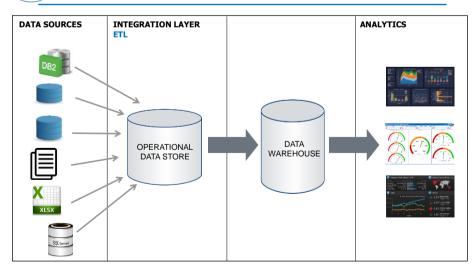


POZNAN UNIVERSITY OF TECHNOLOGY


DW Loading and Refreshing Techniques: ETL

Robert Wrembel Poznan University of Technology Institute of Computing Science Poznań, Poland Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel

ETL in DWS architecture

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

Developing ETL

Designing and developing ETL processes

- critical for DW functioning
- challenges
 - data quality
 - data freshness
 - performance of ETL execution (time window for a DW refreshing)

3

4

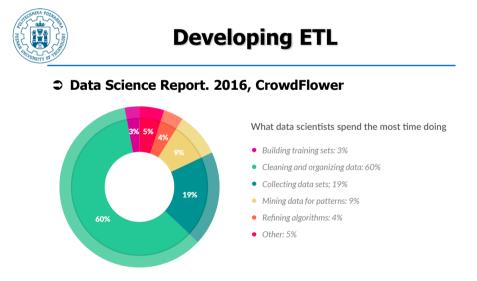
- source evolution
- ETL optimization
- costly (time & money)
 - up to 70% project resources
 - staff
 - hardware
 - software

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

ABUT ALL NUMBER OF THE OFFICE

Developing ETL

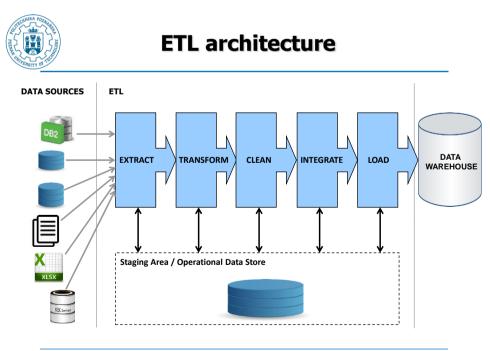
- Gartner Report on DW projects in financial institutions from the Fortune 500 list
 - 100 of staff in a DW project
 - 55 ETL
 - 17 system admins (DB, hardware)
 - 4 system architects
 - 9 BI consultants
 - 5 programmers
 - 9 managers
 - hardware (multiproc. servers, TB disks, 5mln USD)
 - ETL software (1mln USD)
 - # data sources: 10 to 50


© R.Wrembel - Poznan University of Technology, Institute of Computing Science

Developing ETL

- # data sources to integrate
 - Iarge banks: hundreds
- Types of data sources to integrate
 - databases (all possible)
 - text files
 - spreadsheets
 - streaming data (more and more frequently)

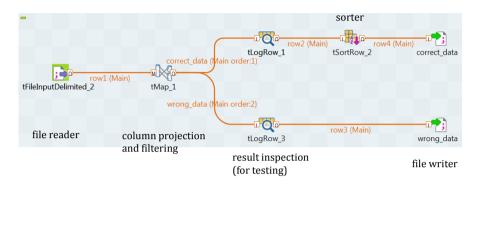
© R.Wrembel - Poznan University of Technology, Institute of Computing Science



Developing ETL

C Panoply Data Warehouse Trends Report 2018

© R.Wrembel - Poznan University of Technology, Institute of Computing Science



© R.Wrembel - Poznan University of Technology, Institute of Computing Science

Example ETL process

Talend Open Studio

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

DW designing

- Analysis of available data sources
- Deciding on DS access technologies (see Topic 1)
- Data profiling
- Data ingest
 - full
 - incremental
- Transforming
- Cleaning and homogenizing
- Merging
- Duplicate elimination
- Uploading into a DW

Data sources

Identify relevant DSs

DS description

- business area (e.g., HR, payroll, sales, loans, marketing, ...)
- importance
- business user
- business owner
- technical/infractructure owner
- hardware + OS
- DBMS
- schema
- # transacions/day
- data volume increase/day
- DB size

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

Typical predefined connectors PostgreSQL ⇒ MySQL ⇒ IBM DB2 **SOL Server** ⇒ SQLite **○** Oracle FireBird ODBC data source Sybase ASE, IQ JDBC data source Netezza ⇒ Excell Vertica **C** Teradata Access ⇒ Text, XML, JSON files ⊃ SAS **⇒** Hive **SAP Hana** Impala **Creenplum** MongoDB Cassandra €...

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

Data profiling

Analyzing data sources

Main categories of tasks

- structure discovery (schema, relationships)
- content analysis (data values, data quality, daily size increase)
- relationship discovery
- Application areas
 - ETL for DW
 - data conversion and migration
 - data quality analysis in production DSs

Tools

- statistics
- data mining

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

THE WINA POSICION SHOP

Data profiling

- Data types and allowed lengths
- Discovering schema
 - UNIQUE attributes
 - PK candidates
 - FK candidates
 - functional dependencies
 - embedded value dependencies (if a denormalized schema)

Statistics on data

- min, max, count, avg, distinct, variance, stdev
- **Computing data distributions (histograms)**
- Assessing costs of potential joins

Data profiling

Discovering data quality

- identify NULL/NOT NULL columns
- count #rows with NULL or default value for each attribute
- identify valid allowed values for attributes
- identify domains of attributes
- count #records with values other than expected
- discover value formats (date, phone No, address, ...)
- discover outliers
- discover wrong values
- % of: missing values, typos, non-standardized values

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

TURNIKA POSING

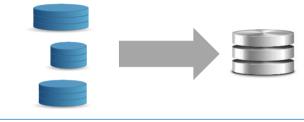
Data profiling tools

Open source

- Quadient DataCleaner
- Aggregate Profiler
- Talend Open Studio for Data Quality
- Melissa Data Profiler

Commercial

- IBM InfoSphere Information Analyzer
- SAP Business Objects Data Services for Data Profiling
- Informatica Data Profiling Solution Data Explorer
- Oracle Enterprise Data Quality
- SAS DataFlux


Loading data into DW

C Reading the whole data source

- text/binary dump files ⇒ DB export
- XML files
- SQL select + gateway / ODBC
- snapshots

Reading changes

need to detect data changes

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

HERRICAN PORTAGE

Detecting data changes

Requirements

- minimum or none source system changes
- minimum interference with a data source

Solutions

- audit columns
- snapshot comparison
- system maintained log of changes on a table (e.g., snapshot log)
- snapshots
- triggers ⇒ synchronous transfer
- analysis of a redo log (transaction log)
 - periodically (log scraping)
 - on-line continuously (log sniffing)

Snapshot/replica

- Copy of a table or a subset of its columns and rows
- Refreshing
 - automatic with a defined interval
 - on demand
- SQL Server
- ⇒ IBM DB2
- Oracle

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

Data transformation

- **C** Transform to a common data model
 - relational
 - object-relational
 - semistructured
 - NoSQL
 - graph
 - ...
- Transform semantically identical data to a common (the same) representation
 - extract text values (e.g., parts of an address)
- Remove unnecessary columns

Data transformation

			main	Do	y Title	Counti	Lname	Fname	TaxpayerID
			ouses	data wreh	d Prof.	Polan	Wrembel	Robert	132018
						+			
		Born	/ B	Cit	Education	Last_Name	2ndName	1sName	TaxpayerID
		1968	i 1	Poznai	univ.	Wrembel	Andrew	Robert	132018
Title Dor	Country Title) Country	axpayerID	Born	City	ne Education	Name Last_Na	1sName 2n	TaxpayerID
Prof. data wreho	Poland Prof.	Poland	132018	1968	Poznań	oel univ.	drew Wrem	Robert /	132018
do the records represent the same				Doma	Title	Country	Lname	Fname	
			es	data wrehous	Prof.	Polanc	Wrembel	Robert	
the sume	•	entity?		Born	City	ducation	Last Name	2ndName	1sName
	,.	•••••		1968	Poznań	univ.	Wrembel	Andrew	Robert

Data transformation

Requirements

- iterative and interactive process
 - define transformation
 - run process
 - verify resutls
 - modify transformation (if needed)
 - run process
 - ...
- extendible and easy to modify
- as much data as possible should be transformed automatically
- as much steps as possible should be automatic

[©] R.Wrembel - Poznan University of Technology, Institute of Computing Science

Data cleaning

- Remove/replace null values
- Correct typos
 - dictionaries (spelling, names, cities, countries)
- Correct semantical errors
 - gross = net + vat
 - address consistent with ZIP code

Standardize values

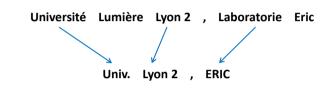
- date format
- currency
- capital/small letters
- abbreviations
- synonyms (Word Net)

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

THE WILL A POST AND A

Data deduplication

- Records must be cleaned
 - no special signs, no punctuations
 - no abbreviations
- Problem: how to decide if 2 records represent the same entity?
 - {Wrembel, Robert, ul. Wyspiańskiego, Poznań}
 - {Wrębel, Robert, ul. Wyspiańskiego, Poznań}
- Case 1: natural identifiers (e.g., ID, email, mobile number) available
- Case 2: no natural identifiers available
 - approximate/probabilistic decision based on a similarity measure


© R.Wrembel - Poznan University of Technology, Institute of Computing Science

Data deduplication

Simple similarity measure

- # matching atomic tokens (text strings) / # total atomic tokens in compared records
- # total atomic tokens: 8
- # matching atomic tokens: 3
- similarity=3/8

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

Soundex

- returns a code of pronunciation of an input
- soundex('Smith')=soundex('Smit')=S530
- Levenhstein/edit distance
 - minimum number of inserts and deletes (updates) of characters in order to convert L1 to L2
 - L1 and L2 identical ⇒ didtance=0
 - ABC ⇒ ABCDEF: distance=3
 - DEFCAB ⇒ ABC: distance=5

DW refreshing

When?

- synchronous (after a source transaction was committed) ⇒ (near) real-time DW
- - with a defined frequency
 - on demand
- How?
 - full (1st DW load)
 - incremental (all next loads)

How data arrive?

- batch ⇒ traditional DW
- stream ⇒ (near) real-time DW

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

HUNNEA PORTA

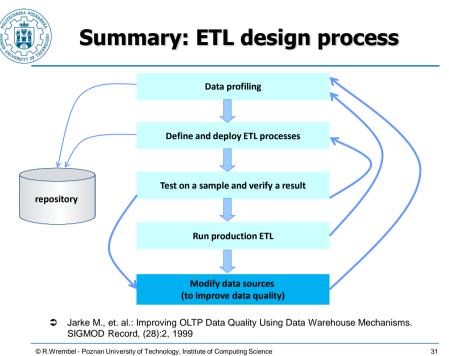
DW refreshing

- In a constraint time window (typically 8h)
 - SSD throughput: $500MB/s \rightarrow 1TB$ in approx. 35min
 - Magnetic disc throughput: 100MB/s → 1TB in approx. 3h
- Efficiency is crucial
 - read from DSs only necessary data
- Do not execute in a DS
 - sorting
 - DISTINCT
 - set operators
 - GROUP BY
 - NOT and non-equijoins (typically require full scan)
 - functions in the WHERE clause

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

DW refreshing

Where to filter data?


- at a data source, if
 - not overloaded with its proper processing
 - powerful query optimizer
 - good use of indexes
- in an ETL layer, otherwise
 - sorting in a database
 - sorting in an OS (awk)
- Separate inserts from updates
 - updates → standard path
 - inserts → direct load path
- Decide how to maintain additional data structures
 - indexes
 - materialized views
- Integrity constraints in a DW?

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

DW refreshing

- Parallel loading
- Collecting DB statistics after refreshing
- DB defragmentation

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

Implementing ETL

- **○** ETL \rightarrow workflow \rightarrow graph of tasks connected by flows
- Typical tasks
 - aggregation (max, sum, ...)
 - filtering
 - join
 - Iook-up
 - sequence generation
 - sorting
 - splitting flows
 - merging flows

Metadata

- On data sources
- On ETL processes
- On data warehouse

On data sources

- location (IP address)
- hardware + operating system
- type (RBD, OBD, XML, spreadsheet, ...)
- schema
- access methods (SQL, XQuery, dump file, ...)
- connection credentials
- results of data profiling
- volume
- performance characteristics

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

Metadata

On ETL

- data storage architecture of ODS and DW (e.g., disk capacities, row-store / column-store)
- metadata on a dataset to upload to DW (e.g., size, avg. record lengths)
- definitions of ETL tasks/steps
- available dictionaries (e.g., cities, zip codes, names)
- workflow execution schedules
- execution statistics (e.g., elapsed time, CPU time, #I/O, RAM usage, throughput, disc access conflicts, #records uploaded, #records rejected)
- dependencies between tasks for impact analysis
- mappings between DS and DW structures
- data lineage
- execution logs

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

Requirements for ETL

➡ Efficiency

- finishing in a predefined time window
- estimating execution termination

Optimizable

- Fault-tolerance
 - restart after removing errors from a break point
 - restart from the beginning
 - recovery after crash
- Manageability
 - scheduling executions
 - time-based
 - token-based
 - stopping and restarting tasks
 - impact analysis
 - easy modifiable workflows

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

THE WINA PORTAL

Requirements for ETL

- Producing high quality data
- Security: access control
- A palette of predefined steps
- Automatic code generation
- Support of UDFs
- Automatic reporting on termination, errors, exceptions, and progress
- Parallel processing
- Direct path loading
- Semi-automatic adjustment to DS changes

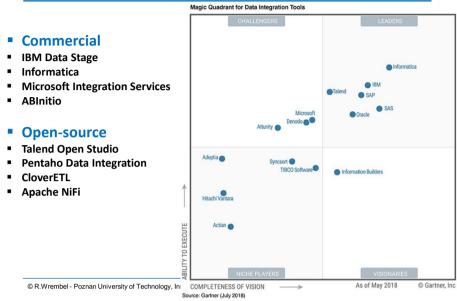
Off-the-shelf vs. in-house

Off-the-shelf

- faster design and deployment
- integrated data repository
- metadata management
- workflow execution scheduling
- built-in drivers to multiple DSs
- impact analysis
- incremental data loading
- parallel processing
- price
- often require more advanced architectures → cost

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

- In-house-developed
 - longer design and development
 - thorrough testing
 - dedicated to a given scenario
 - not customizable/flexible
 - may be tuned to a given scenario
 - may be less expensive


POZNAM AND RESTY

Off-the-shelf technology?

- ➡ Financial Times (18 Sep, 2013): Why big IT projects crash
- www.ft.com
- "... the Texas state auditor's office examined 13 IT projects, nine of which had overrun. It concluded, admittedly on a small sample, that agencies using commercial off-the-shelf technology exceeded their budgets by a smaller amount and took less time to complete their projects than those that did not"

Gartner Report

