

POZNAN UNIVERSITY OF TECHNOLOGY

Still Open Issues in ETL Design and Optimization

Robert Wrembel Poznan University of Technology Institute of Computing Science Poznań, Poland Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel

Outline

- Evolving ETL workflows
- **Coptimizing ETL workflows**

Evolving ETL workflows

3

R.Wrembel - Poznan University of Technology (Poland) ::: research seminar @UPC, Barcelona, 7 Oct, 2019

DSs change in time

Structures of data sources change frequently

- Wikipedia: every 9-10 days during the last 4 years → 171 schema versions
- telecom: every 7-13 days
- banking: every 2-4 weeks
- D. Sjøberg : Quantifying schema evolution. IST 35(1), 1993
- C.A. Curino, L. Tanca, H.J. Moon, C. Zaniolo: Schema evolution in wikipedia: toward a web information system benchmark. ICEIS, 2008
- H. J. Moon, C. A. Curino, A. Deutsch, C.-Y. Hou, C. Zaniolo: Managing and querying transaction-time databases under schema evolution. VLDB, 2008
- P. Vassiliadis, A. V. Zarras. 2017. Schema Evolution Survival Guide for Tables: Avoid Rigid Childhood and You're en Route to a Quiet Life. Journal on Data Semantics 6(4), 2017
- P. Vassiliadis, A. V. Zarras, I. Skoulis. 2017. Gravitating to Rigidity: Patterns of Schema Evolution - and its Absence - in the Lives of Tables. Information Systems 63, 2017

R.Wrembel - Poznan University of Technology (Poland)::: research seminar @UPC, Barcelona, 7 Oct, 2019

5

DS evolution

DS changes

- add column
- drop column
- change column datatype
- change column size
- create table
- drop table
- rename column
- rename table
- split table
- merge tables

Impact on ETL

- Deployed ETL process (workflow) may no longer be executed → needs to be repaired
- Pharma and banks
 - # data sources integrated → from dozens to over 200
 - # deployed workflows → from thousands to hundreds of thousands

R.Wrembel - Poznan University of Technology (Poland)::: research seminar @UPC, Barcelona, 7 Oct, 2019

How to repair ETL?

- **\bigcirc** Goal \rightarrow (semi-)automatic
- \bigcirc ETL tools
- Business
- Research approaches

7

ETL tools

Open source

- Talend Open Studio
- Pentaho Data Integration
- CloverETL
- Apache NiFi

Commercial

- IBM InfoSphere DataStage
- Informatica
- ABinitio
- Oracle Data Integrator
- Microsoft Integration Services

Do not support semi-automatic repair

only impact analysis is supported

R.Wrembel - Poznan University of Technology (Poland)::: research seminar @UPC, Barcelona, 7 Oct, 2019

Business

- Writing generic ETL
 - input to a generic ETL: tables and attributes
- Srceening DS changes
 - kind of views
- Need manual repairs

9

Research approaches

- Metrics
- Hecateus
- EIDE Hecateus
- ⊃ E-ETL
- ⊃ E3TL
- ⇒ MAIME

R.Wrembel - Poznan University of Technology (Poland)::: research seminar @UPC, Barcelona, 7 Oct, 2019

11

Metrics

- For assessing the design quality of an ETL process wrt its vulnerability to DS changes
- Observations
 - the more tables and attributes ETL processes the more vulnerable to changes it is
 - an ETL process with steps that reduce a number of processed attributes as early as possible is preferred
- G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou: Design Metrics for Data Warehouse Evolution. ER, 2008
- G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou: Metrics for the prediction of evolution impact in ETL ecosystems: A case study. J. Data Semantics, 1(2), 2012

Hecateus

ETL process is represented as a graph

- nodes: relations, attributes, queries, conditions, views, functions, DSs
- edges: relationships between nodes

- G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou: Policy-Regulated Management of ETL Evolution. J. Data Semantics, 5530, 2009
 G. Papastefanatos, P. Vassiliadis, A. Simitsis, T. Sellis, Y. Vassiliou: Rulebased Management of Schema Changes at ETL sources. ADBIS, 2010

R.Wrembel - Poznan University of Technology (Poland) :::: research seminar @UPC, Barcelona, 7 Oct, 2019

13

Hecateus

- The graph is annotated with policies that define the behavior of an ETL process in response to a certain DS change event
 - propagate the event, i.e. modify the graph according to a predefined policy
 - prompt an administrator
 - block the event propagation

Can handle

- attribute changes: rename, type change, lenght change, deletion
- table changes: rename, deletion

Hecateus

Drawbacks

- policies must be explicitly defined for each graph element
- a user must determine a policy in advance, before an evolution event occurs
- limited to steps expressed by SQL
- cannot handle
 - column: addition
 - table: addition, split, merge

R.Wrembel - Poznan University of Technology (Poland)::: research seminar @UPC, Barcelona, 7 Oct, 2019

15

EDIE

- Built on Hecateus
- Idea: to maintain alternative variants (old versions) of data sources and ETL processes
- ETL steps annotated with policies that instruct whether they should be adapted to an evolved DS or should use an old version of the DS
- Control Unrealistic → DSs typically do not maintain versions
- P. Manousis, P. Vassiliadis, G. Papastefanatos: Automating the Adaptation of Evolving Data-Intensive Ecosystems. ER, 2013
- P. Manousis, P. Vassiliadis, G. Papastefanatos: Impact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems. Journal on Data Semantics, 4(4), 2015

MAIME

- ETL is represented as a property graph
- **C** Propagation policy for each DS change and vertex
 - propagate, block, prompt (like in Hecateus)

 D. Butkevicius, P.D. Freiberger, F.M. Halberg, J.B. Hansen, S. Jensen, M. Tarp: MAIME: A Maintenance Manager for ETL Processes. EDBT/ICDT Workshops, 2017

R.Wrembel - Poznan University of Technology (Poland)::: research seminar @UPC, Barcelona, 7 Oct, 2019

17

MAIME

- Detecting DS changes: by analyzing consecutive metadata snapshots
- Graph altering algorithm provided
- Limited number of DS changes
 - column: add, delete, rename, change type
- Limited number of ETL steps supported
 - source, destination, aggregate, split, data conversion, derived column, lookup, sort, union all

E-ELT

Applies Case-Base Reasoning ETL process is represented as a graph

- reasoning. Information Systems Frontiers 20(1), 2018
- A. Wojciechowski: E-ETL Framework: ETL Process Reparation Algorithms Using Case-Based Reasoning. ADBIS Workshops, 2015

R.Wrembel - Poznan University of Technology (Poland)::: research seminar @UPC, Barcelona, 7 Oct, 2019

19

E-ETL

- ⇒ API to MSIS
 - download an MSIS design
 - repair it in E-ETL
 - upload the repaired design into MSIS
- **CETL** process reparing uses cases
 - a library of cases
 - an algorithm for searching the best case for a given repair problem
 - case similarity measure

Drawbacks

- a library of cases is needed
- do all ETL tools support the same ETL steps?
 - can a case in the library coming from one ETL tool can be uploaded into another ETL tool?
- the correctness of a proposed repair cannot be formally checked

R.Wrembel - Poznan University of Technology (Poland)::: research seminar @UPC, Barcelona, 7 Oct, 2019

21

E3TL

- **C** Predefined rules for evolving ETL workflows
- Case-based repair
- Rule learning from cases
- J. Awiti, A. A. Vaisman, E. Zimányi: From Conceptual to Logical ETL Design Using BPMN and Relational Algebra. DaWaK, 2019
- J. Aviti: Algorithms and Architecture for Managing Evolving ETL Workflows. Proc. of ADBIS Workshops (CCIS), Springer, 2019
- J. Aviti, E. Zimányi: An XML Interchange Format for ETL Models. In Proc. of ADBIS Workshops (CCIS), Springer, 2019

Summary

- ⇒ Problem known for dozens of years → only partially solved
- None of the commercial tools supports ETL process repair
- UDFs make the problem more difficult
- Sig data make the problem more difficult

R.Wrembel - Poznan University of Technology (Poland)::: research seminar @UPC, Barcelona, 7 Oct, 2019

ALL MARKA

Part 2

Optimizing ETL workflows

23

Motivation

- # data sources integrated → from dozens to over 200
- # deployed workflows → from thousands to hundreds of thousands
- Magnetic disk
 - throughput: 200MB/s
 - read 1TB from DS → write 1TB to DW: 160 minutes
 - add ETL processing \rightarrow n * ~160 minutes
 - if n=10 → processing time ~ 28 hours
- Conclusion: ETL performance optimization is vital

R.Wrembel - Poznan University of Technology (Poland) ::: research seminar @UPC, Barcelona, 7 Oct, 2019

25

ETL performance optimization

- **Goal:** SQL-like optimization \rightarrow cost based
 - ETL workflow execution plan and its optimization heuristics
- ⇒ Problem 1: no algebraic optimization of separate ETL steps → no albegraic optimization of the whole ETL workflow
- Problem 2: computing statistics on a data set that is processed may be time consuming
 - processed data sets are not available in advance → no statistics
- Problem 3: ETL steps are frequently implemented as UDFs
 - a cost model of an UDF is unknown → a cost model of the whole ETL workflow is unknown

Commercial approaches

Increasing resources (#CPU, memory, #nodes)

■ Parallelizing ETL tasks → running ETL in a cluster

- IBM InfoSphere DataStage
- Informatica PowerCenter
- AbInitio
- Microsoft SQL
- Server Integration Services
- Oracle Data Integrator
- Moving tasks to decrease data volume asap
 - constrained to tasks expressed by SQL
 - towards DS or towards DW
 - **Balanced** optimization: IBM InfoSphere DataStage
 - Push-down optimization: Informatica PowerCenter

R.Wrembel - Poznan University of Technology (Poland) :::: research seminar @UPC, Barcelona, 7 Oct, 2019

27

Commercial approaches

- R. Lella: Optimizing BDFS jobs using InfoSphere DataStage balanced optimization. IBM Developer Works, 2014
- IBM InfoSphere DataStage Balanced Optimization. 2008
- Introduction to InfoSphere DataStage Balanced Optimization. IBM Knowledge Center

 How to Achieve Flexible, Cost-effective Scalability and Performance through Pushdown Processing. Informatica, whitepaper, 2007

Parallel ETL processing

- How to partition a data flow?
- What to parallelize?
 - particular tasks
 - the whole workflow
 - determining where to split and merge parallel flows
- Determining an optimal number of parallel flows?
- What is an optimal amount of resources (CPU, memory, threads) for a given parallelized task?
- Which parallelization skeleton to apply?

R.Wrembel - Poznan University of Technology (Poland) ::: research seminar @UPC, Barcelona, 7 Oct, 2019

29

ETL optimization: research approaches

1. Quality metrics in an ETL design

 A. Simitsis, K. Wilkinson, M. Castellanos, U. Dayal: QoX-Driven ETL Design: Reducing the Cost of ETL Consulting Engagements. SIGMOD, 2009

2. Partitioning and parallelization

- X. Liu, N. Iftikhar: An ETL Optimization Framework Using Partitioning and Parallelization. SAC, 2015
- 3. Cost-based optimization based on statistics of ETL sub-flows (sub-expressions)
 - R. Halasipuram, P.M.Deshpande, S. Padmanabhan: Determining Essential Statistics for Cost Based Optimization of an ETL Workflow. EDBT, 2014

4. State-space optimization

 A. Simitsis, P. Vasiliadis, T. Sellis: State-Space Optimization of ETL Workflows. IEEE TKDE 17(10), 2005

5. Logical optimization

 N. Kumar, P.S. Kumar: An Efficient Heuristic for Logical Optimization of ETL Workflows. BIRTE, 2010

R.Wrembel - Poznan University of Technology (Poland) ::: research seminar @UPC, Barcelona, 7 Oct, 2019

1. Quality metrics

Proposed a layered approach for ETL design

- layers represent: logical design, implementation, optimization, maintenance
- at each layer some metrics are introduced

Metrics

- to guide each step in ETL development
- transformations between design levels to provide certain types of optimization
 - high performance
 - recoverability
 - freshness
 - maintainability

 A. Simitsis, K. Wilkinson, M. Castellanos, U. Dayal: QoX-Driven ETL Design: Reducing the Cost of ETL Consulting Engagements. SIGMOD, 2009

R.Wrembel - Poznan University of Technology (Poland) ::: research seminar @UPC, Barcelona, 7 Oct, 2019

31

Workload partitioning methods into so-called execution trees

- vertical
- horizontal
 - single task partitioning and multi-threading

2. Partitioning and parallelization

Inside execution tree parallelization

- input data are partitioned horizontally into n disjoint partitions (n is parameterized)
- each partition is processed by a separate thread
- a shared cache is used for moving data from task A_i to A_{i+1}

R.Wrembel - Poznan University of Technology (Poland)::: research seminar @UPC, Barcelona, 7 Oct, 2019

33

Internal task parallelization

- for tasks with a heavy computational load
- performance is increased by multi-threading parallelization
 - an input is divided into n splits

3. Statistics for ETL cost based optimization

Assumption

- workflow optimizaiton by task reordering
- statistics needed for estimating workflow execution cost →cost based optimization

 R. Halasipuram, P.M.Deshpande, S. Padmanabhan: Determining Essential Statistics for Cost Based Optimization of an ETL Workflow. EDBT, 2014

R.Wrembel - Poznan University of Technology (Poland)::: research seminar @UPC, Barcelona, 7 Oct, 2019

35

3. Statistics for ETL cost based optimization

- Goal: for a given an ETL workflow, identify a set of statistics to collect
 - the set must be used to estimate costs of all possible task reorderings
 - the set must be minimal
 - the cost of collecting statistics must be minimal

Data statistics:

- cardinality of table T_i
- attribute histograms of T_i
- # of distinct values of attributes

3. Statistics for ETL cost based optimization

Operators

- select
- project
- join
- group-by
- transform
- Each operator has a cost function associated, the function is based on:
 - data statistics
 - CPU and disk-access speeds
 - memory usage

R.Wrembel - Poznan University of Technology (Poland)::: research seminar @UPC, Barcelona, 7 Oct, 2019

37

3. Statistics for ETL cost based optimization

Step 1: partition a workload

- use pre-defined partitioning boundaries
- optimize each partition (sub-expression SE) independently

3. Statistics for ETL cost based optimization

- Step 2: generate sub-expressions
 - by means of operators reordering
- Step 3: generate candidate statistics set (CSS)
 - for each sub-expression determined from Step 2
- Step 4: select an optimal CSS
 - min. collecting cost + min. CSS + covers all reorderings → NP-hard problem
 - linear programming applied to solve it
- Step 5: inject into a workload a component for collecting statistics
- Step 6: run a workload and gather statistics
- Drawback
 - it does not address workload execution optimization

R.Wrembel - Poznan University of Technology (Poland) :::: research seminar @UPC, Barcelona, 7 Oct, 2019

39

4. State-space optimization

- Performance optimization by task reordering
- Each workload gets assigned an execution cost (time, data volume)
- Searching the whole space of possible workloads is impossible (time)
- Heuristics (e.g. filter data asap) to prune the search space

 A. Simitsis, P. Vasiliadis, T. Sellis: State-Space Optimization of ETL Workflows. IEEE TKDE 17(10), 2005

4. State-space optimization

Workflow transformations

- swap → change order to filter data asap
- factorize → if Z11 i Z12 execute the same operations on different flows
- distribute → opposite to factorize
- merge → tasks that must be executed subsequently

ALL AND ALL AN

4. State-space optimization

Correctness of workflow transformation

Swap

- Z1 has one source, Z2 has one destination
- compatibility of input and output schema
 - in.Z1={b,c} & out.Z1={b,c}
 - in.Z2={b,c} & out.Z2={b,c}

Factorize/Distribute

- Z11 i Z12 have 1 destination Z2 (set operators)
- Z11 i Z12 do the same task on different workflows

5. Logical ETL optimization

Based on concepts presented in:

 A. Simitsis, P. Vasiliadis, T. Sellis: State-Space Optimization of ETL Workflows. TKDE 17(10), 2005

Flow transformation techniques

- swap, factorize/distribute, merge/un-merge
- cost functions and selectivities of activities are used in a greedy heuristic that reorders a linear flow

Optimization heuristic

task reordering

Differences wrt Simitsis et.al.

- focuses on optimizing linear flows only
- new structure: dependency graph

 N. Kumar, P.S. Kumar: An Efficient Heuristic for Logical Optimization of ETL Workflows. BIRTE, 2010

R.Wrembel - Poznan University of Technology (Poland) :::: research seminar @UPC, Barcelona, 7 Oct, 2019

43

5. Logical ETL Optimization

5. Logical ETL Optimization

Forward pass

- transferrable activities (TAs) are added to the beginning of the next group
 - activity 1 (Grp I) and 5 (Grp II) have the same semantics on the same attribute → are represented by activity 1-5 in extended Grp III

5. Logical ETL Optimization

Algorithm

- all possible allowed combinations of TAs in linear groups are analyzed
- extended linear groups are optimized using the same heuristic as for a normal linear group → swaping the activities and computing a cost of the linear flow

R.Wrembel - Poznan University of Technology (Poland)::: research seminar @UPC, Barcelona, 7 Oct, 2019

47

Summary

⇒ Problem known for dozens of years → only partially solved

Optimization techniques

- parallelization (commercial, research)
- balanced / push-down (commercial, research)
- task reordering (research)
- **\Box** Task reordering \rightarrow computationally complex
- **○** Parallel processing \rightarrow feasible (promissing)
- No support for UDFs

Our focus

ETL optimization with UDFs

- optimization by means of parallel processing
- a cost model to determine the degree of parallelism
- S. M. F. Ali, R. Wrembel: Towards a Cost Model to Optimize User-Defined Functions in an ETL Workflow Based on User-Defined Performance Metrics. Proc. of ADBIS, LNCS 11695, 2019
- S.M.F. Ali, J. Mey, M. Thiele: Parallelizing user-defined functions in the ETL workflow using orchestration style sheets. International Journal of Applied Mathematics and Computer Science (AMCS), 29(1), 2019
- S.M.F. Ali: Next-generation ETL Framework to Address the Challenges Posed by Big Data. DOLAP, 2018
- S.M.F. Ali, R. Wrembel: From conceptual design to performance optimization of ETL workflows: current state of research and open problems. VLDB Journal 26(6), 2017

R.Wrembel - Poznan University of Technology (Poland) ::: research seminar @UPC, Barcelona, 7 Oct, 2019

49

Main problems

- **C** To figure out if an UDF can be parallelizable
- To figure out which parallel skeleton is the most appropriate for a given UDF
- How to apply a skeleton to a black box

ETL optimization framework

R.Wrembel - Poznan University of Technology (Poland)::: research seminar @UPC, Barcelona, 7 Oct, 2019

Cost model

- To determine an efficient configuration for distributed machines
- Mutliple Choice Knapsack Problem

- Set-similarity joins using MapReduce (SSJ-MR)
- Stage 1: token ordering
 - computes data statistics to generate partitioning keys, by tokenizing incoming records into a wordset
- Stage 2: RID pair generation
 - extracts a record ID (RID) and join-attribute value for each record
 - computes the similarity of the join-attribute values
- Stage 3: record join
 - generates pairs of joined records using RIDs of similar records

R.Wrembel - Poznan University of Technology (Poland) ::: research seminar @UPC, Barcelona, 7 Oct, 2019

R.Wrembel - Poznan University of Technology (Poland) ::: research seminar @UPC, Barcelona, 7 Oct, 2019

53

PoC

Stage 1 Token Ordering (TO) Stage 2 RID Pair Generation (PG) Stage 3 Record Join (RJ) TO 1 TO 2 PG 1 PG 2 RJ 1 RJ 2					
		#Nodes [exec cost/h]			
Stage	Algorithm	2 [0.4\$/h]	4 [0.8\$/h]	8 [1.6\$/h]	10 [2.0\$/h]
1	BTO	191.98	125.51	91.85	84.02
	OPTO	175.39	115.36	94.82	92.80
2	ВК	753.39	371.08	198.70	164.57
	РК	682.51	330.47	178.88	145.01
3	BRJ	255.35	162.53	107.28	101.54
	OPRJ	97.11	74.32	58.35	58.11

Execution times on Amazon EMR Cluster

 R. Vernica, M. Carey, C. Li: Efficient parallel set-similarity joins using MapReduce. SIGMOD, 2010

R.Wrembel - Poznan University of Technology (Poland) ::: research seminar @UPC, Barcelona, 7 Oct, 2019

55

PoC

Particular problem

 to find the best configurations of an EMR cluster for each stage separately

General problem

 to find the best configurations of hardware for the whole ETL workflow w.r.t. execution time and monetary cost → Multiple Choice Knapsack Problem

Mutliple Choice Knapsack Problem

- m classes in KP \rightarrow m stages of ETL execution
- W weight constraint → B monetary budget constraint
- w_{ij} cost of variant j of item of class i → c_{ij} cost of variant j of a program at stage i
- p_{ij} profit of variant j of item of class i → t_{ij} execution time of variant j at stage i

Implementation

- The problem was solved by Mixed Integer Linear Programming solver → the lp_solve library (Java)
 - the implementation of the cost model https://github.com/fawadali/MCKPCostModel

R.Wrembel - Poznan University of Technology (Poland)::: research seminar @UPC, Barcelona, 7 Oct, 2019

57

Open issues

- ⇒ ML for ETL optimization
- Dynamic ETL optimization