
Derivation of Backpropagation Algorithm

for Feedforward Neural Networks

The elements of computation intelligence

Paweł Liskowski

1 Logistic regression as a single-layer neural network

In the following, we briefly introduce binary logistic regression model. The goal of logistic regression is to
correctly estimate the probability P (y = 1 | x). Parameters of the model are x 2 Rn and b 2 R. Training
examples are represented as n-dimensional vectors x 2 Rn. We use the following notation

a = �(w

T
x + b)

�(z) =

1

1 + exp(�z)

The loss function for binary logistic regression is

L(y, a) = �y log(a)� (1� y) log(1� a)

Given a dataset of training examples, we may learn the parameters w and b using gradient descent

wi  wi + �wi

b b + �b

�wi = �↵
@L

@wi

�b = �↵
@L

@b

Derived update rules are as follows (see also Algorithm 1)

@L

@wi
= (a� y)xi (1)

@L

@b
= (a� y) (2)

We now prove the (1) and (2):
@L

@wi
=

@L

@z

@z

@wi
=

@L

@a

@a

@z

@z

@wi

Let us first derive @L
@a

@L

@a
=

@

@a
[�y log(a)� (1� y) log(1� a)]

= �y

a
+

(1� y)

1� a
= �y(1� a) + a(1� y)

a(1� a)

=

�y + ay + a� ay

a(1� a)

=

a� y

a(1� a)

1



Algorithm 1 Gradient descent for logistic regression

Require: a set of training examples D, learning rate ↵.

1. Repeat until the termination condition is met:

Initialize �wi and �b with zeros
For each training example (x, y) 2 D do:

Propagate the input x forward through the model, i.e.,
input x to the model and compute its output as a = �(w

T
x + b).

Accumulate updates for each weights wi and b:

�wi  �wi � ↵(a� y)xi

�b �b� ↵(a� y)

Update parameters of the model

wi  wi + �wi

b b + �b

Partial derivative @a
@z is just �!

(z)

@a

@z
=

@

@z
[1 + exp(�z)

" 1
]

= �[1 + exp(�z)]

" 2
exp(�z))(�1)

=

1

1 + exp(�z)

exp(�z)

1 + exp(�z)

= �(z)

1 + exp(�z)� 1

1 + exp(�z)

= �(z)(

1 + exp(�z)

1 + exp(�z)

� 1

1 + exp(�z)

)

= �(z)(1� �(z)) = a(1� a)

Finding partial derivative @z
@wi

is straightforward

@z

@wi
=

@

@wi
(w1x1 + · · · + wixi + · · · + wnxn) = xi

Finally

@L

@wi
=

@L

@z

@z

@wi
=

@L

@a

@a

@z

@z

@wi
=

a� y

a(1� a)

a(1� a)xi = (a� y)xi

@L

@b
=

@L

@z

@z

@b
=

@L

@a

@a

@z

@z

@b
=

a� y

a(1� a)

a(1� a) = (a� y)

2



ah

ah+2

ak

ah+3

xi

xi +1

xi+2

ak+1
L(ak+1, tk+1)

L(ak , tk )

�kwkh

whi

! h

�k+1

ah+1

Figure 1: A simple two-layer feedforward neural network.

2 Feedforward neural networks

2.1 The model

In the following, we describe the stochastic gradient descent version of backpropagation algorithm for feed-
forward networks containing two layers of sigmoid units (cf. Algorithm 2). The backpropagation algorithm
learns the weights of a given network. It employs gradient descent to minimize the loss function between the
network outputs and the target values for these outputs. In the following, we briefly present the algorithm
and derive the gradient descent weight update rules used by the algorithm.

We typically consider networks with multiple output units rather than just a single unit, therefore the
cost function sums the errors over all of the network output units, i.e.:

J(w) =

1

2

!

d# D

!

k# O

(tkd � okd)
2, (5)

where O is the set out output units in the network, and tkd and okd are the target and output values associated
with kth output and training example d.

Notice how a feedforward neural network consists of several interconnected units (neurons), each of which
can be considered as implementing logistic regression (see unit ah and its corresponding inputs and weights
marked in blue in Fig. 1).

Given a fixed structure of a neural network, the Algorithm 2 repeatedly iterates over the training examples.
For each example d, it applies the network to the examples, calculates the error of the network on this
example, computes the gradient with respect to the error on this example, and finally updates all weights
in the network. The gradient descent step is iterated thousands of times using the same set of examples D
multiple times until the network performs acceptably well.

2.2 Intuitions about backpropagation

The gradient descent rule in backprop is actually quite similar to the conventional delta rule for a linear unit
(i.e., �wi = ↵(t� a)xi). It updates the weights in proportion to the learning rate ↵, the input xji from the
node i to the node j (in other words this is the activation of ith unit ai) to which the weight is applied, and
the error in the output of the unit. The major difference is that the simple error term (t� a) is replaced by
a more complex error term �j . To understand it intuitively, consider how �k is computed for the kth output
unit. The error �k is simply (tk � ak) multiplied by the derivative of activation function (sigmoid in this
case), i.e. ak(1 � ak). The value �h for a hidden unit h is conceptually quite similar. However, since the
training examples in D provide targets tk only for the units in the output layer, there are no target values
directly available to indicate the error committed by hidden units. Instead, the error term for hidden unit h
is calculated by summing the error terms �k for each output unit inßuenced by h, and weighting each of �k’s

3



Algorithm 2 Backpropagation algorithm for feedforward networks.

Require: a set of training examples D, learning rate ↵.

1. Create a feed-forward network with nin inputs, nh hidden units, and no output units.

2. Initialize all network weights to small random numbers.

3. Repeat until the termination condition is met:

For each training example (x, t) 2 D do:

Propagate the input x forward through the network, i.e.:
1. Input x to the network and compute the output ak of units in the output layer.

Backpropagatethe errors through the network:
1. For each network output unit k, calculate its error term �k:

�k  �ak(1� ak)(tk � ak) (3)

2. For each hidden unit h, calculate its error term �h:

�h  ah(1� ah)

!

k

�kwkh (4)

3. Update each network weight wji

wji  wji + �wji

where
�wji = �↵�jxji

by wkh, the weight form hidden unit h to output unit k. In other words, the weight wkh characterizes the
degree to which hidden unit h is responsible for the error in output unit k.

2.3 Derivation of the backpropagation rule

In this section we derive the backprogation training rule. Recall that the stochastic gradient descent rule
involves iterating through the examples in D, for each training example descending the gradient of the error
function with respect to this example. More specifically, for each example d every weight wji is updated by
adding to it �wji

�wji = �↵
@L

@wji
(6)

where L is the error on training example d, summed over all output units in the output layer of a network

L =

1

2

!

k# O

(tk � ak)

2

We use the following notation:

• xji – the ith input to unit j

• wji – the weight associated with ith input to unit j

• zj – the weighted sum of input for unit j, i.e. zj =

"
i wjixji

• aj – the output computed by unit j, i.e. aj = g(zj) where g is an activation function (sigmoid here)

4



Let us now derive @L
@wji

to implement the gradient descent rule in (6). Notice first that weight wji can
influence the network’s output only through zj . Using the chain rule we can write

@L

@wji
=

@L

@zj

@zj

@wji

=

@L

@zj
xji

Our objective is now to derive @L
@zj

. We consider two cases: the case where unit j is an output unit for the
network, and the case j is an internal unit.

Case 1: unit j is an output unit

Using the chain rule, we obtain

@L

@zj
=

@L

@aj

@aj

@zj

=

@L

@aj
aj(1� aj) (7)

Notice that @aj

@zj
is just the derivative of our activation function (sigmoid). We now proceed with finding the

derivative @L
@aj

@L

@aj
=

@

@aj

1

2

!

k# O

(tk � ak)

2

=

@

@aj

1

2

(tj � aj)
2

=

1

2

2(tj � aj)
@

@aj
(tj � aj)

= �(tj � aj) (8)

The summation term over output units is dropped because the derivatives @
@aj

(tk � ak)

2 will be zero for all
output units k except for the case when k = j. By substituting (8) into (7) we obtain (3)

@L

@zj
= �(tj � aj)aj(1� aj) = �j

As a concrete example, consider unit ak from Fig. 1. Using the above rules, we can easily derive weight
update for wkh

@L

@wkh
=

@L

@zk

@zk

@wkh

=

@L

@zk
ah

= �(tk � ak)ak(1� ak)ah

= �kah

Finally

�wkh = �↵
@L

@wkh
= �↵�kah (9)

5



Case 2: unit j is an internal (hidden) unit

When unit j is an internal unit we must also consider every unit immediately downstream of unit j (i.e., all
units whose direct input include the output of unit j). This is because a change in wji (and there in zj)
influences the network outputs only through these units. Let ds(j) denote units downstream of unit j. Then

@L

@zj
=

!

k# ds(j)

@L

@zk

@zk

@zj

=

!

k# ds(j)

�k
@zk

@aj

@aj

@zj
(10)

=

!

k# ds(j)

�kwkjaj(1� aj) (11)

Let us now use �j to denote @L
@zj

which gives us (4)

�j = aj(1� aj)

!

k# ds(j)

�kwkj

As an example, consider unit ah from Fig. 1. Notice that the change in whi influences unit ah directly and
units ak and ak+1 indirectly. To compute the error �h in unit ah, we sum the errors �k and �k+1 weighted by
wkh and wk+1 ,h, respectively (see red arrows in Fig. 1). Derivation of @L

@whi
is now straightforward

@L

@whi
=

@L

@zh

@zh

@whi

=

!

k# ds(h)

@L

@zk

@zk

@zj
xi

= ah(1� ah)

!

k# ds(h)

�kwkhxi

= �hxi

Finally

�whi = �↵
@L

@whi
= �↵�hxi (12)

6


