoop 

 Some other hot trends 

 

Outline 



Big Data 
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internal company BI 
system 

Big Data analytics 

Big Data storage 

hobbies + behaviour of customers  
targeted marketing 
sentiment analysis  brand image 
job seeking  employment trends 
prices of goods  inflation 

Big Data 

 Huge Volume 

 Every minute: 

 48 hours of video are uploaded onto Youtube  

 204 million e-mail messages are sent 

 600 new websites are created 

 600000 pieces of content are created  

 over 100000 tweets are sent (~ 80GB daily) 

 Sources: 

 social data 

 web logs 

 machine generated 
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Big Data 
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 Sensors 

 mechanical installations (refineries, jet engines, 
crude oil platforms, traffic monitoring, utility 
installations, irrigation systems) 

• one sensor on a blade of a turbine generates 520GB 
daily 

• a single jet engine can generate 10TB of data in 30 
minutes  

 telemedicine 

 telecommunication 

Big Data 

 High Velocity of  

 data volume growth  

 uploading the data into an analytical system 

 Variety (heterogeneity) of data formats 

 structured - relational data and multidimensional 
cube data 

 unstructured or semistructured - text data 

 semantic Web XML/RDF/OWL data 

 geo-related data 

 sensor data 

 Veracity (Value) - the quality or reliability of data 
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Big Data - Problems 

 Storage 

 volume 

 fast data access 

 fast processing 

 Real-time analysis 

 analyzing fast-arriving streams of data 
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Types of processing 

 Batch processing - standard DW refreshing 

 Real-time / near real-time data analytics 

 answers with the most updated data up to the moment the 
query was sent 

 the analytical results are updated after a query has been 
executed 

 Streaming analytics 

 a system automatically updates results about the data 
analysis as new pieces of data flow into the system 

 as-it-occurs signals from incoming data without the need 
to manually query for anything 
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Real-time / Near real-time 
architecture 
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data stream active component 
main-memory engine 

OLTP + OLAP 

Real-time / Near real-time 
refreshing 
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users 

refreshing 

traditional DW 

users 

refreshing 

real-time DW 



Big Data Architecture 
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clicks 
tweets 
facebook likes 
location information 
... 

massive data processing server 
- MDPS (aggregation, filtering) 

analytics server - 
AS 

reporting server - 
RS complex event processor  

- CEP 

real-time decision 
engine - RTDE 
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Big Data Architecture 

 Scalability 

 RTDE - nb of events handled 

 MDPS - volume of data and frequency of data 
processing 

 AS - complexity of computation, frequency of queries 

 RS - types of queries, nb of users 

 CEP - # events handled 

 Type of data 

 RTDE - unstructured, semistructured (texts, tweets) 

 MDPS – semistructured, structured  

 AS - structured 

 RS - structured 

 CEP - unstructured and structured 
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Big Data Architecture 

 Workload 

 RTDE - high write throughput 

 MDPS - long-running data processing (I/O and CPU 
intensive): data transformations, ... 

 AS - compute intensive (I/O and CPU intensive) 

 RS - various types of queries 

 Technologies 

 RTDE - key-value, in-memory 

 MDPS - Hadoop 

 AS - in-memory, columnar DBs 

 RS - in-memory, columnar DBs 

 Conclusion 

 very complex architecture with multiple components 

 the need of integration 
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IBM Architecture 

 Data warehouse augmentation: the queryable data store. IBM 
software solution brief. 
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Big Data Architecture 
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Big Data Architecture 

data ingest 

high level language for 
processing MapReduce 

coordinate and schedule 
workflows 

columnar storage 
and query 

coordinate and manage all the components 

http://www.cloudera.com/content/cloudera/en/resources/library/training/ap
ache-hadoop-ecosystem.html 



Big Data Architecture 
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columnar storage 
and query 
based on BigTable 
manages TB of data 

coordinate and manage all the components 
service discovery, distributed locking, ... 

high level language for 
processing MapReduce 

SQL-like language for data analysis 
supports selection, join, group by, ... 

user interface to Hive 

web log loader (log scrapper),  
periodical loading into Hadoop 
aggregating log entries (for offline 
analysis) 

Big Data Architecture 
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coordinate and schedule 
workflows 
schedule and manage Pig, Hive, Java,  
HDFS actions 

RDB-like interface to data stored 
in Hadoop 

high level languages for 
processing MapReduce 

distributed  web log loader (log scrapper),  
periodical loading into Hadoop (for offline 
analysis) 



Big Data Architecture 

19 R.Wrembel - Poznan University of Technology, Institute of Comuting Science 

SQL to Hadoop: command line 
tool for importing any JDBC  
data source into Hadoop 

distributed web log loader  and  
aggregator (in real time) 
 

workflow (batch job) scheduler 
(e.g., data extraction, loading into Hadoop) 
 

table-like data storage + in memory 
caching 
 

managing the services, e.g., detercting addition or removal  
of Kafka's brokers and consumers, load balancing 

Big Data Architecture 
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workflow coordination  
and scheduling 

high level languages for 
processing MapReduce 

coordinate and manage all the components 
distributed web log loader (log scrapper),  
periodical loading into Hadoop (for offline 
analysis) 

UI for Hadoop (e.g., HDFS file 
browser, MapReduce job 
designer and browser, query 
interfaces for Hive, Pig, Impala, 
Oozie, application for creating 
workflows, Hadoop API) 



Big Data Architecture 
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Windows Azure 
 
 
 
 
 
 
 
 
 
 
 
 

Java OM 
Streaming 

OM 
HiveQL PigLatin (T)SQL 

 
.NET/C#/F
  

NOSQL ETL 

Tomasz Kopacz - Microsoft Polska: prezentacja Windows Azure, Politechnika 
Poznańska, czerwiec 2013 

Data Ingest (ETL) 

 Kafka 

 Storm 

 Flink 

 Sqoop 

 NiFi 
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 Kafka Streams 

 event by event reading 

 Java 

 aggregation in a sliding window 

 no built-in stream mining algorithms 

 Spark Streaming 

 micro batches 

 built-in stream mining algorithms 
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NiFi 

 Purpose: to automate the flow of data between multiple 
systems → similar to ETL 

 Asynchronous: for very high throughput and slow processing 
buffering may be used 
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NiFi building blocks 
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 Processors  

 process data delivered as FlowFiles 

 FlowFile  

 represents data moved within NiFi, represented as key-
value 

 Connection  

 connect processors, serves as a queue - buffering, different 
processors may read from the queue at differing rates 

 Flow Controller  

 acts as a broker facilitating the exchange of FlowFiles 
between processors 

 Process Group  

 is a set of processes and connections, which can receive 
data via input ports and send data out via output ports 

 

ETL for Big Data - Kafka 

 Distributed queuing/messaging 

 Handling 1 000 000 000 messages daily 

 Used for transferring data from WEB logs in real 
time 

 Terms 

 a topic: stream messages of particular type, divided 
into partitions 

 a producer: publishes a given topic 

 a consumer: subscribes to one or more topics 

 a broker: stores topics for their distribution to 
consumers 
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Kafka 
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 Multiple brokers (broker cluster) for load balancing 

broker1 
topic1: partition1, partition2 
topic2: partition1, partition2 

broker2 
topic1: partition1, partition2 
topic2: partition1, partition2 

broker3 
topic1: partition1, partition2 
topic2: partition1, partition2 

consumer 
subscribe: topic1 

consumer 
subscribe: topic2 

consumer 
subscribe: topic1 

Kafka 

 Consumer maintains the info about read topic's 
partitions 

 Broker deletes partitions after a given time period 
regardless they have been read by a consumer or 
not  possible data lost 

 At-least-once delivery model in the case of 
consumer failure  

 after restart a consumer may re-read the last topic's 
partition  duplicates 

 The order of messages in a partition is preserved 
within a delivery 

 The order of inter-partition delivery from different 
brokers is not preserved (e.g., read partition2 from 
broker3 then read partition1 from broker2) 
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Hadoop Distributions 

 Cloudera, MapR, Hortonworks, IBM, Pivotal 
Software 
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Data Stores 

 NoSQL 

 Key-value DB 

 data structure  collection, represented as a pair: 

key and value 

 data have no defined internal structure  the 

interpretation of complex values must be made by an 
application processing the values 

 operations  create, read, update (modify), and 

delete (remove) individual data - CRUD 

 the operations process only a single data item 
selected by the value of its key 

 Voldemort, Riak, Redis, Scalaris, Tokyo Cabinet, 
MemcacheDB, DynamoDB 
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Data Stores 

 Column family (column oriented, extensible record, 
wide column) 

 definition of a data structure includes 

• key definition  

• column definitions 

• column family definitions 
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column family CF1 column family CF2 

row key K1 

row key K2 

row key K3 

row key K4 

row key Kn 

Col1 Col2 Col3 Col4 Col5 

value value value 

value value value 

value value value value value 

value value 

Data Stores 

 column family  stored separately, common to all 

data items (~ shared schema) 

 column  stored with a data item, specific for the 

data item 

 CRUD interface 

 HBase, HyperTable, Cassandra, BigTable, Accumulo, 
SimpleDB 
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Data Stores 

 Document DB 

 typically JSON-based structure of documents 

 SimpleDB, MongoDB, CouchDB, Terrastore, RavenDB, 
Cloudant 

 Graph DB 

 nodes, edges, and properties to represent and store 
data 

 every node contains a direct pointer to its adjacent 
element 

 Neo4j, FlockDB, GraphBase, RDF Meronymy SPARQL 
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Performance evaluation 

 A. Rusin, A. Szymczak: master level term project 
(2015) 

 

 HBase  Cassandra 

 virtual machines 8 CPUs, 16 GBs RAM, 480 GB HDD  

 Ubuntu (14.04.1 LTS) 

 Cassandra 2.0.14 

 HBase 1.0.0 + Hadoop 2.5.2 

 2 Cassandra data nodes 

 2 (HBase RegionServer + Hadoop DataNode) + 1 
(HBase MasterServer + Hadoop NameNode) 

 Yahoo Cloud Serving Benchmark with modified 
workloads 
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HBase - Cassandra 
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 Read-only workload  

 # of threads for HBase and Cassandra: 256 

 cache size:  

• HBase memstore: 2048 MB 

• Cassandra memtable: 2048 MB  

HBase - Cassandra 

 Write-only workload 
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HBase - Cassandra 

37 R.Wrembel - Poznan University of Technology, Institute of Comuting Science 

 Read-write workload  

 data volume: 20 GB 

GFS 

 Google implementation of DFS (cf. The Google File System 

- whitepaper) 

 Distributed FS 

 For distributed data intensive applications 

 Storage for Google data 

 Installation 

 hundreds of TBs of storage, thousands of disks, over a 
thousand cheep commodity machines 

 The architecture is failure sensitive  therefore 

 fault tolerance 

 error detection 

 automatic recovery 

 constant monitoring is required 
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GFS 

 Typical file size: multiple GB 

 Operations on files  

 mostly appending new data  multiple large 

sequential writes 

 no updates of already appended data 

 mostly large sequential reads 

 small random reads occur rarely 

 file size at least 100MB 

 millions of files 
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GFS 

 Files are organized hierarchically in directories 

 Files are identified by their pathnames 

 Operations on files: create, delete, open, close, read, 
write, snapshot (creates a copy of a file or a directory 
tree), record append (appends data to the same file 
concurrently by multiple clients) 

 GFS cluster includes 

 single master 

 multiple chunk servers 
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GFS 
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S. Ghemawat, H. Gobioff, S-T. Leung. The Google File System. 
http://research.google.com/archive/gfs.html 

master client 

chunk server chunk server 

..... ..... ..... 

chunk server 

..... 

1: file name, chunk index 

2: chunk handle, chunk replica 
locations 

3: chunk handle,  
byte range 
sent to one replica 

4: data 

management + heartbit messages 

HDFS 

 Apache implementation of DFS 

      http://hadoop.apache.org/docs/stable/hdfs_design.html 
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Storage 

 Distributed file systems 

 Amazon Simple Storage Service (S3) 

 Gluster 

 Storage formats 

 Apache Avro for storing serialized data in JSON for 
Hadoop 

 Apache Parquet - column oriented data store for 
Hadoop 
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Example 

 In 2010 Facebook stored over 30PB in Hadoop  

 Assuming: 

 30,000 1TB drives for storage 

 typical drive has a mean time between failure of 
300,000 hours 

 2.4 disk drive fails daily 
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Integration with Hadoop 

 IBM BigInsights  Cloudera distribution + IBM 
custom version of Hadoop called GPFS 

 Oracle BigData  appliance based on Cloudera for 

storing unstructured content  

 Informatica HParser  to launch Informatica 

process in a MapReduce mode, distributed on the 
Hadoop servers 

 Microsoft  dedicated Hadoop version supported 

by Apache for Microsoft Windows and for Azure 

 EMC Greenplum, HP Vertica, Teradata Aster Data, 
SAP Sybase IQ  provide connectors directly to 

HDFS 
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Integration with Hadoop 

 M.Gualtieri, B. Hopkins: SQL-For-Hadoop: 14 Capable Solutions 
Reviewed. Forrester, 2015 

 

 Pure SQL for Hadoop 
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Integration with Hadoop 

 Boosted SQL for Hadoop 

 Typically include: query parser and optimizer 

 Require more strucutred data to exploit the power of SQL 
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Integration with Hadoop 

 Database + Hadoop 

 Hadoop files accessed via external tables from a DB 
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Integration with Hadoop 

 SAP Vora: HANA + Spark + Hadoop 
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 The Contextual Data Lake. By SAP, available at: 
https://tdwi.org/whitepapers/2015/10/the-contextual-data-lake.aspx 

ETL 

 The Five Most Common Big Data Integration Mistakes To Avoid. 
ORACLE white paper, 2015  
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Hadoop-based DWs 

 Impala, Stinger, Apache Drill, Phoenix, Shark, 
Hadapt 

 Teradata SQL-H, EMC HAWQ, IBM BigSQL 
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Data Lake 

 A repository that stores a vast amount of raw data 
in its native format until it is needed 

 Each data element in a lake is assigned a unique 
identifier and tagged with a set of metadata  

 Often implemented based on Hadoop 

 No schema on write schemas of data are not 
defined (considered) while writing to a data lake 

 The schema is obtained when data are queried → 
schema on read 
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Data Lake Architecture 

 Image taken from: Putting the Data Lake to Work - a Guide to Best Practices. 
CITO Research, April 2014 
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ETL for Big Data 
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streams: 
simple records  
   (sequences, time series) 
images 
sounds 
videos 
texts  
   (unstruct., semi-struct.) 

periodically uploaded 

E(T)L 

data lake 



Data Lake 

 No schema on write 

 Schema on read 

 the need to understand the content  metadata 

 Data lake content 

 relational tables 

 WEB tables 

 XML 

 texts 

 images, sounds, videos 

 graphs 

 ... any existing format 
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Data Lake 

 Querying a data lake 

 a query language and query engine capable of 
expressing and processing a query, possibly 
expressed in a natural language 

 finding relevant data sources for a query 

• relevant "schema"/structure 

• relevant content 

• correlating multiple data sources of the same semantics 

• selecting the most reliable data sources 

 finding the relevant data sources quickly 
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Data Lake 

 Querying a data lake 

 efficiently retrieving subsets of data for a query 

• data of high quality 

 transforming data on the fly (during a query 
execution) into a common format 

 integrating data on the fly 

 choosing appropriate ways of visualizing the results 

 scalability  performance 
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Novel search methods 

 Find colleagues of Robert Wrembel 
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Novel search methods 
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busniess 

busniess 

busniess 

research 

research 

social 

Novel search methods 

 Correlating and combining multiple data sources of 
different formats 

 Information about which DSs were used to answer 
a query 

 Information about the quality of the used DSs 
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find colleagues of Robert Wrembel 
context business, research, social 
output graph | table 



Collaborative BI 

 Annotating results of analyses 

 Searching for the results of previous analyses 
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Metadata 

 Extensive usage of metadata 

 schema/structure 

• semantics of properties 

 content 

• semantics of values 

 transformation rules 

 visualization 

 performance 

 Data annotation during E(T)L 

 Data profiling in a data lake 

 Incremental maintenance of metadata 

 Metadata standard? 

 CWM for relational systems 

 ? for data lakes 
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RDBMS vs. NoSQL: the Future? 

 TechTarget: Relational database management 
system guide: RDBMS still on top 

 http://searchdatamanagement.techtarget.com/essentialg
uide/Relational-database-management-system-guide-
RDBMS-still-on-top 

 "While NoSQL databases are getting a lot of 
attention, relational database management 
systems remain the technology of choice for most 
applications„ 

 S. Ghandeharizadeh: SQL, NoSQL, and Next 
Generation Data Stores. Keynote talk at DEXA 2015 

 RDBMS will be important components of IT 
infrastructures 
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RDBMS vs. NoSQL: the Future? 

 R. Zicari: Big Data Management at American 
Express. Interview with Sastry Durvasula and Kevin Murray. 

ODBMS Industry Watch. Trends and Information on Big Data, 
New Data Management Technologies, and Innovation. Oct, 
2014, available at: 
http://www.odbms.org/blog/2014/10/big-data-
management-american-express-interview-sastry-durvasula-
kevin-murray/ 

 "The Hadoop platform indeed provides the ability to 
efficiently process large-scale data at a price point 
we haven’t been able to justify with traditional 
technology. That said, not every technology process 
requires Hadoop; therefore, we have to be smart 
about which processes we deploy on Hadoop and 
which are a better fit for traditional technology (for 
example, RDBMS)."–Kevin Murray. 
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Enterprise Data Warehouse 

 The Contextual Data Lake. By SAP, available at: 
https://tdwi.org/whitepapers/2015/10/the-contextual-
data-lake.aspx 

 "... companies will retain an EDW as part of their overall 
data architecture ..." 
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RDBMS 

 Conceptual and logical modeling methodologies 
and tools 

 Rich SQL functionality 

 Query optimization 

 Concurrency control 

 Data integrity management 

 Backup and recovery 

 Performance optimization 

 buffers' tuning 

 storage tuning 

 advanced indexing 

 in-memory processing 

 Application development tools 
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NoSQL 

 Flexible "schema"  suitable for unstructured data 

 Massively parallel processing 

 Cheap hardware + open source software 

 

 Choosing the right NoSQL database for the job: a 
quality attribute evaluation. Journal of Big Data; 
http://www.journalofbigdata.com/content/2/1/18 
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Gartner Report 
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 http://www.gartner.com/technology/reprints.do?id=1-
2PMFPEN&ct=151013&st=sb 



Some other trends 

 Apache Derby: Java-based ANSI SQL database 

 Splice Machine 

 Derby (redesigned query optimizer to support parallel 
processing) on HBase (parallel processing) + Hadoop 
(parallel storage and processing) 

 Apache Phoenix 

 relational-like DB on HBase 

 SQL interface 

 Virtuoso 
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Some other trends 

 Web Table: https://research.google.com/tables?hl=en 

 Google Knowledge Graph 
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Trends cont. 

 Analyzing Twitter posts 

 Google flu trend maps 

• http://www.slate.com/blogs/moneybox/2014/04/04/
twitter_economics_university_of_michigan_stanford_r
esearchers_are_using.html 

• "Google tracks flu activity around the world by 
monitoring how many people are searching flu-related 
terms in different areas, and with what frequency. “We 
have found a close relationship between how many 
people search for flu-related topics and how many 
people actually have flu symptoms”" 

 tweets on unemployment well correlate with real 
governmental data 

• http://www.washingtonpost.com/blogs/wonkblog/wp
/2014/05/30/the-weird-google-searches-of-the-
unemployed-and-what-they-say-about-the-economy/ 
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Trends cont. 

 Big Data integration and cleaning  to get correct 

data 

 Text analytics  

 summarization 

 sentiment 

 Tracking the evolution of entities in the Internet 
over time 

 ACM SIGMOD Blog 

 http://wp.sigmod.org/ 
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Trends cont. 

 Top 8 Big Data Trends for 2016  
http://www.tableau.com/sites/default/files/media/top
8bigdatatrends2016_final_1.pdf 
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1. NoSQL  

2. Apache Spark - more efficient than Hadoop, the largest 
big data open source project 

3. Applying Hadoop to production 

4. Hadoop becomes a standard component of Big Data 
architectures 

5. Fast data exploration capabilities and seeing Big Data 
as OLAP cubes 

6. Self-service data preparation tools 

7. Massively Parallel Processing Data Warehouse (in a 
cloud) 

8. IoT  PB of data in a Cloud 

Landscape: past 
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 Data models 

 relational 

 object-oriented 

 semi-structured 

 ... 

 Data formats 

 numbers, dates, strings 

 ... 

 Veolocity 

 OLTP systems 

 

http://www.tableau.com/sites/default/files/media/top8bigdatatrends2016_final_1.pdf
http://www.tableau.com/sites/default/files/media/top8bigdatatrends2016_final_1.pdf


Landscape: today 
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 Data models 

 relational 

 graphs 

 NoSQL 

 semi-structured 

 unstructured 

 ... 

 Data formats 

 numbers, dates, strings 

 HTML, XML, JSON 

 time series and sequences 

 texts 

 multimedia 

 ... 

 Veolocity 

 frequently changing (e.g., 
Facebook) 

 constantly changing 
(streams) 

Needs: today 

 Storing efficiently (fast writes, compression) 

 Retrieving efficiently (fast scans, fast search) 

 Integrating for analysis 
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Data integration: past 

 Virtual integration 

 federated 

 mediated 

 Physical integration 

 ETL + data warehouse 

 Common integration data model 

 relational 

 object-oriented 
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Big Data integration 

 Physical integration → data lake 

 large repository of heterogeneous data (in multiple data 
models/formats) 

 no schema on write - schema on read 

 typically based on a distributed file system 

 need for refreshing 

• how to detect changes? 

• new algorithms for incremental refreshing? 

• even incremental refreshing uploads large volumes of data 
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distributed file system (HDFS/GFS) 



Big Data integration 

 Logical integration → analogy to mediated/federated 

architectures 

 Polystore 
 J. Duggan, A.J. Elmore, M. Stonebreaker, et. al.: The BigDAWG Polystore 

System. SIGMOD Record, Vol. 44, No. 2, 2015 

 federation of islands of information 

 island of information: collection of storage engines 
using the same data model (query language) 
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relational graph NoSQL 

access layer access layer access layer 

Big Data integration challenges (1) 

1. How to (semi)-automatically discover data 
sources? 

 DS structure discovery 

 DS content understanding 

2. How to dynamically plug-in a DS into a 
federation? 

3. How to construct an integrated conceptual model? 

4. What integration data model to use? 

5. Global query processing? 

 parsing, decomposing, translating into native 
dialects, and routing 

6. Global query optimization? 
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Big Data integration challenges (2) 

7. How to integrate (transform, clean, deduplicate, 
integrate) on the fly data returned by local queries? 

8. Performance optimization  

 caching some results 

• what to cache?  

• how to store (RAM only vs. disk)? 

 how to manage the cache (removing/adding data)? 

9. New ways of querying 

 fusion tables 

81 R.Wrembel - Poznan University of Technology, Institute of Comuting Science 

Big Data integration challenges (3) 

10.User interface and visualization 

 one wants to work graphs 

 another wants to work with tables 

 multiple (different) schemas needed for mutliple 
users → multiple query languages?  

11.Conceptual modeling for data warehouses 

 facts and dimensions in XML, Graph, NoSQL → 

already ongoing research 
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Programming Languages 

 Top Languages for analytics, data mining, data 
science 

 Sept 2013, source: 

 http://www.datasciencecentral.com/profiles/blogs/top-languages-for-
analytics-data-mining-data-science 

 The most popular languages continue to be  

 R (61%) 

 Python (39%) 

 SQL (37%) 

 SAS (20%) 
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Programming Languages 

 Growth from 2012 to 2013 

 Pig Latin/Hive/other Hadoop-based languages  

19% 

 R  16% 

 SQL  14% (the result of increasing number of SQL 

interfaces to Hadoop and other Big Data systems?) 

 Decline from 2012 to 2013 

 Lisp/Clojure  77% 

 Perl  50% 

 Ruby  41% 

 C/C++  35% 

 Unix shell/awk/sed  25% 

 Java  22% 
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Top 10 Data Science Skills 
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 Data Science Report. 2016, Crowd Flower 


