
On Safety of Replicated Transactional Memory

Maciej Kokociński, Tadeusz Kobus, Pawe l T. Wojciechowski

Institute of Computing Science,
Poznań University of Technology

60-965 Poznań, Poland
{Maciej.Kokocinski,Tadeusz.Kobus,Pawel.T.Wojciechowski}@cs.put.edu.pl

Abstract

Transaction Memory (TM) is a concurrency control abstraction that allows the pro-
grammer to specify blocks of code to be executed atomically. In this paper, we consider a
distributed variant of TM in which transactional memory is consistently replicated on net-
work nodes for greater availability and fault-tolerance. We argue that opacity, a standard
TM safety property, is misused when applied to replicated transactional systems. In this
paper we also sketch the requirements for a new safety property that can work well with all
kinds of transactional systems, including replicated TM.

1 Introduction

The discussion about the desired safety guarantees of transactional memory (TM) systems is as
old as the field of TM itself. Ideally, all transactions in a TM system should appear as if they were
executed sequentially in a way that respects the order in which all non-overlapping transactions
were originally performed. This requirement is captured by opacity, a well established property
originally described in [5] and later explored in [6]. The system model in which opacity was
defined, has often been used as a framework for new properties, proving lower bounds and
impossibility results. An important result of [1] shows that opacity is necessary and sufficient to
provide an illusion to the programmer, that all transactions (regardless whether they end with
commit or abort) were executed sequentially.

Opacity also became the desired safety property of replicated TM systems [9] [10] [3] which
emerged after TM was adopted to the distributed environment. However, as we show in this
paper, opacity, in its original definition, is not general enough to be used as a correctness criterion
for replicated TM. In the light of these findings, it comes as no surprise, that no formal proof of
opacity has ever been published for any replicated TM. It turns out that the system model of
opacity is inherently incompatible with the realms of distributed environment. In the paper we
sketch the requirements for a new correctness criterion that aims at all kinds of transactional
systems, including replicated TM.

2 Problems with Opacity in Replicated TM

The system model of Guerraoui and Kapalka [6] assumes that the processes interact with the
transactional shared objects (called t-objects) only through the interface of TM. Each transaction
is bound to only one process and this process cannot execute two transactions concurrently.
Moreover, the transaction’s code is not given as a function or code. Instead, a transaction is

1



executed interactively, so that the process observes the results of all transactional operations it
executes.

The choice of such a system model has numerous consequences. For instance, it has been
proven that it is impossible for a TM system that adheres to this model to guarantee both
opacity and local progress [2]. By allowing the processes to help one another with execution of
transactional operations, the impossibility no longer holds [12] (see also below).

The model described above is especially troublesome for replicated systems. Consider a
replicated state machine (SMR) as in [11] where each replicated process executes every request
on its local memory; thus, we can say that processes’ state and requests’ execution are replicated.
Intuitively, if we consider the SMR requests as transactions, SMR should provide opacity: all
requests are executed deterministically and sequentially, in the order they were issued by the
clients. However, it is impossible to frame such an execution in the system model of opacity.
There is no single process that executes a request. Instead it is executed by all processes
independently on replicated t-objects. Moreover, request processing is not interactive. Each
process receives the code of the request and only the return value is provided back to the client.
It means that the client cannot observe the intermediate results of execution.

One could argue that in case of SMR it is easy to consider each process independently and
show that all processes are exact replicas. So if execution on one process satisfies opacity then
the whole system should also guarantee it. Unfortunately, it turns out that this is not true for
more sophisticated replication schemes which mix different request execution modes and allow
various degrees of replication (such as in partial replication). Moreover, this approach does not
solve the problem of a request’s code which has to be known a priori.

Consider a yet another example which features a distributed system providing a shared mem-
ory abstraction that is transparent to the programmer. One could easily construct a distributed
transactional memory system that satisfies opacity and is based on this abstraction. However,
potentially this system would exhibit extremely poor performance. It is clear that in order to
execute transactions efficiently, we have to know how shared objects are replicated. For instance,
this knowledge enables to batch in a single message several operations to be executed on the
same remote shared object replica. The key to understand the problem is therefore the fact
that in the distributed environment we have to explicitly care about replication. However, the
original definition of opacity is incompatible with this new requirement. When we use opac-
ity as the correctness criterion of distributed TM systems it is impossible to reason about the
underlying replication scheme. It is because the definition of opacity involves only histories of
interaction between the processes and the TM interface which consist of operations’ invocation
and response events.

On the other hand, abstracting away from the internals of TM implementation enables
using opacity for all different implementations of TM, regardless whether they execute trans-
actions optimistically or pessimistically, use backlog or shadow copies of shared objects, etc.
One would expect that opacity should also be equally applicable to both local and replicated
TM, as replication may be considered only an implementation detail. But unfortunately it is
not. In particular, opacity does not allow processes to know transaction’s code a priori, which
is necessary to efficiently implement replication.

3 Looking at the TM Alternatives: Universal Construction

The concept of Universal constructions (UC) [7] is somewhat related to TM in the sense that
both approaches aim at simplifying concurrent programming. UC, however, are primarily de-
signed as a framework for implementing concurrent data structures. Formally, a universal con-
struction is defined as an algorithm that produces a concurrent implementation for a shared
object whose sequential specification was given as the input. The atomic execution units for

2



UC, which correspond to transactions in TM, are called operations. Contrary to transactions,
operations in UC always succeed. In reality, UC may execute an operation multiple times (also
by different processes), but the operation retries are transparent to the programmer. Therefore,
UC acts as a contention manager featured in many TM systems. The important difference be-
tween UC and TM is that in UC the programmer cannot observe the intermediate results of
operation execution and the possible operation retries.

Linearizability [8] is the correctness criterion for UC. It enforces that the concurrently sub-
mitted operations are executed as if they happened in a single point during their lifetime. More
formally, for an execution history to be linearizable there has to exist an equivalent legal se-
quential history that respects the real-time order of operation invocations and responses. Legal
histories are limited to executions in which operations on the same shared object follow its
sequential specification. It means that linearizability can be perceived as a high-level property–
only the semantics of operations (as defined by the sequential specification) is considered.

Recently linearizability was used in the context of TM. Crain et al. [4] argue that transaction
retries should be transparent to the programmer. They demonstrate a software transactional
memory (STM) system that guarantees exactly-once semantics for transaction execution. Their
STM system is in fact a UC, where each transaction is run as a separate operation that always
succeeds. In reality, each operation can be executed multiple (but bounded) number of times.
Since an operation can also access local variables (beside t-objects), in case of a retry, the local
variables used inside transactions are reset to their initial state. This is necessary to ensure
linearizability as no information can leak from the aborted transaction runs.

This approach seems very promising in the context of replicated TM systems. However, it
has some drawbacks, also for local TM. Firstly, linearizability does not guarantee consistency
for live (or aborted) transactions. It means that live transactions may fall into inconsistencies
and, e.g., never even try to commit. To overcome this issue, Crain et al. opted for a strong
progress condition, which guarantees that every transaction commits after a bounded number
of runs. However, such a progress guarantee may be deemed too strong for TM. In fact, we
are not aware of any other TM system that satisfies such a stringent requirement. Secondly,
hiding transaction retries from the programmer requires additional maintenance of local variable
accessed by a transaction, as in case of the STM system discussed above. This additional work
may result in a noticeable performance penalty. Finally, there is no common approach to proving
linearizability for TM systems, as linearizability is not typically used in the context of TM. In
this respect, using opacity is much easier–a typical way of proving opacity is presented in [6].

4 Conclusions and Future Work

We see that opacity is not a suitable correctness criterion for replicated TM systems. As we
discussed above, linearizability is a possible replacement. However, there are several problems
with this approach, which have to be addressed.

Alternatively, we intend to design a new safety property that inherits the best features of
both linearizability and opacity. Similarly to linearizability, the new property would require the
code of a transaction to be known a priori. However, a transaction would be able to end with
abort, as in opacity. Likewise, the definition would not be limited to the high-level semantics of
transactions, but it would involve explicit operations on shared (transactional) objects.

Right now we are not sure which approach of the two mentioned above is best since we
only present preliminary results in this paper. Before going further we think that we (as the
TM community) first have to better understand the differences between the worlds of universal
constructions and transactional memory. It seems that the literature lacks a clear compari-
son between these two approaches in the context of used system model, offered guarantees,
impossibility results, time and resource complexity, etc.

3



Our goal is to investigate these issues further. So far, we have developed a replicated TM
system called Paxos STM [13] [9]. Our system uses novel TM algorithms that we believe are
opaque. However, we came into problems trying to formally prove the correctness of our algo-
rithms. The standard proof techniques for opacity deemed impractical in the system model that
we have.

Acknowledgements The project was funded from National Science Centre funds granted by
decision No. DEC-2012/07/B/ST6/01230.

References

[1] H. Attiya, A. Gotsman, S. Hans, and N. Rinetzky. A programming language perspective
on transactional memory consistency. In PODC, pages 309–318, 2013.

[2] V. Bushkov, R. Guerraoui, and M. Kapa lka. On the liveness of transactional memory. In
Proc. of PODC ’12, pages 9–18, 2012.

[3] N. Carvalho, P. Romano, and L. Rodrigues. Asynchronous lease-based replication of soft-
ware transactional memory. In Proc. of Middleware ’10, 2010.

[4] T. Crain, D. Imbs, and M. Raynal. Towards a universal construction for transaction-based
multiprocess programs. Theor. Comput. Sci., 496:154–169, July 2013.

[5] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In Proc. of
PPoPP ’08, Feb. 2008.

[6] R. Guerraoui and M. Kapalka. Principles of Transactional Memory. Synthesis Lectures on
Distributed Computing Theory. Morgan & Claypool Publishers, 2010.

[7] M. Herlihy. A methodology for implementing highly concurrent data structures. In Proc.
of PPoPP ’90, pages 197–206, 1990.

[8] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM TOPLAS, 12(3), 1990.

[9] T. Kobus, M. Kokociński, and P. T. Wojciechowski. Hybrid replication: State-machine-
based and deferred-update replication schemes combined. In Proc. of ICDCS ’13, July
2013.

[10] R. Palmieri, F. Quaglia, and P. Romano. AGGRO: Boosting STM Replication via Aggres-
sively Optimistic Transaction Processing. In Proc. of NCA 2010, pages 20–27, 2010.

[11] F. B. Schneider. Replication management using the state-machine approach, pages 169–197.
ACM Press/Addison-Wesley, 1993.

[12] J.-T. Wamhoff and C. Fetzer. The Universal Transactional Memory Construction. In
TRANSACT 11, June 2011.

[13] P. T. Wojciechowski, T. Kobus, and M. Kokociński. Model-driven comparison of state-
machine-based and deferred-update replication schemes. In Proc. of SRDS ’12, Oct. 2012.

4


	Introduction
	Problems with Opacity in Replicated TM
	Looking at the TM Alternatives: Universal Construction
	Conclusions and Future Work

