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1. Introduction
Transaction Memory (TM) [9, 12] is a concurrency control abstrac-
tion that allows the programmer to specify blocks of code to be ex-
ecuted atomically (or with particular guarantees). However, since
transactional code can contain just about any operation, rather than
just reads and writes of TM’s database predecessors, a greater at-
tention must be payed to the state of shared variables at any given
time. E.g., if a database transaction reads a stale value, it must sim-
ply abort and retry, and no harm is done. Whereas, if a TM transac-
tion reads a stale value it may execute dangerous operations, like at-
tempt to divide by zero, access an illegal memory address, or enter
an infinite loop. Thus strong safety properties are considered impor-
tant in TM, such as opacity [6] which regulate what values can be
read, even by transactions that abort. In comparison to these, stan-
dard database consistency conditions such as serializability [11] are
relatively weak.

However, such strong properties preclude (or virtually preclude)
using early release as a technique for optimizing TM (see [5, 13]).
Early release is a mechanism by which transactions forgo exclusive
access to shared variables in return for increased parallelism of op-
erations between transactions. In order to maintain the correctness
of the global state, transactions which read an inconsistent value
are aborted, but this does not prevent them from viewing at least
some inconsistent data. Hence, they cannot satisfy standard prop-
erties like opacity, etc. On the other hand, serializability does not
describe the TM’s guarantees adequately, since the TM can pre-
clude some, if not all, inconsistent views, and therefore be much
more safe and practical than a serializable TM.

Hence, in this paper we explore the TM safety property space:
serializability, opacity virtual world consistency [10], and the TMS
family [4], and consider whether they support early release and
to what extent. We do this in Section 3, but define our terms be-
forehand in Section 2. In the latter part of Section 3, we take a
look at some database consistency properties designed for trans-
actional processing in databases. We consider them pertinent, since
database transactions have many similarities to TM. Finally, in Sec-
tion 4, we specify how serializability can be combined with some
database properties to create a broader spectrum of useful early re-
lease supporting TM safety properties. We fill the remaining gap
by proposing Last-use consistency, a consistency property that ex-
cludes those inconsistent views which are the most troublesome,
but allows others.

2. Definitions
First, let us introduce several well-known TM terms (after [7]).
Consider a read operation opr in transaction Ti that reads value
v from some variable x, and a write operation opw in Tj that pre-
cedes opr in H and writes v to x. Operation opr is local if opw is
part of the same transaction as opr and non-local otherwise. Trans-
action Ti is committed if Ti begins its commit procedure and fin-
ishes successfully. If the commit procedure is not yet completed (so
Ti can still be aborted), then Ti is commit-pending. If transaction
Ti is neither committed nor commit-pending, it is live.

We also introduce a concept of commit-pending equivalence.
A commit-pending–equivalent transaction with respect to x is a
transaction that is live, but it executed its last possible write on x
and will perform no further writes on x before it either commits or
aborts. This is defined formally as follows:

Definition 1 (Commit-pending Equivalence). Live transaction Ti

in H is commit-pending–equivalent with respect to x if there exists
read or write operation op on variable x in H|Ti, such that for any
history Hc for which H is a prefix (Hc � H � H 1) operation op
is the last read or write operation on x in Hc|Ti (i.e., there is no
write on x in H 1|Ti).

Early release pertains to any situation where conflicting trans-
actions execute partially in parallel and access the same object. We
assume unique writes for convenience, but without loss of general-
ity (see [7]). We define the concept of early release as follows:

Definition 2 (Early Release). Transaction Ti releases x early in H
iff there is some prefix H 1 of H , such that Ti is live in H 1 and there
exists Tj in H 1 such that there is a non-local read operation opj

in Tj |H
1 reading v from x and a preceding write operation opi in

Ti|H
1 writing x to v.

We also distinguish a more specific case where one transaction
accesses another transaction’s variables only once the transaction
no longer uses them (but is still live). We define this as follows:

Definition 3 (Last-use Release). Transaction Ti releases x after
last-use in H iff Ti releases x early in H and Ti is commit-pending
equivalent wrt x.

Finally, let us define more formally what it means for a safety
property to support early release of one form or another. Let P be a
safety property, and let H be any history that satisfies P. Then:

Definition 4 (Early Release Support). P supports early release iff
there exists some transaction Ti in H satisfying P such that for
some variable x, Ti releases x early in H .

Definition 5 (Last-use Release Only Support). P supports last-
use release only iff P supports early release, and for any Ti in H
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satisfying P, if Ti releases any x early, then Ti releases x after
last-use.

3. Early Release Support and Safety Properties
Let us discuss whether particular safety properties allow for early
release. The properties under consideration are some TM safety
properties as well as database properties pertaining to transactional
processing.

3.1 Serializability
First, let us consider serializability, which can be considered a base-
line TM safety property. It is defined in [11] in three variants: con-
flict serializability, view serializability, and final-state serializabil-
ity. We follow a more general version of serializability defined in
[14], which we summarize as follows:

Definition 6 (Serializability). History H is serializable iff there
exists some linear extension (sequential witness history) HS such
that HS only contains legal transactions.

This definition does not preclude early release, as long as illegal
transactions are aborted. Serializability also does not limit early
release to releasing after last use. Thus, we stipulate the following.

Lemma 1. Serializability supports early release.

Proof sketch. Let H be a transactional history as follows:

Ti

q
wpxq0, wpxq1

y

Tj

q
rpxq0, ý ... T 1

j

q
rpxq1,wpxq2

y

Here, Ti performs two writes to x and Tj reads and writes
to x. Also, Tj reads a value of x that Ti later overwrites, so
Tj rolls back (denoted ý) and retries later. The linear extension
of H is Ŝ � Ti

q
wpxq0,wpxq1

y
, Tj

q
rpxq1,wpxq2

y
, wherein all

transactions are legal. Thus H is serializable. Since, by Def. 2, Ti

releases early in H , then, by Def. 4, serializability supports early
release.

Lemma 2. Serializability does not support last-use release only.

Proof sketch. Let H be a history as above. Transaction Ti writes
to x after Tj reads x, so by Def. 1, Ti is not commit-pending–
equivalent wrt x when Tj reads x. Since this is contrary to Def. 3,
Ti does not release x after last use. This, in turn, is contrary to
Def. 5, so serializability does not support last-use release only.

3.2 Opacity
Opacity [6, 7] can be considered the standard TM safety property.
It requires serializability, preservation of real-time order, and con-
sistency. Only the first and latter-most components are pertinent to
our current exploration. We deal with serializability in Lemmas 1–
2. Consistency is defined in [7] as follows (in a brief form):

Definition 7 (Consistency). History H is consistent, if for every
read operation opr � rpxqv on variable x returning value v in
subhistory H|Ti, it is true that:
a) If opr is local then the latest write operation on x preceding

opr writes v to x.
b) If opr is non-local then either v � 0 or there is a non-local

write operation on x writing v in H|Tk (Tk � Ti) where Tk is
committed or commit-pending.

This definition of consistency precludes any use of early release
whatsoever, so the following is true about opacity:

Lemma 3. Opacity does not support early release.

Proof sketch. If opacity is to support early release, then by Def. 4,
there must exist some Ti in some opaque H , such that Ti releases
some x early. I.e., by Def. 2, some Tj reads from Ti while Ti is
live. This implies that there is some non-local operation op in H|Tj

that reads a value of some variable written by another operation in
H|Ti. However, Ti is live, which is at odds with Def. 7b, and since
consistency is required for opacity, it is impossible for there to exist
such Ti. Hence opacity precludes early release support.

Lemma 4. Opacity does not support last-use release only.

Proof sketch. Since last-use release support requires early-release
support (Def. 5), then the lemma follows from Lemma 3.

3.3 Virtual World Consistency
Since the requirements of opacity, while very important in the con-
text of TM’s ability to execute any operation transactionally, can
often be excessively stringent. On the other hand serializability
is considered too weak for many TM applications. Thus, Virtual
world consistency (VWC) was introduced, which is a TM consis-
tency condition defined as follows (from [10]):

Definition 8. History H meets VWC if all committed transactions
are serializable and preserve real-time order, and for all aborted
transactions there exists a linear extension of its causal past that is
legal.

While weaker than opacity, this property nevertheless precludes
use of early release, as follows.

Lemma 5. VWC supports early release.

Proof sketch. Let H be a transactional history as follows:

Ti

q
rpxq0,wpxq1, rpyq0

y

Tj

q
rpxq1

y

Here, Ti performs two operations on x and one on y, while Tj

reads x. The linear extension of H is Ŝ � Ti

q
rpxq0,wpxq1, rpyq0

y
,

Tj

q
rpxq1

y
, wherein all transactions are legal. Thus H is VWC.

Since, by Def. 2, Ti releases early in H , then, by Def. 4, VWC
supports early release.

Lemma 6. VWC supports last-use release only.

Proof sketch. Since VWC requires that aborting transactions view
a legal causal past, then if a transaction reading x is aborted, it must
read a legal (i.e. "not overwritten") value of x. Thus, let us consider
some history H where some Ti releases x early, and some Tj reads
x from Ti.
a) If Ti writes to x after releasing it, and Tj commits, then Tj is

not legal, and therefore H does not satisfy VWC.
b) If Ti writes to x after releasing it, and Tj aborts, then the causal

past of Tj contains Ti, and Tj reads an illegal (stale) value of x
from Ti, so H does not satisfy VWC.

Therefore, any history H containing Ti, such that Ti releases x
early and modifies it after release does not satisfy VWC. Therefore
in any VWC history H containing some Ti, such that Ti releases
x early, Ti releases x after last use. Thus, by Def. 5, the lemma
holds.

While VWC allows supports early release, there are severe
limitations to this capability. I.e., VWC does not allow a transaction
that released early to subsequently abort for any reason. First, let
us remind that by its definition in [10], given transaction Ti, causal
past CpTiq is legal, if for every Tj P CpTiq, s.t. i � j, Tj is
committed. Then let us state as follows:
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Lemma 7. Given a VWC history H , Ti releases x early, then Ti

cannot abort.

Proof Sketch. By contradiction, let us assume that Ti eventually
aborts. By Def. 2, there is some Tj in H that reads from Ti. If
Ti eventually aborts, then Tj reads from an aborted transaction.
a) If Tj eventually aborts, then its causal past contains two aborted

transactions (Ti and Tj) and is, therefore, illegal. Hence H does
not satisfy VWC, which is a contradiction.

b) If Tj eventually commits, then the sequential witness history
is also illegal. Hence H does not satisfy VWC, which is a
contradiction.

Therefore, if Ti eventually aborts, H does not satisfy VWC, which
is a contradiction. Thus, since a VWC history cannot contain an
abortable transaction that releases a variable early, it cannot contain
transaction Ti.

We submit, that requiring a transaction to never abort after per-
forming a release is impractical, since TM systems cannot predict
whether any particular transaction eventually commits or aborts.
An exception to this may be found in systems making special pro-
visions to ensure irrevocable transactions eventually commit (see
e.g. [15]), but, case in point, these take drastic measures to ensure
that e.g. a single transaction is present in the system at one time. In
the general case, however, the requirement is too strict.

3.4 TMS1
In [4] the authors argue that some contexts, such as sharing vari-
ables between transactional and nontransactional code, require ad-
ditional safety properties. Thus, they propose and rigorously define
two consistency conditions for TM: TMS1 and TMS2. We only ex-
amine TMS1 here, but since TMS2 is strictly stronger than TMS1,
our conclusions will equally apply to TMS2.

TMS1 follows a set of design principles including a requirement
for observing consistent behavior or partial effects of transactions.
The principle is reflected in the definition of the TMS1 automa-
ton, and we paraphrase the relevant parts of the condition for the
correctness of an operation’s response in the following observation
(see the definition of validResp for TMS1 in [4]).

Observation 1 (Valid Response). For operation op to return in
some subhistory H|Ti, there must exists some set of transactions
S that follow real-time order, justify the legality of op, and for any
TjinS it is true that either:
a) Tj precedes Ti in real-time order and Tj is committed, or
b) Tj is committed or commit-pending.

Then it is straightforward to see that:

Lemma 8. TMS1 does not support early release.

Proof sketch. If TMS1 is to support early release, then by Def. 4,
there must exist some Ti in some H respecting TMS1, such that Ti

releases some x early. I.e., by Def. 2, some Tj reads from Ti while
Ti is live. Since live transactions cannot be committed or commit-
pending, this is directly contradicted by Observation 1b. Thus, it
is impossible for there to exist such Ti. Hence, TMS1 does not
support early release.

Lemma 9. TMS1 does not support last-use release only.

Proof sketch. By analogy to the proof of Lemma 4.

3.5 Database Properties
We follow the discussion of TM safety properties with brief foray
into database properties that deal with transaction consistency.
Given that TM properties tend not to be very helpful when de-
scribing the behavior of early release, these consistency properties
may be used to supplement that.

Recoverability Recoverability is a database property defined as
below (following [8]):

Definition 9. History H is recoverable if for any Ti, Tj P H s.t.
Tj reads from Ti, Ti commits in H before Tj .

Recoverability does not make requirements about values read
by transactions, so it necessarily supports both early release and
last-use release. However recoverability imposes an order on com-
mits and aborts, and as such can be very useful in conjunction with
e.g. serializability to limit the set of acceptable histories.

Avoiding Cascading Aborts Avoiding cascading aborts (ACA)
[2] is a database property defined as:

Definition 10. ACA holds for history H , if for any Ti, Tj P H s.t.
Tj reads from Ti, Ti commits before the read.

As with recoverability, ACA restricts reading from live transac-
tions but allows writing after live transactions. Therefore ACA re-
moves some early release scenarios, while still allowing it in some
cases. As practice shows, (see e.g. [5, 13]), transactions can read
inconsistent data as a result of early release, and may need to be
aborted, which ACA prevents. Therefore, ACA may be useful in
the context of early release in TM.

Strictness Strictness [2] is a database property defined as:

Definition 11. History H is strict iff for any Ti, Tj P H and given
any operation opi � rpxqv or wpxqv1 in H|Ti, and any operation
opj � wpxqv in H|Tj , if opi follows opj , then Tj commits or
aborts before opi.

The definition unequivocally states that a transaction can read
from or write after another transaction, the former transaction must
be committed or aborted before this takes place, so strictness pre-
cludes early release and last-use release.

Rigorousness Rigorousness is defined (following [3]) as:

Definition 12. History H is rigorous if it is strict and for any
Ti, Tj P H such that Tj writes to variable x, i.e., opj � wpxqv P
H|Tj after Ti reads x, then Ti commits or aborts before opj .

Since [1] demonstrates that rigorous histories are opaque, and
since we show at the beginning of this section that opaque histories
support neither early release nor last-use release, then neither does
rigorousness.

4. Implications
There is a lack of sufficient spectrum of TM safety properties that
would describe behavior of TM with early release adequately. Cur-
rently, TM system that uses early release can satisfy serializabil-
ity, which is relatively weak, as far as TM safety properties are
concerned. On the other hand, stronger properties include leave
only opacity and TMS1, which disallow early release altogether, or
VWC, which requires an impractical assumption that transactions
releasing early not abort. However, a practical TM system that is
serializable and limits early release to accept only a part of all his-
tories with early release, but not enough to achieve either opacity,
TMS1, or VWC lacks description.
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4.1 Complementing Consistency with Database Properties
One way to attempt to mitigate this problem is to use the aforemen-
tioned database transactional processing properties to supplement
the spectrum of safety properties. Specifically, two of the database
properties support early release: recoverability and ACA, with the
former being strictly weaker than the latter (see [1]). Thus, if these
properties are used in conjunction with serializability, it is possible
to form a spectrum of early-release–friendly TM consistency prop-
erties: serializability, serializability + recoverability (S+R), and se-
rializability + ACA (S+ACA).

S+R limits the set of accepted histories to those which main-
tain the order of commits in agreement with the order in which
transactions access variables. This prevents a situation such as the
following, which is serializable but not recoverable:

Ti

q
wpxq0, wpxq1

y

Tj

q
rpxq0

y

However S+R is still a fairly weak property, especially in the
context of early release, as it does not regulate inconsistent views.
We believe that both DATM [5] and SVA [13] satisfy S+R, because
they both are serializable and both order their commits following
the order of the reads-from relation.

S+ACA, on the other hand, restricts the use of forced rollbacks,
so that the following scenario is not S+ACA:

Ti

q
wpxq0, wpxq1

y

Tj

q
rpxq0, ý ... T 1

j

q
rpxq1,wpxq2

y

Indeed, all W Ñ R dependences between transactions are
removed in the case of transactions that release early and only
W Ñ W dependences are retained. Since W Ñ R, can be
considered the typical case in case of early release, we consider
S+ACA to be very restrictive and difficult to implement. On the
other hand, we conjecture S+ACA prevents all inconsistent views
in a TM with early release. Thus, we believe that neither DATM
nor SVA are S+ACA, since they both allow inconsistent views, and,
indeed, both permit cascading aborts to occur.

4.2 Allowing Inconsistent Views
Thus, S+R does not eliminate inconsistent views and S+ACA pre-
cludes them. However we still lack properties which allow incon-
sistent views, but limit them only to a specific subset. We submit
that a good half-way point between precluding inconsistent views
and allowing them, would be only to allow from the subset of all
transactions that release variables early, only those that do so af-
ter last use of each of the variables in question. In this way, no
variable would see a value of a variable that would be overwritten
(later modified) by a preceding transaction. This precaution pre-
cludes most of the problems with inconsistent views, as a transac-
tion that reads a value of a variable that was released early will not
expect the value to suddenly change, although the transaction may
expect the preceding transaction itself to abort for some reason and
invalidate the variable as a result.

Let as then propose a consistency condition, which here we will
refer to as last-use consistency (LUC). Let TH

er be a subset of all
transactions in history H , such that Ti P TH

er iff for some x, Ti

releases x early (Def. 2). Then, let TH
lu be a subset of TH

er , such that
Ti P TH

lu iff for any x that Ti releases early, Ti releases x after last
use (Def. 3). Then LUC can be defined simply as follows:

Definition 13 (Last-use Consistency). History H satisfies LUC, if
TH

lu � TH
er .

Then, we can fill the spectrum of properties for early release
with serializability + recoverability + LUC (S+R+LUC)—we add
recoverability so that the property is strictly stronger than S+R.

The following history is precluded by S+R+LUC due, since
Ti does not release early after last use, and therefore Tj reads an
inconsistent value of x and is forced to abort.

Ti

q
wpxq0, wpxq1

y

Tj

q
rpxq0, ý ... T 1

j

q
rpxq1,wpxq2

y

On the other hand, the following history is allowed by S+R+LUC,
since Ti releases after last use, and despite that fact, that Tj reads
an inconsistent value of x from the aborted (perhaps programmati-
cally) Ti:

Ti

q
wpxq0, wpxq1 ý

Tj

q
rpxq0, ý ... T 1

j

q
rpxq1,wpxq2

y
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