
JOURNAL OF DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, OCTOBER 2016 1

Recovery Algorithms for Paxos-based State
Machine Replication

Jan Kończak, Paweł T. Wojciechowski, Nuno Santos, Tomasz Żurkowski,
and André Schiper. Member, IEEE,

Abstract—In this article, we propose and evaluate three different state recovery algorithms aimed for Paxos—one of the most popular
distributed agreement protocols. Paxos is commonly used to maintain consistency among state machine replicas despite of failures of
processes. The first algorithm, that we call FullSS, originates from the original Paxos and requires that the system frequently uses
stable storage during regular (non-faulty) execution. The other two state recovery algorithms, ViewSS and EpochSS, scarcely requite
access to stable storage, and the recovering process must do much less work to restore its lost state, and to catch up on the current
state of the system. We thoroughly analyze and compare the behavior of the three algorithms during state recovery and also during
regular, non-faulty system execution, under various workloads (e.g., causing the network or CPU saturation). The experimental results
show that by using ViewSS and EpochSS, we can significantly improve process recovery with respect to the original Paxos, if only it
can be assumed that at any time a majority of replicas are up running (excluding those replicas that are just recovering). Moreover,
these algorithms do not impact the performance of Paxos during regular (non-faulty) operation. However, FullSS is the only choice out
of the three, if the system must tolerate catastrophic failures.

Index Terms—Distributed algorithms, Paxos, state machine replication, fault-tolerance.

F

1 INTRODUCTION

R EPLICATION is an important enabling technology for
increasing service availability and performance. At the

core of this approach are distributed agreement protocols that
are used for maintaining consistency among state machine
replicas. Paxos [1] is by far the most known protocol of
this sort. It has been used in many commercial systems,
e.g., in Chubby [2], for implementing distributed locks, and
in Spanner [3], for implementing distributed transactions.
However, so far some important practical problems of using
Paxos were not researched sufficiently deeply. One of such
problems is state recovery after failures. To guarantee ser-
vice high availability, a crashed replica must recover state
and become up-to-date as quickly as possible. Therefore,
efficient recovery algorithms are required. In this paper, we
study a range of such algorithms that, we claim, are suitable
for the Paxos protocol.

In [1], describing Paxos, and related papers (e.g. [4]),
some protocol data must be written to stable storage, so
that a crashed replica is able to recover its state by reading
the storage content at the start up. In [5], a snapshot-
based recovery algorithm was discussed, but, as above,
it frequently uses stable storage, which severely impacts
system performance. To make the accesses faster, instead
of disks, solid state drives (SSD) could be used, but the best
alternative in terms of performance would be to minimize
the use of any stable storage devices. In [6], the authors
discuss “stable-storage free recovery”, but in this approach

• J. Kończak, P. T. Wojciechowski, and T. Żurkowski were with the Institute
of Computing Science, Poznań University of Technology, 61-051 Poznań,
Poland. E-mail: {Jan.Konczak, Pawel.T.Wojciechowski}@cs.put.edu.pl,
Tomasz.Zurkowski@gmail.com

• N. Santos and A. Schiper were with School of Computer and Communi-
cation Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015
Lausanne, Switzerland. E-mail: {Nuno.Santos, Andre.Schiper}@epfl.ch

the processes that recovered after crashes stop sending any
new Paxos messages, which, as the authors admit, limits
potential applications (see discussion in Section 2).

According to Brewer’s CAP conjecture [7], it is impos-
sible for a distributed system to simultaneously provide
consistency, availability, and partition tolerance. Paxos is
typically used in systems that guarantee consistency and
availability. To guarantee the latter property, the majority of
replicas must remain operational at any time. With such an
assumption, we can propose efficient recovery algorithms,
in which processes scarcely use stable storage, as they can
contact other replicas during recovery to update their state.
The question arises what are the minimal data that must
be written to stable storage and how often they should be
written, in order to be able to recover a process that crashed?

We study three different recovery algorithms for Paxos:
FullSS, ViewSS, and EpochSS. FullSS follows the original
paper on Paxos—the system frequently uses stable storage
during regular (non-faulty) execution. ViewSS was adopted
from viewstamped replication [8]. EpochSS is similar to
ViewSS, but requires less access to stable storage. Given the
majority of replicas is always up, it can support crash recov-
ery with no use of stable storage during regular execution,
which aids performance. Stable storage is only accessed by a
process on its start up and recovery. To our best knowledge,
EpochSS did not appear elsewhere in the literature on Paxos.
All algorithms can deal with stray messages, i.e., messages
that were sent but not delivered before a crash.

Our work is the first comprehensive experimental assess-
ment and comparison of recovery techniques for Paxos. The
obtained results show that a suitable support of recovery in
Paxos can have negligible influence on system performance,
both during normal (non-faulty) operation as well as during
recovery. For this, we developed JPaxos [9]—a state machine

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2926723

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, OCTOBER 2016 2

replication framework based on a highly optimized variant
of Paxos, equipped with the three recovery algorithms and
an efficient snapshotting mechanism.

The structure of the paper is as follows. After discussing
related work (Sec. 2), we define a system model (Sec. 3) and
the Paxos protocol (Sec. 4), giving details of the protocol that
help to explain recovery. Then, we present three recovery
algorithms for Paxos (Sec. 5). Next, we analyze the recovery
process (Sec. 6), and present the results of the experimental
evaluation (Sec. 7). We conclude in Sec. 8.

2 RELATED WORK

In this section we describe related work which is closely
related to ours.

Recovery in Paxos
De Prisco, Lampson, and Lynch [10] use a timed I/O au-
tomaton model to formally analyze Paxos. As in [1], they
assume that, whenever required, the state is recorded to
stable storage.

Boichat et al. [6] describe a simple method of recovery of
a replica after crash, which requires Paxos to write data to
stable storage, once per each decision. This is equivalent to
FullSS. They also describe another recovery method, called
Winter, that does not use stable storage at all, but it requires
that the majority of processes never crash. Upon recovery, a
replica broadcasts a message indicating that it recovered its
state and it votes no more for any decision. This means that
for three replicas, one is allowed to crash and recover its
state (possibly many times) while the other two must never
crash or the system becomes unavailable forever. Boichat et
al assess that their Winter method is "not really useful for a
practical system". In our work, we take weaker and much
more practical assumptions about the system and only limit
the number of processes that may crash at the same time (in
case of ViewSS and EpochSS).

Kirsch and Amir [11] show the Paxos protocol with
a simple state recovery method that uses stable storage
at key places of the protocol. Contrary to us, no snap-
shots are recorded in order to decrease the memory and
processing time required by recovery. They evaluated the
performance of Paxos, considering no disk writes, as well
as synchronous / asynchronous disk writes. The results
show a large negative impact of stable storage (disks) on the
system throughput. Therefore, in our work our focus was
on reducing the use of disks to minimum while retaining
practical assumptions about the system.

Rao, Shekita, and Tata [5] use Paxos to build a data
store system with support of state recovery based on stable
storage. To speed up recovery, a catch-up method with
snapshots is used, as in our system. However, unlike us, at
the end of the catch up phase, the leader momentarily blocks
new writes to ensure that another process has fully caught
up the current state. The authors compare the performance
of the system with a hard disk drive (HDD) and a high-end
solid state drive (SSD). Unfortunately, they do not show the
results with no recovery support, so it is hard to estimate
the overhead of the recovery algorithms.

Many authors describing some prototype and industry-
strength implementations of Paxos (see e.g., [2], [3], [4], [12],

[13], [14]) and popularizing the Paxos algorithm (see e.g.,
[15], [16]) do not even mention, or only give some vague
idea, about support for a crash-recovery model of failure.
Moreover, some other authors use the term “recovery” in
a completely different context. E.g., in [17], [18], “recovery”
means, in fact, restoring system availability after the crash
of a leader by electing a new leader. To sum up, despite a
lot of interest in the Paxos protocol, little progress was made
regarding support for state recovery after crashes. However,
some state recovery methods have been developed for other
protocols, which are similar to Paxos. Below we discuss the
most relevant examples.

Recovery in Non-Paxos Consensus Protocols
Viewstamped replication [8], [19] is an efficient state ma-
chine replication protocol, similar in operation to Paxos. Oki
and Liskov [8] describe an efficient state recovery method
in VR, that that does not demand frequent accesses to
stable storage. The algorithm requires little data to be stored
permanently, and the writes occur sporadically. The VR
algorithm also gives a clear description of how the state of
late replicas is updated. Liskov and Cowling [19] propose a
state recovery method that does not use stable storage at all,
but extends the system assumptions, by putting restrictions
on system asynchrony and clock behaviour. However, the
authors do not explain how a replica joining the system
learns whether it should recover from previous state, or start
execution for the first time. In our case, we use epoch or
view numbers for this, which have to be stored in stable
storage to survive crashes.

Aguilera, Chen, and Toueg [20] proposed failure detec-
tors aimed for the crash-recovery model, and determined
under what conditions stable storage is necessary in order
to solve consensus in this model. Based on the failure detec-
tors, they proposed two consensus algorithms: one requires
stable storage and the other does not. They show that stable
storage is not needed to recover if and only if always-up
replicas outnumber unstable or eventually-down replicas
(as classified by their failure detectors). They also showed
that if there are no replicas which are always-up, then
recovery without frequent accesses to stable storage is not
possible. Since assuming that some processes are always up
is impractical, in our work we circumvent this impossibility
result by restricting the number of simultaneous failures.

Ongaro and Ousterhout [21] described Raft, a consensus
algorithm for managing a replicated log. The Raft algorithm
uses a catch-up method that is similar to ours, but in order
to support recovery all key data of the algorithm must
be written to stable storage. Thus, their approach to state
recovery does not bring significantly new ideas.

Junqueira, Reed and Serafini [18] described Zab, an
atomic broadcast protocol for primary-backup systems that
offers some support for recovery. However, the authors, in
fact, use the term “recovery” for a correct initialization of a
new leader once the previous one crashed. No information
was given on how a crashed replica recovers its state.

Michael et al. [22] propose a new crash model called Disk-
less Crash-Recovery (DCR) and an algorithm for maintaining
fault-tolerant shared objects. DCR is a crash-recovery model
without stable storage, complemented by an oracle that
generates locally unique identifiers and tells the process

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2926723

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, OCTOBER 2016 3

upon startup whether it has been started for the first time
ever. No algorithm of the oracle is given, and there is no
algorithm, which we are aware of, that provides such an
oracle in asynchronous system without the use of stable
storage. Similarly to our work, in DCR a majority of pro-
cesses must be up at any time to enable liveness. Both
ViewSS and EpochSS can operate with no stable storage if an
oracle such as required by DCR were available (see Section
5.5 for explanation).

In [22], the authors also introduce the concept of crash
consistent quorums, which assumes DCR and consists of
primitives that update and read the state, with only one
guarantee that if an update completes, than a read must
observe it. The authors show how to build shared objects
using the crash consistent quorum concept, providing sam-
ple pseudocodes for an atomic register and virtual stable
storage (VSS). By writing every received message to VSS,
any protocol in the crash-stop model can be converted to a
protocol in the crash-recovery model. The authors argue that
this allows for a straightforward migration of Paxos to the
DCR model. However, we expect the resulting system, even
if thoroughly optimized, to be very inefficient. At least one
write to VSS per command would be necessary, and writes
to VSS take as much time as issuing a command in Paxos.
With identical assumptions our EpochSS needs no writes to
storage and gives the same guarantees.

In [22], the authors point out an error in the recovery
protocol described in our early technical report on JPaxos
[9], which has since then been corrected.

Optimization of State Recovery
In the state machine replication, to recover a replica from
a crash, the recovery protocol must both ensure that the
process does not violate any guarantees (safety and other),
and that the state machine is able to process new requests,
by updating its state to a sufficiently recent one. The latter
is typically achieved by log and state transfer. In our paper,
we focus on the algorithmic aspects of state recovery in the
Paxos algorithm, abstracting from any concrete applications.
Note that for some specific workloads the recovery time is
dominated by the log and state transfer. Moreover, there are
workloads for which creating periodically a state snapshot
severely impacts the performance of a replica. Some authors,
e.g., [23], [24], have recently proposed efficient solutions for
preparing state snapshots and for transferring the log and
state. The solutions that they propose are largely orthogonal
to our work, and they can be deployed independently of
the recovery algorithms proposed in our paper. Below we
discuss this work in detail.

Bessani et al. [23] proposed a solution to optimize a
system that supports recovery by writing all vital data
to stable storage. They propose three techniques: sequen-
tial checkpointing, collaborative state transfer, and parallel
logging. The first two techniques optimize creating state
snapshots, and enable state transfer in a model with Byzan-
tine faults, so they are orthogonal to the recovery algo-
rithm. Parallel logging attempts to postpone and to batch
synchronous writes in order to reduce their number and
alleviate their latency by splitting writes into the invocation
and completion actions, and using the time in-between these
actions for regular processing. Parallel logging reduces the

performance penalty of synchronous writes, achieving the
system throughput close to the system in the crash-stop
model, under workloads with 1kB and 4kB commands. We
observe similar system throughput in case of the FullSS
recovery algorithm with commands of 1kB (see Section 7.1).
However, while performance gain achievable by parallel
logging highly depends on system workload, the ViewSS
and EpochSS algorithms, which we propose, retain system
performance regardless of workload.

Mendizabal, Dotti and Pedone [24] focus on system
recovery in the Parallel SMR (PSMR). PSMR is a variant of
the state machine replication, where dependencies among
commands are known a priori, so any two commands
known to be independent need neither to be delivered, nor
executed in order. To support system recovery, all vital data
must be written to stable storage. The novel idea is to let the
recovering replica execute new commands before the state
of the replica gets fully updated. This is possible as long as
the new commands are independent of the missing ones.
They also divide the state snapshot into segments that can
be installed independently, thus to execute a new command
the recovering process needs to fetch only the segments that
contain all dependencies of the command. The solutions
presented in [24] are tailored for PSMR, and none of them
can be used to improve system recovery in the classical state
machine replication approach.

Reconfiguration and Recovery
Reconfiguration [25], [26], [27], [28] can also be used for
retaining availability despite crashes. Reconfiguration is an
action that changes the set of processes P (we assume P to
be constant). It can be used to dynamically select the crash
resilience level by changing the number of replicas, as well
as to remove a crashed replica from P and add a newly
started replica to P . In the latter case, reconfiguration is ini-
tiated upon suspecting a crash of a process, either by some
replica or by an external component. This is problematic,
especially in unstable periods, as false suspicions can lead
to removal of correct replicas from P . When a dynamic set
of processes is used, the clients must be supplied with a
mechanism for locating replicas that are currently active.
Typically, Paxos with the reconfiguration support requires
a majority of replicas (of the current configuration) to stay
alive, similarly to ViewSS and EpochSS.

The classical approach to reconfiguration in SMR is to
use a dedicated SMR command [25], [26]. Recently some
efforts were made to support reconfiguration without the
need for consensus [27], [28]. The Replacement algorithm
[27] is especially relevant here, as it is dedicated to use
reconfiguration for handling failures. Unlike typical recon-
figuration, replacement does not support changing the size
of P—it only allows to replace a (suspected to crash) replica
with a new one. Thus, a replica and its subsequent replace-
ments can retain the replica identifier, but each replacement
has a new replica version. To support these versions in
Paxos, the authors extend Paxos to Version Paxos by adding
versions to all messages, sending a vector of versions in
the Prepare and Propose messages (see Section 4.1), and
verifying the versions in majority checks. Version Paxos is
3% slower than Paxos (although the authors speculate that
this slowdown can be reduced). In contrast, ViewSS and

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2926723

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, OCTOBER 2016 4

EpochSS have no impact on Paxos performance. While the
impact of a false suspicion on performance is reduced in [27]
compared to the classical reconfiguration, it still requires
initializing the state of the replaced replica.

3 SYSTEM MODEL

We consider an asynchronous distributed system in which
processes located at nodes communicate by exchanging
messages. We make no assumptions on the time it takes to
deliver a message, or on relative process speeds. Every two
processes are connected through a fairloss communication
link that can fail by dropping messages.1 Processes can fail
by crashing and may subsequently recover. We assume the
existence of a failure detector of class �W [29]. We assume
no Byzantine failures. When a process crashes it loses all
of its state, but it may use local stable storage to save (and
retrieve upon recovery) some part of its state.

We use p, q to denote processes. P is a set of all processes.
Q is a majority set of processes in P . Let F (t) be the set of
processes in P that are not functioning at time t. We say a
process p is up at time t if p /∈ F (t) and p is down at time
t if p ∈ F (t). We say that process p crashes at time t if p
is up at time t − 1 and down at time t. When all processes
are down at time t, there is a catastrophic failure. Process p is
recovered at time t (t ≥ 1) if p was down at time t− i and up
at time t (for some i > 0). When a process crashes, it loses
all its volatile state, but when it is restarted, it should learn
(as part of the recovery algorithm) that it has to commence
steps to recover. A recovering process is the one that executes
a recovery algorithm, but is not recovered yet.

We define a crash resilience level, denoted R, as the upper
bound on the number of replicas that can crash simultane-
ously without impeding recovery. E.g., R is equal to n for
FullSS and

⌊
n−1
2

⌋
for ViewSS and EpochSS, where n is the

total number of all replicas.
A state machine [30] consists of a set of states, a set of

commands, a set of responses, and a functor that assigns
a response/state pair to each command/state pair. A state
machine executes a command by changing its state and
producing a response, with the command and the machine’s
current state determining its new state and its response.
A distributed computing system consists of several processes
(replicas) that are connected by a network. The processes
are replicated and synchronized by having every process
independently simulate the execution of the same state
machine. The state machine is tailored to the particular
application, and is implemented by a general algorithm for
simulating an arbitrary state machine, such as Paxos, which
handles the problems of synchronization and fault tolerance.

4 THE PAXOS PROTOCOL

4.1 Overview of Paxos
In this section, we summarize the original Paxos in [1] and
[31], to aid in understanding of the recovery algorithms.
Each state machine command is chosen through a series
of numbered ballots, where each ballot is a referendum on
a single command. One of the processes is designated as

1. For brevity, we present recovery algorithms assuming reliable links
which can be implemented on top of such unreliable links.

a leader; it sends ballots with the commands proposed by
clients to the other processes (called followers). In each ballot,
a process has the choice of either voting for the proposed
command or not voting. A process does not vote if it
has already voted in a higher ballot. Obviously, a crashed
process does not vote, too. In order for a ballot to succeed
and a command to be issued for execution (or issued, in short),
a majority set of the processes must vote for it. Otherwise,
another ballot has to be conducted. Thus, a single command
can be voted in several ballots. Note that the majority sets
voting on any two ballots will have at least one process
in common. So, any command which has been issued will
appear in the store of at least one process of any majority set
participating in a subsequent ballot.

The protocol allows a leader to conduct any number of
ballots concurrently by running a separate instance of the
protocol for each command number. The protocol instances
are numbered in turn, and a command issued within in-
stance i has the number i. The issued commands must be
executed by each state machine according to their numbers.
When a new leader is chosen, messages are exchanged
between the new leader and the other processes in the
system to ensure that each of the processes has all of the
commands that the other processes have. As part of this
procedure, any command for which one of the processes has
previously voted but does not have a command number is
broadcast as a proposed command in a new ballot.

We use the following notation: b, b′ are ballot numbers
(partitioned among the processes: b = (k, p), where k is an
integer and p denotes a process); i, j are command numbers;
c, d are commands; di is the ith command; vi = (q, b, di) is
a vote cast by process q for command di in ballot number b.

The following variables are used2: lastTried[p] is the
number of the last ballot that p tried to begin, or -∞ if there
was none, nextBal[q] is the number of the last ballot in
which q agreed to participate, or -∞ if it has never agreed
to participate in a ballot, prevBal[q, i] is the number of the
last ballot in which q voted for command number i, or -∞
if it never voted, prevDec[q, i] is the command for number
i for which q last voted, or ⊥ if q never voted.

The following messages are used: Prepare(b,j) is a mes-
sage sent by a leader with a new ballot number b for
command number j; PrepareOK(b,D, V,X) is a message
sent in ballot b to the leader by a process q with q’s
knowledge on commands: decided (D), voted (V), and missing
(X); Propose(i, b, d) is a message sent by a leader to begin
a ballot; Voted(i, b) is a message sent by a process to indi-
cate its vote; and Success(i, d) is a message indicating that
command d has been issued for number i.

Below are the protocol steps (executed atomically):
Phase 1: Ballot initialization
1. A leader p chooses a new ballot number b greater than

lastTried[p], sets lastTried[p] to b, and sends a Prepare(b, j)
message to all processes including itself, where j is the
smallest number for which p does not know a command.

2. Upon receipt of Prepare(b, j) from p with b ≥
nextBal[q], process q sets nextBal[q] to b and sends
PrepareOK(b,D, V,X) to p, where D is the set of pairs
(i, di) with i ≥ j s.t. q knew that di was a command

2. In [1], their values are kept with commands in stable storage.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2926723

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, OCTOBER 2016 5

issued with number i; V is the set of pairs (i, vi) s.t.: (i)
i ≥ j, (ii) q does not know a command with number i,
(iii) q has voted in a ballot for command number i, and (iv)
vi = (q, prevBal[q, i], prevDec[q, i]) is the most recent vote
cast by q for number i; X is the set of numbers < j for which
q does not know the corresponding command.

3. After receiving PrepareOK(b,D, V,X) from every pro-
cess in some majority set, where b = lastTried[p], the leader
p adds the commands from each set D to its list of issued
commands. The leader also sends the other processes any
commands it knows but they do not according to X in their
PrepareOK messages.

For every V and every vote vi s.t. (i, vi) ∈ V , the leader
p executes ballot b to broadcast a command d for number
i, as follows: a) p chooses some majority set Q of processes
from among those from which it has received the PrepareOK
messages for b. If any of those processes have voted in
any ballot for command number i, then d must equal the
command in the latest ballot for which such a vote was cast,
else d can equal any command. b) p executes 3’ with Q. If
there is a gap between numbers of commands decided or
voted for, then the leader process p tries to issue “no-op”
commands for these numbers.

Phase 2: Voting
3’. Leader p proposes d: p sends a Propose(i, b, d) message

to every process in Q, where b = lastTried[p]. 3

4. Upon receipt of Propose(i, b, d) from leader p with
b = nextBal[q], process q casts its vote in ballot number b
for the command d, sets prevBal[q, i] to b and prevDec[q, i]
to d, and sends Voted(i, b) back to p.

5. When leader p has received Voted(i, b) from every
process in Q (the quorum for ballot number b), where
b = lastTried[p], then it considers d (the command of that
ballot) to be successfully broadcast (or decided) and sends a
Success(i, d) message to every process.

6. Upon receiving a Success(i, d) message, q issues di.

A single leader is selected for all command numbers. To
decide a command, it chooses the lowest command number
i that it is still free to choose, and executes Phase 2. If the
leader is suspected to have crashed, a new leader is elected.
It then executes Phase 1. If the suspicion was wrong there
can be more than one leader until stale leaders cease to
execute. 4 A new leader p may not know the current ballot
number. If q received Prepare(b, j) or Propose(i, b, d) from p
with b < nextBal[q], then it sends nextBal[q] to p. Then, p
initiates a new ballot with a larger ballot number.

4.2 Our JPaxos Protocol
To conduct an experimental evaluation, we developed

JPaxos [9]—a SMR tool based on Paxos, equipped with a
choice of our recovery algorithms and the catch-up protocol
(described in Section 4.3). The source code of JPaxos in Java
is publicly available [33]. In JPaxos, to issue consecutively
numbered commands for execution, successive instances of
Paxos are launched, where several consecutive instances are

3. This step can be combined with step 5 of the previous command.
Also, a single Propose message can be used for a batch of commands
(as in [32]).

4. If suspicions were arisen constantly, Paxos could never decide. To
ensure progress, it is sufficient to use the �W failure detector [29].

Algorithm 1 The simplified pseudocode of JPaxos
1: Initialization:
2: procId {a unique, non-zero process identifier}
3: prevBal[i]← (0,0)
4: prevDec[i]←⊥
5: currBal← (0,0)
6: isLeader← false
7: procedure ProposeCommand(i, d)

enabled when isLeader and prevDec[i] = ⊥
8: prevBal[i]← currBal
9: prevDec[i]← d

10: send(P , Propose〈i, currBal, d〉)
11: procedure BecomeLeader()
12: isLeader← false
13: instanceList← { i | no command issued for i }
14: currBal← (k, procId) s.t. (k, procId) > currBal {k ∈ Int.}
15: send(P , Prepare〈currBal, instanceList〉)
16: upon Prepare〈balq , instanceList〉 from q s.t. balq ≥ currBal
17: if q 6= procId then isLeader← false
18: currBal← balq
19: prepInst← ø
20: for all i ∈ instanceList s.t. prevDec[i] 6= ⊥ do
21: prepInst← prepInst ∪ { (i, prevBal[i], prevDec[i]) }
22: send(q, PrepareOK〈currBal, prepInst〉)
23: upon PrepareOK〈balq , prepInstq〉 from Q s.t.

balq = currBal and not isLeader
24: for all (i,_,_) ∈ prepInstq s.t. prepInstq delivered do
25: prevBal[i]← max({ bi | (i, bi, _) ∈ prepInstq })
26: prevDec[i]← d s.t. (i, prevBal[i], d) ∈ prepInstq
27: send(P , Propose〈i, currBal, prevDec[i]〉)
28: isLeader← true
29: upon Propose〈i, balq , d〉 from q s.t. balq = currBal
30: prevBal[i]← balq
31: prevDec[i]← d
32: send(P , Accept〈i, balq〉)
33: upon Accept〈i, balq〉 from Q s.t. all i are equal and currBal = balq

and prevBal[i] = balq
34: if no command issued for i then issue prevDec[i] in instance i

run in parallel (see [32]). Paxos consists of two phases: ballot
initialization and voting. The first phase, which essentially
establishes a new leader, is conducted for all instances at
once. The second phase, which is an attempt to agree upon a
command proposed by the leader, is run separately for any
instance i. In the first phase, the Prepare and PrepareOK
messages are used. In the second phase, the Propose and
Accept messages are used, and collectively called votes.
The Prepare, PrepareOK, and Propose messages correspond
to analogous messages in Paxos in Section 4.1, but some
arguments are eluded. Moreover, the Accept message corre-
sponds to Voted, but Voted is sent to the leader in [1], while
in JPaxos Accept is broadcast, hence the Success message is
no longer needed.

In Algorithm 1, we show the pseudocode of the JPaxos
protocol. For simplicity, we omitted some optimizations. We
use the following notation: send(p, m) sends m to process p,
send(P , m) broadcasts m to processes in P , and max(S)
returns the largest element in set S. prevBal[i] is the number
of the last ballot in which the process voted for command
number i, or (0, 0) if it never voted. prevDec[i] is the com-
mand for number i for which the process last voted, or ⊥
if it never voted. currBal is the most recent ballot number
known to the process (currBal replaces lastTried and nextBal
from Section 4.1). isLeader is true if and only if the process is
eligible to propose new commands. Proposing “no-ops” (in
place of gaps) by a newly selected leader is not depicted.

In JPaxos only the leader can propose commands. If a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2926723

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, OCTOBER 2016 6

process suspects that the current leader crashed, it starts
the ballot initialization phase to become a new leader.
The clients are allowed to send commands to any replica.
If a replica other than the leader (a follower) receives a
command from a client, then it forwards the commands to
the leader. The leader in JPaxos batches commands, that is
instead of proposing a single command, a list of commands
is proposed. This retains high throughput with small com-
mands [32].

Each replica remembers a ballot number. When a process
p starts the ballot initialization phase (line 11), it chooses
a ballot number b greater than its current ballot number
(currBal) and sends a Prepare message to all (line 15). The
Prepare message carries b and the list of all instances for
which no commands were issued by p (line 13). A process q
that receives a Prepare for a ballot number b greater or equal
to its current ballot number (line 16), first sets its currBal to
b and then sends a PrepareOK back to p. In PrepareOK,
q sends the most recent vote (if any) for each instance indi-
cated by Prepare (line 21). (In Section 4.1, PrepareOK carried
also data that were used by the leader to update the state
of the followers; this is replaced by the catch-up protocol
in JPaxos.) When p receives the PrepareOK messages from
a majority of processes (including itself, line 23), then p
becomes a leader. p must now propose a command for any
instance i such that p did not issue a command in i, but
some process sent a vote for a command in i (line 27). In
these instances, p must propose, in each i, the command
which was most recently voted for in i.

To propose a command in instance i, the leader p sends
to all a Propose message with p’s current ballot number,
instance number i, and the proposed command c (line 10).
A process q that receives Propose for a ballot number equal
to q’s current ballot number, records that it cast a vote for c
in instance i and ballot b (lines 30-31), and sends an Accept
message to all. The Accept message contains only i and b.
Any process that receives Propose from the leader and votes
(a vote is either Accept or Propose) from a majority, all for
instance i in ballot b (line 33), issues the command c in
instance i. In Section 4.1, Voted is sent only to the leader,
and, after receiving the majority of votes, the leader sends a
Success message with i and c (and without b) to all. JPaxos
broadcasts the Accept, and since in a given instance i and
ballot b only a single command c can be proposed, then
gathering both Propose and a majority of votes supersedes
the Success message.

4.3 The Catch-Up Protocol
In Paxos, all non-faulty processes must eventually issue
the same sequence of commands. To get any missing com-
mands, after waiting a sufficiently long time, a stale process
can propose itself as a new leader, and execute Phase 1.
But frequent leader changes are inefficient and thus should
be avoided. Therefore, in JPaxos we implemented the catch-
up protocol, which is used by a stale replica to learn about
any missing commands from other replicas (see also, e.g.
[5], [11], [34]). The protocol allows to simplify the Paxos
algorithm described in Section 4.1, and is also used by our
recovery algorithms. A similar idea appeared in [1] as long
ledgers, but no algorithmic details were given. Below we
briefly describe the catch-up protocol.

Algorithm 2 The catch-up protocol
1: issued(i) returns true iff some command issued for i
2: maxInst← 0
3: lastSnap = [

state← state machine and Paxos protocol state
i← max({ i | ∀ j ≤ i, some dj issued in state })

]
4: procedure updateShapshot(newSnap)
5: lastSnap← newSnap
6: procedure startCatchUp(highestInst, p)
7: missing← { i | not issued(i) and i ≤ highestInst }
8: maxInst← max({maxInst, highestInst})
9: send(p, CatchUpQuery〈missing〉)

10: upon CatchUpQuery〈missingq〉 from q
11: if ∃ i ∈ missingq : i ≤ lastSnap.i then
12: send(q, CatchUpSnapshot〈lastSnap〉)
13: missingq ← missingq \ { i | i ≤ lastSnap.i }
14: log← ø
15: for all i ∈ missingq s.t. issued(i) do
16: log← log ∪ { (i, prevDec[i]) }
17: send(q, CatchUpResponse〈currBal, log〉)
18: upon CatchUpSnapshot〈lastSnapq〉 from q

s.t. ∃ i : (i ≤ lastSnapq .i and not issued(i))
19: restore state from lastSnapq .state
20: lastSnap← lastSnapq
21: if lastSnapq .i ≥ maxInst then CatchUp completed
22: upon CatchUpResponse〈currBalq , logq〉 from q
23: currBal← max({currBal, currBalq})
24: for all (i, d) s.t. (i, d) ∈ logq and not issued(i) do
25: prevBal[i]← currBalq
26: prevDec[i]← d
27: issue d for number i
28: if ∀i ≤ maxInst, issued(i) then
29: CatchUp completed
30: else
31: (_,p)← currBal {p is a leader}
32: startCatchUp(maxInst, p)

In JPaxos, a process queries an arbitrary process for the
missing commands if it gets a message for a much higher
command number than expected or it does not receive any
messages for some time (and a leader is not suspected to
be faulty). Also, it has to execute all missing commands
(in the order of their numbers) before it is allowed to
execute any new commands. Since there can be many miss-
ing commands (e.g. due to a network split), every process
periodically creates a snapshot of its local state in the main
memory. Then, a stale process receives a snapshot, a log
that includes the issued commands whose effects are not
yet included in the current snapshot, and the ballot number.
All these data can then be used by a stale replica to restore
the current state on its own node. By using a snapshot, the
state recreation is efficient and the log is bounded.

In JPaxos, the catch-up protocol is also used to support
recovery. In case of ViewSS and EpochSS, the protocol is
the only mean used by a recovering process to get to know
all that occurred before a crash, which is necessary for the
process to become correct, i.e., to keep promises defined in
the next section. In all our recovery algorithms, the catch-
up protocol is also used by a recovering process to get to
know all that occurred until now (to issue all the commands
decided so far, so that any upcoming commands can be
issued). In Section 6, we discuss how the catch-up protocol
impacts the system performance.

In Algorithm 2, we present the pseudocode of the catch-
up protocol that is used by the JPaxos protocol and the
recovery algorithms. To start catch-up a process calls start-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2926723

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, OCTOBER 2016 7

CatchUp(highestInst, p), passing as arguments highestInst
and ID of a process p to which the CatchUpQuery request
will be sent (line 9). highestInst is the latest instance number
that the process had learned either from the RecoveryAck,
Propose, Accept, or Prepare messages, or highestInst is pig-
gybacked in the messages of the JPaxos failure detector. The
RecoveryAck message will be explained in Section 5. The
CatchUpQuery request is initially sent to any process p that
is not a Paxos leader. In response, p simply returns requested
data, i.e., a snapshot of state, a log of commands, and the
ballot number (lines 10–17). A follower is queried, as the
leader is the most busy process in Paxos, and thus assigning
an extra task to it may decrease the system performance.
If the snapshot and the log received from the follower do
not represent a complete state up to highestInst (line 28), the
leader is queried (line 32).

During normal system operation, procedure update-
Shapshot is called periodically to record the current snap-
shot of state, passing a fresh snapshot newSnap as the
argument. Creating snapshots not only allows to prevent
the log of commands from growing, but it also speeds up
the catch-up process.

The actual implementation of the catch-up protocol de-
pends on the concrete recovery algorithm, as follows. If
FullSS is in use, lastSnap must be written in stable storage,
and the effects of lines 23, 25 and 26 must also be stored
in stable storage. If ViewSS is in use, only the new ballot
number in line 23 must be written to stable storage. In case
of EpochSS, the catch-up protocol does not write to stable
storage at all.

5 RECOVERY ALGORITHMS

Upon startup a process must check if it has never run before
or it recovers from a crash. If it is the first run of the process,
then the process just begins the normal operation and takes
part in Paxos. Otherwise, the process must enter a recovery
phase, during which it executes the recovery algorithm.
During the recovery phase, a recovering process cannot
actively take part in Paxos, i.e., the recovering process is
neither allowed to vote (i.e., to reply to Propose messages)
nor to take part in the leader election (i.e., to reply to Prepare
messages) until it has updated its state, but it can deliver
and process these messages.

By referring to Algorithm 1, to ensure safety of Paxos,
processes make two promises: (1) when a process p sends
PrepareOK in ballot b (line 22), then p promises not to reply
to messages in ballots older than b, and (2) when a process
p sends Accept for ith command d in ballot b (line 32), it
promises to reply to any forthcoming Prepare messages for
command number i with command d and ballot number b.

A recovering process must also not break these promises.
One solution is to never forget them by writing each promise
in stable storage (as in FullSS). Another solution relies on the
knowledge obtained from other processes, which requires
much less stable storage accesses. However, querying an-
other process for the promises made before a crash is not
sufficient since the process may not know all of them—some
messages carrying promises made before a crash may still
be in transit. We call them stray messages.

p₂

p₃
Propose d Recovery Decide d or not?Accept d

Fig. 1. Safety violation caused by a stray message Accept.

In Figure 1, we show an example of a potential safety
violation caused by a stray message. A process p2 broadcasts
a message Accept and crashes. After p2 recovers, a process
p3 delivers a stray message Accept. If p3 does not drop it,
nor p2 learns during recovery that it might have sent it, then
p2 and p1 (not shown) can decide differently than p3.

To prevent this undesired behavior, the ViewSS and
EpochSS recovery algorithms include a mechanism to either
discard all stray messages (ViewSS), or make them harmless
(EpochSS). The mechanisms are explained, respectively, in
the beginning of Section 5.2 and in Section 5.3.

5.1 The FullSS Algorithm

The Full Stable Storage (FullSS) algorithm follows the idea
in [1], i.e., all processes executing the Paxos protocol syn-
chronously write all critical data to stable storage. A leader
writes the new ballot number before sending Prepare (in line
15 of Algorithm 1). Followers write the new ballot number
before sending PrepareOK (in line 22). A process writes the
command it voted for and the current ballot number before
sending Accept (in line 32). Note that recording less data
would not allow the system to recover after a catastrophic
failure. On recovery after a crash, the recovering process
retrieves data from stable storage, restores its state and the
log, and joins Paxos. Other processes are not involved in
recovery.

If it can be assumed that at any time a majority of replicas
are up (excluding those that are just recovering), then other
algorithms can be proposed to recover the system. Two such
algorithms are described in the following sections. They do
not tolerate catastrophic failures but increase the overall
system performance.

5.2 The ViewSS Algorithm

In Paxos, a ballot number changes when a new leader is
elected. The View Stable Storage (ViewSS) algorithm, pre-
sented in Algorithm 3, enforces incrementing a ballot num-
ber also during a recovery phase, which will allow processes
to discard any stray messages, as they will carry an older
ballot number (from before the crash). For this to work,
all messages are labelled with the current ballot number
(which is already required by Paxos) and a process must
write a ballot number to stable storage before it can modify
it, so that after the process has crashed and restarted it can
learn the ballot number from before the crash. To guarantee
progress, at any time a majority of processes must be up and
not recovering.

The ViewSS algorithm involves no changes to the origi-
nal Paxos, just extends it with a recovery phase, and requires
that the new ballot number is (synchronously) written to
stable storage on leader change (lines 14’ and 18”). If a
leader does not crash and the network is stable, the system

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2926723

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, OCTOBER 2016 8

Algorithm 3 View-based recovery
Notation: Line XX replaces line XX in Algorithm 1.

Lines XX’, XX”, . . . are inserted after line XX in Algorithm 1.
. . .

14’: write currBal to stable storage
. . .

18 : if balq 6= currBal then
18’: currBal← balq
18”: write currBal to stable storage

. . .
35 : upon start
36 : read currBal from stable storage
37 : if currBal 6= (0,0) then
38 : send(P \ procId, Recovery〈currBal〉)
39 : wait for RecoveryAck〈balq , balp, highestInst〉 from Q s.t.

balp = currBal and (i, ql) = balq delivered from ql
where (i, ql) = max({balq | balq delivered})

40 : currBal← max({balq | balq delivered})
41 : catch up to max({highestInst | highestInst delivered})
42 : upon Recovery〈balq〉 from q
43 : if balq ≥ currBal then
44 : call procedure BecomeLeader()
45 : wait until either isLeader or currBal changes
46 : highestInst← max({ i | prevDec[i] 6= ⊥ })
47 : send(q, RecoveryAck〈currBal, balq , highestInst〉)

performance is identical as in the crash-stop model. In
case of frequent leader changes, the system performance
will decrease compared to the crash-stop model. But the
impact of a (single) synchronous write to stable storage is
negligible, as the leader change itself drastically degrades
performance.

The recovery phase starts with a recovering process
reading the latest ballot number written to stable storage
before crash (line 36). Then, the recovering process sends
the Recovery message to all processes and waits for the
RecoveryAck messages from the majority. Regardless of the
number of responses, the process must also wait for a reply
from the leader of the largest ballot number seen in the
RecoveryAck messages delivered so far (line 39). This is
crucial, since that leader may be the only process that is
aware of voting in which the recovering process sent a stray
message prior to crashing. If a replica holds a ballot number
that is not greater than the ballot number it has received in
the Recovery message, then it initiates a ballot change before
responding. Once the recovering process gathers replies, it
uses the catch-up protocol to update its state, including
all issued commands, up to the command that has the
highest number recorded in RecoveryAcks (line 41). Then,
the process is recovered and can join the Paxos protocol.

In ViewSS, the Recovery message consists of the process
identifier and the ballot number read from the stable stor-
age. The ballot number in the stable storage is incremented,
among others, upon gathering RecoveryAck from a majority
of processes. It is possible that a process starts a recovery
procedure r with ballot number b in its stable storage, then
crashes before completing r and starts a recovery procedure
r′, again with b in its stable storage. In such case, the process
sends identical Recovery messages in r and r′, and thus
it cannot tell apart RecoveryAck for requests in r and r′.
While it may seem erroneous, such case does not violate
correctness. It is possible iff the process did not finish the
recovery procedure r, and so was not able to send any Paxos
protocol messages. ViewSS requires only that the current

Algorithm 4 Epoch-based recovery
. . .

6’: epoch← [0, 0, . . . , 0] {of size |P|}
. . .

22 : send(q, PrepareOK〈currBal, epoch, prepInst〉)
23 : upon PrepareOK〈balq , epochq , prepInstq〉 from Q s.t.

balq = currBal and not isLeader
and epochq[q] = max({epoch[q]} ∪ epochQ[q]) where

epochQ[p] = { epochq[p] | epochq delivered from q ∈ Q }
23’: for all p ∈ P do epoch[p]← max({epoch[p]} ∪ epochQ[p])

. . .
35 : upon start
36 : read epoch[procId] from stable storage
37 : epoch[procId]← epoch[procId] +1
38 : write epoch[procId] to stable storage
39 : if epoch[procId] 6= 1 then
40 : send(P \ procId, Recovery〈epoch[procId]〉)
41 : wait for RecoveryAck〈balq , epochq , highestInst〉 from Q s.t.

epochq[procId] = epoch[procId]
and epochq[q] = max(epochQ[q])

and (i, ql) = balq delivered from ql
where (i, ql) = max({balq | balq delivered}) and

epochQ[p] = { epochq[p] | epochq delivered from q ∈ Q }
42 : currBal← max({balq | balq delivered})
43 : for all p ∈ P do epoch[p]← max(epochQ[p])
44 : catch up to max({highestInst | highestInst delivered})
45 : upon Recovery〈epochq〉 from q s.t. epochq ≥ epoch[q]
46 : epoch[q]← epochq
47 : if currBal = (_, q) then
48 : call procedure BecomeLeader()
49 : wait until either isLeader or currBal changes
50 : highestInst← max({ i | prevDec[i] 6= ⊥ })
51 : send(q, RecoveryAck〈currBal, epoch, highestInst〉)

ballot number after the recovery completes is greater than
any ballot number in which the recovering process could
have sent a Paxos protocol message, and this requirement
still holds. On the contrary, in EpochSS, upon each recovery
the Recovery message is unique, as it contains the epoch
number which is incremented upon each recovery.

5.3 The EpochSS Algorithm

The Epoch Stable Storage (EpochSS) algorithm requires that
every process stores in stable storage an epoch number (ini-
tially equal 0), incremented every time the process restarts.
So, the number tells how many times the process started re-
covering. Processes piggyback their epoch numbers onto the
PrepareOK, Recovery and RecoveryAck messages, which
makes it possible to recognize and ignore any stray mes-
sages sent in Phase 1. To make any stray messages of Phase 2
harmless, the recovering process first has to learn the highest
command number it could have known prior to the crash,
then to wait until it learns all commands up to this number.

Contrary to ViewSS, the EpochSS protocol requires only
one synchronous write to stable storage per fault-free run of
a process. Moreover, there are no redundant view changes.
Like ViewSS, it tolerates at most a minority of processes to
be down or recovering at the same time. If a majority of
replicas simultaneously crash or are recovering, the system
becomes unable to process client requests and unable to
recover a crashed replica.

We present the pseudocode of EpochSS in Algorithm
4, where epoch is a vector of epoch numbers known by a
process. A recovering process first broadcasts the Recovery
message to all replicas (line 40). It then waits for replies
from the majority, including a reply from the leader (line

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2926723

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, OCTOBER 2016 9

41). From the leader’s RecoveryAck, the recovering process
learns the highest command number i processed by the
system. In order to make harmless any stray messages of
Phase 2, the recovering process uses the catch-up protocol to
fetch the snapshot and all missing commands (as indicated
by i) from other replicas (line 44). When all the necessary
data are transferred, the process can join Paxos.

Phase 2 of Paxos (voting), where each process spends
most of the life, is unaltered. However, contrary to ViewSS,
Phase 1 (ballot initialization) requires some changes to be
used with EpochSS. Firstly, the PrepareOK message must
also carry epochp (line 22). Secondly, a process initiating
a new ballot (i.e., a new leader) must reject any stray
PrepareOK message m once it learns (based on the epoch
numbers it got from the Recovery and PrepareOK messages)
that m was sent before recovery of its sender (line 23).
From the performance point of view, the changes brought
by EpochSS to Paxos have a minor impact, affecting only
the leader election by slightly increasing the size of the
messages exchanged at the leader election.

5.4 Stray Recovery Messages

Before (or after) a recovering replica fully recovers it may
crash again. So, a recovering process may receive recovery
messages originated from the previous recovery rounds.
Moreover, if recovery messages were retransmitted, some of
them can be delivered before crash, while some other can be
delivered after crash. All that messages, called stray recovery
messages, are undesirable, so they should be detected and
ignored. For this purpose, all critical messages, including
Recovery and RecoveryAck, carry a number, which is a bal-
lot number in the ViewSS algorithm, and an epoch number
(or a vector of epoch numbers) in EpochSS. This number is
guaranteed to be unique per recovery round of each process,
with an exception that we described in Section 5.2.

5.5 Stable-Storage-Free Recovery

The goal of any recovery algorithm is to put the recovering
replica into a state of readiness for operation. Of course, this
only occurs if the replica had indeed crashed, otherwise the
replica is a fresh process. Therefore, a replica must discover
if it ever run before (i.e., it was involved in rounds of Paxos),
or it is a fresh process. In the former case, the recovery
algorithm helps to overcome amnesia of a recovering replica
and deals with any stray messages (“from the past”), while
in the latter case no special action is necessary. If we assume
that stable storage is available, then this problem can be
easily solved, as we showed before, i.e., a process can write
to stable storage any critical data that is necessary to “refresh
memory”, and on recovery, it can read the data and to learn
its current status this way.

The question arises if process recovery can be provided
without resorting to stable storage at all? Essentially, any
such solutions can be boiled down to creating a fresh,
unique ID by a replica on every boot-up, which is then pig-
gybacked on every critical message, where a fresh process is
assigned a “null” ID which indicates that the process does
not recover. Based on this ID, other processes can make
a right action and help the process to recover its state, if

necessary. If generating such an ID were possible, we could
modify our algorithms, for instance EpochSS, so that it does
not require stable storage. EpochSS ensures that in every
majority of processes, at least one process at any time knows
the epoch number for any process that is up and is not
recovering. Thus, a replica before starting the recovery could
query a majority about its epoch number, using a fresh ID
to tell apart responses for its query. Then, it could start the
normal EpochSS recovery algorithm. So, if generating such
an ID were possible, process recovery could be provided
without resorting to stable storage at all. However, we have
to reject these solutions on the grounds of assumptions that
we made in this paper, as explained below.

We assumed that the network can arbitrary delay and
duplicate the messages, so it cannot be a source of unique
IDs. A globally unique ID could be created using a generator
of random numbers, which is, however, unsatisfactory, as
it gives only a probabilistic guarantee of uniqueness. An-
other solution is to use a system clock, as in Viewstamped
Replication [19]. However, in Paxos and our system model,
we assume an asynchronous system, and no guarantees on
clock synchronization. In particular, there is no guarantee
that after replica boots up the clock advances with respect
to the past.

6 RECOVERY PROCESS

So far we described how a replica recovers, but left some is-
sues open. To discuss the details of the recovery process, we
present its flow, divided into logical steps. Next, we describe
each step and discuss a couple of optimizations. Finally, we
explain the impact on overall system performance.

In our analysis of recovery, we must include state up-
date. While in FullSS a replica is considered as recovered
even before it starts learning decisions it missed while being
down, it becomes fully usable no sooner than after its state
is up to date. In ViewSS and EpochSS, the state update is al-
ready part of the recovery process, as to become operational,
a recovering process must learn values it may have known
before the crash. As there is no way to determine when
exactly the crash occurred, the recovering replica learns
everything up to the moment when it started the recovery
phase, which brings the replica up to date.

6.1 Steps of the Recovery Process
We can split the recovery process into the following steps
which are common for our recovery algorithms. They sim-
plify the analysis and comparison of the algorithms. Steps 1-
3 are strictly related to the recovery algorithms, while Steps
4-6 describe the state update:

1) Accessing stable storage – a recovering replica reads
data from stable storage,

2) Algorithm-specific actions – any local actions that are
specific for a given recovery algorithm,

3) Message exchange – replicas exchange any recovery
messages (if necessary),

4) Asking for the current state – the recovering replica
asks a peer for a state transfer,

5) Transferring a state – a peer replica sends a snapshot
and subsequent log entries,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2926723

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, OCTOBER 2016 10

6) Applying the transferred state – the recovering replica
restores its state on basis of received data.

Unless a replica is run for the first time, at start-up it
executes the above steps in order to recover. In Step 1,
FullSS reads the most recent local snapshot and the log of
all Accept and PrepareOK messages, whereas ViewSS and
EpochSS only read a single value, respectively, the ballot
and epoch number. In Step 2, FullSS updates the replica on
basis of the read data, eventually reaching the state it had
at the moment of a crash. For FullSS, this step completes
the recovery phase, letting a recovering replica to fully
participate in Paxos. However, unless other replicas made
no progress from the crash, the replica still needs to update
itself before it can deliver upcoming commands. In the same
step, a replica using EpochSS just synchronously writes a
new epoch number to a disk, while ViewSS performs no
actions. In Step 3 (absent in FullSS), the replica broadcasts a
Recovery message and waits for the RecoveryAck messages
from a majority set of processes. The responses acknowledge
receiving Recovery and also allow the recovering replica to
recognize a command number of the most recent voting (see
Alg. 3 line 41 and Alg. 4 line 44). This information is used
to determine what state this replica must reach in order to
finish the recovery process. In ViewSS, in case if the leader
has not changed since the crash, the Recovery message also
triggers a ballot change.

While Steps 1-3 differ between the recovery algorithms,
the remaining steps are identical for all of them. They aim at
restoring the state of the recovering replica using the catch-
up protocol. In Step 4, a recovering replica p sends a query to
any other replica. The query indicates what should be sent
in response. While ViewSS and EpochSS learn what state
p is missing in Step 3, FullSS must wait for any message
of the Paxos protocol, in order to know whether the catch-
up is required, and if so then which commands p does not
know. When a replica q receives the query, it replies with the
most recent snapshot. As the snapshot may represent a stale
state, q also sends any commands that are following the
snapshot creation (Step 5). It may occur that no snapshot
has yet been created, or that the snapshot represents the
current state. Then, only a log, or only a snapshot is sent. As
soon as a process receives a snapshot, it can use it to restore
the state (Step 6). Afterwards, all subsequent commands
received from q can be issued. Unlike other steps, Steps 5
and 6 can be executed in parallel, as restoring the state on
basis of a snapshot can proceed while the missing decisions
are still in transit.

While local steps always succeed at first try, steps involv-
ing peers (3, 4 and 5) may fail due to process or network
failures. The failing step is repeated until it succeeds. Step
3 may fail due to a timeout on message delivery or a race
condition with ballot change (if a recovering replica gets a
message that was sent by a process before it became the cur-
rent leader). Steps 4 and 5 may fail if a target replica is down
or if the messages are not delivered in a timely manner. It
may also happen that the target replica is outdated, thus
contacting other replica is needed.

6.2 Performance Issues of Replica Recovery
In Section 5, we discussed the overhead that each recovery
algorithm induces on every process during normal (non-
faulty) system execution. To summarize: FullSS brings a
major performance penalty in a voting phase, due to syn-
chronous writes to stable storage; ViewSS slows down each
ballot change by demanding a single synchronous write (of
a single ballot number); EpochSS enlarges the ballot change
messages with a vector of epoch numbers (one per each
replica). In this section, we analyze and compare system
performance during a recovery phase.

Despite many similarities, each algorithm has its own
characteristics. The main differences are as follows: FullSS
requires reading the state from stable storage and restoring
it, and updating it with decisions missed during down time.
ViewSS must broadcast a message and gather responses,
possibly causing a ballot change thereby, and fetch a state
of a peer replica. EpochSS has the same complexity as
ViewSS, however, it never forces a redundant ballot change.
To expose the differences, below we present the border cases
in terms of the recovery cost.

If no decisions were taken yet, all algorithms skip updat-
ing state, which gives the shortest possible recovery—FullSS
recovers as soon as the replica starts, while other algorithms
just need to exchange messages with peers.

When no decisions were taken during downtime, FullSS
is a clear winner (under an assumption that the stable stor-
age is faster than the network). While all algorithms must
recreate state, ViewSS and EpochSS also need to fetch it from
a peer via the network. Thus, with infrequent decisions,
FullSS may be preferred. Also, if few decisions were taken
since crash, replicas are likely to still have them in their logs.
Therefore, FullSS has to fetch substantially less data than
other algorithms, while the amount of local work required
to bring the state back is roughly the same.

However, if multiple decisions were taken since crash,
FullSS becomes inferior, as the state restored by FullSS from
stable storage is out of date. So, just after a costly state
recreation the replica has to update its state again, but this
time using the same protocol as in ViewSS and EpochSS.
Thus, in total, state update will be more resource consuming
than in EpochSS and ViewSS.

In the statistically most probable case, the crashed pro-
cess is not a leader. Note also that the crash of a follower
does not induce a leader change. Then, the difference in the
behavior of ViewSS and EpochSS is obvious. In EpochSS, a
recovering process only exchanges messages related to state
update, while in ViewSS a new ballot is forced, and the
replicas respond to Recovery with RecoveryAck after the
new leader has been elected. Thus, typically a system using
EpochSS is expected to recover faster than with ViewSS.

6.3 Recovery Bottlenecks
The recovery algorithms use three resources: stable storage,
processor, and the network, each of which can limit the
system performance. Below we characterize possible bot-
tlenecks of the recovery process, and explain under what
circumstances a particular resource can noticeably limit the
system performance. Note however that applications may
range from systems with tiny snapshots that are very fast

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2926723

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, OCTOBER 2016 11

to restore, up to systems where the size of a snapshot is
very large, so the time necessary to recover from it can be
enormous. Moreover, the size of a command to be decided,
the frequency of snapshot creation, and the time it takes to
execute the commands, also depend on an application.

Stable Storage: In modern computers the mass storage
devices are rarely a bottleneck. However, in Step 1 of the
recovery process, FullSS may need to read a large amount
of data from stable storage. In case the read speed is low,
loading the data to physical memory might be an issue. An
alternative to reading from stable storage is fetching the data
from peers, thus in case when storage limits performance,
this task can be offloaded onto the network.

Processing power: During recovery the system needs
to restore its state from a snapshot and execute a possibly
large number of commands. While the Paxos algorithm uses
almost no processor time in this step, the system may need
to perform some resource-consuming computations in order
to restore the state and execute the commands. This can
severely impact the time of the recovery process. If this is
the limiting factor of recovery, all that can be done on the
level of recovery algorithms and state update is to minimize
the amount of any redundant data that are fetched. In FullSS
the state may need to be restored twice (in Step 2 and 6).

Network Bandwidth: During recovery a large volume
of data may be transferred from peers, most of it during the
state update in Step 5. ViewSS and EpochSS also exchange
recovery messages with all replicas in Step 3, but this boils
down to a single best-effort broadcast and its acknowledg-
ment, so is unlikely to impact the recovery when compared
to the cost of the state update. With a moderate network
throughput transferring the data may easily limit the per-
formance of recovery. The amount of these data cannot be
decreased, since the desired result of recovery is to bring the
replica back to the operational state.

6.4 The Impact of Recovery on Other Replicas

Recovery of a crashed replica introduces an overhead on
other (non-faulty) replicas. In this section, we discuss the
impact of this overhead on the overall system performance.

The peer replicas are contacted in Step 3 of the recovery
process. In EpochSS this has a negligible impact on perfor-
mance, as it boils down to receiving a single message and
transmitting an acknowledgment. However, in ViewSS, this
step may force a ballot change (after receiving Recovery), so
it may stop the whole system until a new leader is elected.
This results in a clear performance penalty. On average,
the duration of the ballot change is similar to the time of
deciding a few commands by Paxos, plus the time of a
synchronous write to stable storage. The synchronous write
may take even as much time as deciding a few commands.
Thus, recovery with ViewSS may stop the system for the
time interval equal to deciding at least several commands.

There is a single corner case in EpochSS when a recover-
ing process forces a ballot change. The following conditions
must be met for that: 1) the current leader p crashes, 2) no
process starts the ballot change, 3) p starts recovery. This
is possible if the leader crashes and restarts so fast that
no process noticed the crash. EpochSS cannot avoid this
particular ballot change, since p could have sent a Propose

message before crashing, and this message must be rejected
by processes which learned that p crashed and recovered.
Notice, that in this case the system is unavailable until a
leader is operational. Selecting a new leader takes less time
then recovery, hence we see no point in striving to avoid this
ballot change. Both in EpochSS and ViewSS when the leader
crashes, a single ballot change happens as soon as the crash
is detected. Upon a follower crash, in EpochSS no ballot
change happens, and in ViewSS a ballot change happens at
recovery.

In Step 5, a single peer replica performs a state transfer
to the recovering replica. While selecting the most recent
snapshot and subsequent requests is not resource demand-
ing, transferring them consumes a significant amount of
bandwidth. So, the peer can slow down noticeably. How
big is the impact of such slowdown on the overall system
performance depends on additional factors. For example,
with three replicas (one of which is recovering), slowing
down the peer causes a global slowdown. In a system with
five replicas, one of which is recovering and one is slowed
down, the remaining three replicas are enough to form
a majority with unaffected performance, thus the system
should retain its speed. Note, that the replica sending its
state to the recovering one only uses the outgoing link, so it
will not become outdated. Also, if the network is capable
of transferring the state update alongside with protocol
messages with no performance penalty, the system is not
affected by Step 5.

In a system using ViewSS or EpochSS, simultaneous
crash failures exhibit the same behavior as simultaneous
crashes in Paxos in the crash-stop model. In terms of per-
formance this means that: 1) the system stays available, as
long as at most f replicas crashed, 2) the clients connecting
to the system spread among less replicas, so the load on each
replica raises, 3) the leader replica broadcasts messages to a
smaller number of replicas, so the average bandwidth from
the leader to each replica raises (assuming that broadcast
is implemented as a series of unicasts). In the saturated
network workloads, this results in increased throughput,
while in the saturated CPU workloads, this causes decreased
throughput (see Section 7.3.2).

A recovery process of one replica is independent from
a recovery process of another replicas. In EpochSS and
ViewSS each replica separately has to gather the Recov-
eryAck message from a majority of replicas that are up.
In ViewSS, a crash and subsequent recovery of a follower
forces a ballot change. If multiple followers crashed, and
then recovered simultaneously, a single ballot change suf-
fices. If multiple replicas are simultaneously updating state,
the impact on system performance in JPaxos is expected to
be equal to the sum of impacts of single state updates.

7 EXPERIMENTAL EVALUATION

In this section we present results of an experimental eval-
uation of the recovery algorithms using JPaxos [9]—our
implementation of Paxos, equipped with the batching and
pipelining optimizations for a higher performance. A vari-
ant of JPaxos with no recovery support was tested in [32].

JPaxos is a state machine replication tool. For our tests
we used EchoService, a very simple replicated service: for

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2926723

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, OCTOBER 2016 12

a)
crash stop FullSS ViewSS EpochSS

Saturated net. 38087 1871 38200 38209
Saturated CPU 158288 11164 157317 159192

b)
crash stop FullSS ViewSS EpochSS

Saturated net. 38130 36768 38015 38329
Saturated CPU 156787 103323 155685 157228

TABLE 1
The number of requests per second with: a) HDD and b) RAM disk.

every client request a, the service sends a back to the client.
Moreover, randomly, but on average once per ten thousand
of requests, a snapshot of a minimal size (one byte) is created
on each node in order to limit the growth of the log. The
service introduces minimal overhead on the system, thus
enables evaluation of Paxos and the recovery process alone.

We run tests in a cluster of identical machines, equipped
with Intel® Xeon® X3230 (4×2.66 GHz, 8 MB L2 cache),
1Gbps LAN (running at wire speed), OpenJDK 1.7.0_40,
openSUSE 12.3. In almost all tests we simulated stable stor-
age using a tmpfs RAM disk, unless we stated otherwise.
Then we used HDD ST3250620NS (SATA II, 7200rpm, 16MB
cache, avg seek/write/latency 8.5/10/4.16 ms).

Depending on the workload and available resources,
either network or CPU is limiting the system performance.
Typically, in every Paxos implementation huge requests
saturate the available bandwidth, while numerous tiny re-
quests use up all available processor time long before any
other resource runs out. Therefore, we carried out tests in
two setups: 1) requests are large enough to saturate the net-
work bandwidth (the network is saturated or is a bottleneck),
and 2) requests are small enough so that the system runs
with maximum CPU utilization (CPU is saturated or is a
bottleneck). In our cluster the borderline between the request
size saturating the network and CPU lies at around 320B,
thus we chose 1024B for saturating the network and 128B for
saturating the CPU. For setups 1 and 2, a proper number of
concurrent requests was selected (2.1k and 6k, respectively),
so that increasing the number does not increase the system
throughput, and the latency is kept low enough to prevent
re-sending requests due to a timeout.

We evaluated each recovery algorithm using the same
scenarios, considering several cases specific for a particular
algorithm. FullSS does not require catch-up after recovery if
no commands were decided since a crash. So, we examined
two cases: 1) stable storage is out-of-date, and 2) stable
storage is up-to-date. ViewSS enforces ballot change in order
to invalidate any stray messages: If a process receives the
Recovery message with a ballot number that is greater than
or equal to the ballot number held by the process, the
ballot change must be enforced. So, we considered two cases
when evaluating ViewSS: 1) leader crash, and 2) follower crash,
indicating what was the rôle of the recovering replica prior
to a crash. In the first case, ballot change occurred prior to
recovery, while in the latter case no ballot change occurred
since crash, so the Recovery messages induce a ballot change
during recovery. In contrary, EpochSS has no special cases
to consider per evaluation scenario.

7.1 Evaluation of No-Crash Operation

In Table 1a, we show the system throughput (the total num-
ber of requests per second) when an HDD was used as stable

storage. In this case, FullSS is much slower than ViewSS and
EpochSS.

While in our cluster an HDD was able to perform only at
most 30 sync() operations per second, a SSD had a much
shorter access time, and cutting edge SDDs can break the
boundary of one million IOPS. So, in other experiments we
simply used a RAM disk that simulates an ideal bus-speed
stable storage device. A RAM disk significantly improves
the throughput of EchoService with FullSS (see Table 1b).

If the network is a bottleneck, EchoService with FullSS
is only 3.5% slower than with ViewSS or EpochSS (both
equipped with a RAM disk) or EchoService with no recov-
ery support (denoted “crash stop”), but contrary to them it is
able to recover from catastrophic failures. So, it can be useful
in some cases. When the CPU is a bottleneck, the benefits of
FullSS are less clear—it is 34% slower. This can be attributed
to a higher demand on processing power, which stems from
the need to invoke kernel functions per each voting. In both
scenarios, the performance of ViewSS- and EpochSS-based
EchoService is indistinguishable from “crash stop”.

7.2 Evaluation of Recovery Operation

In this experiment, we show how long it takes for a replica to
recover. The sooner a replica recovers, the sooner resilience
to failure is restored. To evaluate the recovery process, we
measured the time of the following events:

1) a recovering replica broadcast the Recovery message,
2) the last Recovery was delivered and the correspond-

ing RecoveryAck was sent,
3) the recovering replica got all RecoveryAck messages

from a majority set,
4) the recovering replica started the catch-up protocol,
5) the recovering replica received a snapshot,
6) the recovering replica got all missing commands,
7) the recovery is finished.

In Figure 2a-c, we present the evaluation results of the
system recovery for three scenarios: a) the system is idle (it
does not process any requests during the recovery phase),
b) the system is saturated with small requests, which causes
the processor to become the bottleneck, and c) the network is
saturated with large requests. We use the following symbols:
Fo and Fu is FullSS with stable storage contents, respectively,
out of date and up to date, Vf and Vl is ViewSS, respectively,
with follower crash and with leader crash, and E is EpochSS.

Little difference can be seen between the idle system
and the system with saturated CPU (see Figure 2a-b). The
system with the saturated network was recovering longer
than the other systems (see Figure 2c). This indicates that
a network is the main bottleneck for the recovery process,
and the recovery phase does not use excessively processor
time on other nodes except the one that is recovering. The
amount of usage of CPU by the recovering replica depends
mainly on the replicated service.

Below we discuss the evaluation results. First, we an-
alyze the recovery of the FullSS-based system. Next, we
examine the recovery phase using ViewSS and EpochSS,
and the catch-up protocol. Finally, we discuss the overhead
introduced by slow stable storage, request processing, and
snapshot processing.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2926723

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, OCTOBER 2016 13

a)

0 100 200 300 400 500 600 700 [ms]

Fo
Fu
Vf
Vl
E

– Send of Recovery (1)
– Send of the last RecoveryAck (2)
– Receipt of all RecoveryAcks (3)

– Send of a catch-up request (4)
– Receipt of a snapshot (5)
– Receipt of the last missing command (6)

– Start of recovery

– End of recovery (7)

b)
Fo
Vf
Vl
E

c)
Fo
Vf
Vl
E

Fo – FullSS, stable storage contents out of date
Fu – FullSS, stable storage contents up to date

Vf – ViewSS, follower crash
Vl – ViewSS, leader crash

E – EpochSS

Fig. 2. Time needed to recover a crashed replica in case of: a) the idle system, b) CPU saturation, and c) network saturation.

7.2.1 FullSS

In FullSS, recovery starts from reading a snapshot and logs
from stable storage, followed by recreating the state of a
recovering replica. This completes the recovery phase (7)
(see Figure 2, where we use numbers 1–7 to identify a given
action). Even though the replica is able to recover by its
own, it must run the catch-up protocol afterward to become
up-to-date (if the logs were outdated). In JPaxos, catch-up is
triggered either by the first Paxos message, or by a heartbeat
message of the failure detector. In the idle system, we tested
two scenarios: 1) stable storage was up-to-date, and 2) some
requests were processed when the recovering replica was
down. In Figure 2a, case Fo, catch-up is triggered, and it
occurs later than in any other test in Figure 2 (on average 160
ms after finishing recovery, and 380 ms after replica started).
As no commands are voted, catch-up was triggered by the
failure detector (the heartbeat messages are sent periodically
when no client requests are issued).

A restarted replica can serve new requests only when it
has finished recovery (7) and it is up to date (6). In all our
tests, the FullSS-based system finished recovery faster than
other systems. However, it becomes up to date faster than
other systems only in one case—when the whole system did
not receive any requests since crash. In other cases, FullSS
was the last one to restore full functionality of a recovering
replica. Also, the catch-up protocol takes more time in the
FullSS-based system than in any other system (15% if the
system is idle, 20% if the CPU is saturated, and even 40%
more time if the network is saturated).

7.2.2 ViewSS and EpochSS

A recovering replica using ViewSS and EpochSS must con-
tact other replicas. The time instant (1) when it initializes
itself and sends a Recovery message is the same for all our
tests. The time instant (2) when all other replicas respond

with a RecoveryAck message varies across tests. In the idle
system, the elapsed time between (1) and (2) is negligible.
The same is when CPU is saturated, except for the case of the
crash of a follower in ViewSS (discussed later). Gathering
the RecoveryAck messages by the recovering replica (3)
takes approximately the same amount of time as for the
Recovery message. As expected, the exchange of recovery
messages takes more time when the network is saturated.
However, in most of our tests, the elapsed time between
time instants (1) and (3) is just a fraction of time which is
necessary to recover a process (2% to 6% of the total recovery
time, except for a few cases discussed below).

ViewSS enforces a ballot change when a follower crashes,
which impacts results in Figures 2b and 2c. It takes more
time (compared to other results in Figure 2) before replicas
can process the Recovery messages (2) and when Recovery-
Acks are delivered to the recovering process (3). However,
the overall system performance does not seem to be affected,
contrary to the expectations.

7.2.3 Catch-Up
No matter which recovery algorithm is used the system ex-
ecutes the catch-up protocol. While the FullSS-based system
only uses it to update state, ViewSS and EpochSS require it
for correctness. The protocol is initiated by sending a catch-
up request (4). In ViewSS and EpochSS, this occurs as soon
as possible, while in FullSS—once the recovering process
notices that it is late. In response to the catch-up request, a
recovering replica receives from another replica a snapshot
(5) and/or the missing commands (6). Completing catch-up
in case of FullSS takes noticeably more time than in other
systems, since all data must be written to stable storage. As
expected, in case of ViewSS and EpochSS it takes the least
time to complete the catch-up protocol when the system is
idle. When the network is saturated, a process is able to
recover a short while before the catch-up protocol finished.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2926723

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, OCTOBER 2016 14

This may occur if some commands were decided between
sending RecoveryAck and sending a snapshot.

7.2.4 Hard Disk Drive

Figures 2a-c present the results obtained for the EchoService
system equipped with a RAM disk, as a substitute for high-
speed stable storage devices, such as SSDs. We repeated all
tests for an HDD. FullSS reads a large amount of data from
disk. So, not surprisingly, the time required to complete
catch-up by our system with HDD is twice longer when
the system is idle and over four times longer when the CPU
or network is saturated, compared to the same system using
a RAM disk. In effect, it takes the recovering replica about
3200 ms to be able to process any further requests when
the network is saturated, while other algorithms require less
than 600 ms.

In case of ViewSS, if a leader crashed, there is no differ-
ence. However, if a follower crashed, the Recovery message
is received by replicas (2) after approximately 120 ms from
being sent by the recovering replica. The time required to
exchange recovery messages (2–3) is at least twice longer
than when using the RAM disk. The main cause of delay are
synchronous writes which are performed on ballot change
by every replica. So the delay affects all replicas.

In case of EpochSS, the start-up time (1) increases by
33 ms (nearly twice longer as before), since the recovering
replica must synchronously write a new epoch number to
stable storage. Processing the subsequent events (2-7) takes
the same amount of time as in the system with a RAM disk
(just they appear later in time). This is because other replicas
do not write anything to a disk.

7.2.5 Snapshot and Log

Our EchoService benchmark was configured in such a way
that the time of recreation of state from a snapshot and
the time of executing (on average) 5000 requests from a
log were negligible. This is because our main goal was to
measure the recovery time imposed purely by the recovery
algorithms. Thus, the results can be seen as an estimation of
the lower bound for actual services, where these times can
be longer. Moreover, in EchoService the size of snapshots
was just one byte, while a real service may produce much
larger snapshots, which means that also the time required
to transfer a snapshot between replicas can be longer than
in our tests. Thus the time to bring a crashed service back
to operation can be much longer than the maximal time of
recovery (around 0.6 s) that we measured in our system
using ViewSS and EpochSS.

7.3 Crash-Recovery vs. System Throughput

When the number of replicas in a distributed system
changes due to a crash or a recovery, the system perfor-
mance changes as well. In this section, we examine how the
performance of Paxos changes upon a crash, as well as upon
recovery, when the recovering replica interacts with other
replicas. In case of our lightweight EchoService, the system
performance comprises the performance of Paxos and the
catch-up protocol. In order to measure the throughput of
an individual replica, our service reports every 100 ms the

total number of processed requests. This sampling rate has
negligible impact on the rest of the system.

In our experiments, we run 3 replicas and a number of
clients. At 3sec from the start of our benchmark, the clients
begin sending requests. At 12.5sec after system stabilizes
and some requests were executed, one replica crashes. At
18sec the replica is up again (and starts recovery). In Figures
3, 4, and 7, we depict the throughput from 10sec to 22sec of
our benchmark run.

7.3.1 The Impact of a Crash on System Performance
In Figures 3a-d, we present the throughput of a non-faulty
replica in the EpochSS-based system, where either the net-
work is a bottleneck (a-b), or CPU is a bottleneck (c-d), and
a crashed replica is a follower (a, c) or a leader (b, d).

As expected, the crash of a follower does not cause
service downtime, while the crash of a leader makes the
system unable to take new decisions until the crashed leader
becomes suspected and a new leader is chosen. JPaxos was
configured so that a follower suspects a leader process to
have crashed if it has not received any message from the
leader for 1000 ms. Then, the follower starts a new ballot to
select a new leader. Between the crash and the election of a
new leader the service is unavailable.

After a self-adjustable timeout, the clients that do not
receive responses to their requests (e.g. due to a replica crash
or a network partition), reconnect to other replicas and issue
their requests again. Some of these replicas pass the client
requests to the old leader that has crashed but is not yet
suspected by them. Therefore, the clients must reconnect
and issue their requests again. Since they reconnect after
non-uniform timeouts, it takes a while before the system
reaches its maximum throughput, which is depicted in Fig-
ure 4. In the network saturation scenario (a), the throughput
rises rapidly, as a moderate number of requests in this sce-
nario quickly saturates the network. On the contrary, in the
CPU saturation scenario (b), a vast number of clients must
reconnect before the throughput reaches its limit, hence it
takes more time to reach the maximum performance.

In Figure 5, we show an interesting asymmetry between
the performance of two replicas p and q that remained up
after the leader crashed. The explanation is as follows. In
some executions, the leader managed to send the Propose
message for a command i to follower p, but crashed before
sending it to follower q. In such case, p broadcasts Accept
and issues command i (as it gathered the majority of votes,
i.e., its own vote and an implicit vote of the leader). How-
ever, q cannot issue a command for i yet, as it only has got
the vote cast by p. Let us assume that p becomes a new
leader. Then, once any new commands were decided, p can
issue them to the service, while q cannot, as it first has to
learn the missing ith command, which in JPaxos occurs only
through the use of the catch-up protocol. As soon as q learns
command number i, it can issue it to the service, together
with any other commands decided by the new leader. The
impact of catch-up can be seen as a peak in performance
of the follower q (see Figure 5b). The results shown in the
figures are an average of a few hundred measurements. So,
the throughput of q is a composition of the executions in
which q did not miss any command (so its performance
was stable p’s), and the executions in which q first missed

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2926723

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, OCTOBER 2016 15

a)

Re
qu

es
ts

 p
er

 s
ec

on
d

0

10k

20k

30k

40k

50k

Time [s]
12 14 16 18 20

crash

b)

Re
qu

es
ts

 p
er

 s
ec

on
d

0

10k

20k

30k

40k

50k

Time [s]
12 14 16 18 20

crash

c)

Re
qu

es
ts

 p
er

 s
ec

on
d

0

50k

100k

150k

Time [s]
12 14 16 18 20

crash

d)

Re
qu

es
ts

 p
er

 s
ec

on
d

0

50k

100k

150k

Time [s]
12 14 16 18 20

crash

Fig. 3. Throughput of a non-faulty replica in EpochSS: a,c) the crash of a follower, b,d) the crash of a leader, a-b) saturated network, and c-d)
saturated CPU.

a)

Re
qu

es
ts

 p
er

 s
ec

on
d

0

10k

20k

30k

40k

50k

Time [s]
12 14 16 18 20

EpochSS and ViewSS

FullSS

crash

b)

Re
qu

es
ts

 p
er

 s
ec

on
d

0

50k

100k

150k

Time [s]
12 14 16 18 20

EpochSS and ViewSS

FullSS

crash

Fig. 4. The crash of a leader: a) saturated network, b) saturated CPU.

a)

Re
qu

es
ts

 p
er

 s
ec

on
d

0

10k

20k

30k

40k

50k

Time [s]
13 14 15

cr
as
h

b) Time [s]
13 14 15

cr
as
h

Fig. 5. Asymmetry of throughput: a) a new leader p, b) a follower q.

commands, so the throughput of q was zero, and later issued
a large batch of commands, so the peak in performance.

7.3.2 Throughput During Stable Period

We analyzed the system throughput in the following stable
periods – i.e., when no crash nor recovery impacted the
system performance:
A – just before crash (10–12s),
B – just before recovery begins (16–18s),
C – after the recovery, when the system is stable (20–22s).

Firstly, let us compare the performance of a non-faulty
replica (a leader or a follower) in periods A and B, see
Figure 3. This comparison shows how the system perfor-
mance changes when a replica crashes and stays down.
If the network is the bottleneck (3a-b), the throughput
of the measured replica slightly rises in period B, since
there is more available bandwidth for the communication
between the leader and the follower and the clients, as no
data are transferred to the crashed replica. If the CPU is
the bottleneck (3c-d), the performance drops in period B
compared to A, since more clients connect to the remaining
(already overloaded) replicas, thus increasing the amount
of work on each of them. In general, if only two replicas are
up the performance of the non-faulty replica is less stable
(especially when the network is saturated).

In all cases, in the time period C (after the recovery
process completed) the system performance is lower than in
the time period A (before the crash). This is because JPaxos
currently does not support load balancing. In effect, the
clients that reconnected to a new replica are not redirected
back to the old replica once it has recovered after a crash.
In every case, load balancing is not tightly coupled with
recovery, so the performance drop does not expose any
drawback of the recovery algorithms.

Note also that if the network is saturated, the system
performance in the time period C (after recovery completed)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2926723

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, OCTOBER 2016 16

a)

Re
qu

es
ts

 p
er

 s
ec

on
d

0

50k

100k

150k

Time[s]
18 19 20 21

re
co
ve
ry

b) Time[s]
18 19 20 21

re
co
ve
ry

Fig. 6. Throughput in ViewSS-based system with: a) RAM disk, b) HDD.

Re
qu

es
ts

 p
er

 s
ec

on
d

1.5k

2.0k

30.0k

40.0k

Time [s]
12 14 16 18 20

HDD SS

RAM SS

crash

Fig. 7. Throughput in FullSS-based system: RAM disk vs. HDD.

is lower than in the time period B (just before recovery
begins), as messages must also be sent to the recovered
replica, but the network bandwidth is already used up (see
Figures 4a-b). Whenever the CPU got saturated, the system
performance in the periods B and C remains unchanged, as
no additional processing is required.

Although JPaxos currently does not support load bal-
ancing, the system performance is slowly restored, as long
as new clients join the system or old clients reconnect. This
behavior can be observed in Figure 6, where we show the
performance of ViewSS-based system using a RAM disk and
HDD. When we tested ViewSS with an HDD, the leader
change enforced by the recovering replica took more time
than in the system configuration using a RAM disk. In effect,
the system became unavailable for a moment, so the clients
started reconnecting, thus restoring the balance.

7.3.3 Throughput During Recovery

At recovery, the system performance drops, which is espe-
cially visible if the network is saturated. The drop occurs
during the catch-up phase (see Fig. 2b-c for the offset
and duration of catch-up). It slightly differs for different
algorithms (see Fig. 4). While ViewSS and EpochSS have
a noticeable performance drop, in FullSS the drop is smaller
in value, but is spread over a larger time span (as is the
catch-up).

When JPaxos uses an ideal stable storage emulated by a
RAM disk, the differences between the recovery algorithms
are small, but with HDD they become distinct, as follows.
First of all, in FullSS the catch-up takes more time, but the
impact of recovery on other replicas is visible only as a short
drop of performance at the beginning of the catch-up from
the 18.3s till 18.6s (see Figure 7). With ViewSS, the follower
crash does not affect the system performance, but in case of
the leader crash the impact of the enforced view change is
clearly visible. As seen in Figure 6b, the processing stops for

a short period (from 18sec till 18.7sec), needed to perform
the view change and restart the Paxos protocol in the new
view. The EpochSS results remain identical regardless of
what medium was used as stable storage.

7.4 Discussion of System Workload Impact
Below, we discuss the impact of the system workload on our
results.

In Section 7.1, we examined performance overhead of
supporting the system recovery during crash-free periods.
In case of ViewSS and EpochSS, the results are independent
of the system workload. In case of FullSS, the performance
penalty raises when the processing power is the factor
limiting performance.

In Section 7.2, we examined the duration of the recovery
process. The time it takes to recover the system highly
depends on the workload. In FullSS, the system recovery
time depends solely on the application characteristic, as
the recovery only consists of updating the system state. In
ViewSS and EpochSS, Steps 1-3 of the recovery process are
independent of the system workload, yet the duration of
Steps 4-6 (i.e., of the state update) depends on the applica-
tion. If the application needs to transfer a large amount of
data to update the system state, or, if restoring a state from
snapshot lasts long, or, if executing requests takes much
time, then obviously the state update dominates the re-
covery process. Therefore, in order to differentiate between
the recovery algorithms, in our experimental evaluation
we chose the system workload with negligible times of
command execution and state restoration. Also, the size of
data transferred during state update was relatively small,
and, on average, equal to five thousands requests.

In Section 7.3, we examined how crash and recovery
affect the system throughput. These results are independent
of the system workload, with one exception. In Section 7.3.3,
we show how transferring data to the process that is being
recovered affects the system performance. If state update
takes more time, due to the application characteristic, then
the observed slowdown will last longer.

8 CONCLUSIONS

We analyzed and compared three recovery algorithms for
Paxos-based state machine replication: FullSS, which es-
sentially renders the original presentation of Paxos in [1],
and ViewSS and EpochSS which minimize the use of stable
storage during normal (non-faulty) system operation.

Not surprisingly, restoring lost state is the main factor of
the total time of recovery (even for our simple EchoService
application), no matter which algorithm was used. How-
ever, FullSS was significantly worse in our comparison,
as the lost state is first read from stable storage (which
survives crashes) and later is updated by data received from
peers, while the ViewSS and EpochSS algorithms restore
lost state exclusively from other replicas through catch-up.
Operations of ViewSS and EpochSS (not related to catch-up)
took at most 100 ms during recovery when a RAM disk was
used, and—in case of EpochSS only—just 33 ms longer for
HDD.

An advantage of FullSS is that it allows the system to
recover also when less than a majority of processes remains

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2926723

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, OCTOBER 2016 17

up at the same time. However, the performance penalty
during normal (non-faulty) system operation is very large
due to frequent synchronous writes to stable storage. When
we used a RAM disk (as a substitute for a high-end SSD),
performance of Paxos improved but it was still visibly worse
compared to Paxos equipped with the other two recovery
algorithms (kernel calls of synchronous writes suffice to
considerably slow down processing). Also, recovery of a
crashed process took more time in FullSS.

ViewSS and EpochSS do not impact the performance of
Paxos during normal operation (the former requires just
one synchronous write to stable storage in the reign of a
leader vs. the latter that slightly increases the sizes of ballot
change and recovery messages) and introduce a negligible
slowdown during process recovery. However, ViewSS may
sometimes slow down the system during process recovery
(when a leader change is forced), giving no pros in return.
Therefore, EpochSS seems to be favorable, unless the system
must tolerate more than

⌊
n−1
2

⌋
crashes at once, in which

case FullSS is the only choice out of the three.
In a system using EpochSS or ViewSS, when a crashed

process recovers, some other process is slowed down, as
it has to transfer data to the recovering process. This may
slightly slow down the whole system. Moreover, in case of
ViewSS, it is likely that a new leader has to be elected, which
effectively prevents the system from deciding commands
for a while. In our test, if the CPU was saturated, the perfor-
mance drop was not larger than 5% and lasted a fraction of a
second, whereas when the network was saturated, the drop
reached at most 15% and lasted until the recovery finished.

Obviously, the crash of a leader suspends the system
until the crash is detected and a new leader is elected.
Moreover, the clients may also be blocked, waiting on a
timeout after which they resend the requests. A highly
optimized system should implement a load balancing mech-
anism to distribute the requests evenly among all replicas
that survived crashes and that have recovered and re-joined
the system.

In the future work, we would like to investigate recovery
algorithms for the future computer architectures, equipped
with a non-volatile random-access memory (NVRAM), built
with the use of emerging non-volatile technologies (e.g. 3D
XPoint [35]). Note that the recovery algorithms presented in
this paper will still be applicable (e.g., to catch-up the state
after restart, and to recover the state kept in CPU registers
and volatile part of RAM or lost due to hardware failure),
but NVRAM opens space for improvement.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their valu-
able comments which helped to improve the manuscript.
This work was supported by the Polish National Science
Centre (grant No. DEC-2012/06/M/ST6/00463); and within
the TEAM programme by the Foundation for Polish Science,
co-financed by the European Union under the European
Regional Development Fund (grant No. POIR.04.04.00-00-
5C5B/17-00).

REFERENCES

[1] L. Lamport, “The Part-time Parliament,” ACM Trans. Comput. Syst.,
1998.

[2] M. Burrows, “The Chubby Lock Service for Loosely-coupled Dis-
tributed Systems,” in Proc. of OSDI ’06, 2006.

[3] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh,
S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,
D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szyma-
niak, C. Taylor, R. Wang, and D. Woodford, “Spanner: Google’s
Globally-distributed Database,” in Proc. of OSDI ’12, 2012.

[4] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos Made Live:
An Engineering Perspective,” in Proc. of PODC ’07, 2007.

[5] J. Rao, E. J. Shekita, and S. Tata, “Using Paxos to build a scal-
able, consistent, and highly available datastore,” in Proc. of VLDB
Endowment ’11, 2011.

[6] R. Boichat, P. Dutta, S. Frølund, and R. Guerraoui, “Deconstructing
Paxos,” SIGACT News, vol. 34, no. 1, pp. 47–67, Mar. 2003.

[7] A. Fox and E. A. Brewer, “Harvest, yield and scalable tolerant
systems,” in Proc. of HotOS-VII: the 7th Workshop on Hot Topics in
Operating Systems, Mar. 1999.

[8] B. M. Oki and B. H. Liskov, “Viewstamped Replication: A New
Primary Copy Method to Support Highly-Available Distributed
Systems,” in Proc. of PODC ’88, 1988.

[9] J. Kończak, N. Santos, T. Żurkowski, P. T. Wojciechowski, and
A. Schiper, “JPaxos: State machine replication based on the Paxos
protocol,” EPFL, Tech. Rep. EPFL-IC-TR-167765, July 2011.

[10] R. D. Prisco, B. W. Lampson, and N. A. Lynch, “Revisiting the
Paxos algorithm,” Theor. Comput. Sci., vol. 243, no. 1-2, pp. 35–91,
2000.

[11] J. Kirsch and Y. Amir, “Paxos for System Builders: An Overview,”
in Proc. of LADIS ’08, 2008.

[12] P. J. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring Paxos:
A high-throughput atomic broadcast protocol,” in Proc. of ICDCN
’10, 2010.

[13] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and
P. Li, “Paxos Replicated State Machines As the Basis of a High-
performance Data Store,” in Proc. of NSDI ’11, 2011.

[14] P. J. Marandi, M. Primi, and F. Pedone, “Multi-Ring Paxos,” in
Proc. of DSN ’12, 2012.

[15] R. Van Renesse and D. Altinbuken, “Paxos made moderately
complex,” ACM Comput. Surv., 2015.

[16] B. Lampson, “The ABCD’s of Paxos,” in Proc. of PODC ’01, 2001.
[17] L. Lamport, “Fast Paxos,” Distributed Computing, vol. 19, no. 2,

2006.
[18] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-

performance Broadcast for Primary-backup Systems,” in Proc. of
DSN ’11, 2011.

[19] B. Liskov and J. Cowling, “Viewstamped Replication Revisited,”
MIT, Tech. Rep. MIT-CSAIL-TR-2012-021, Jul. 2012.

[20] M. K. Aguilera, W. Chen, and S. Toueg, “Failure detection and
consensus in the crash-recovery model,” in Proc. of DISC ’98, 1998.

[21] D. Ongaro and J. K. Ousterhout, “In search of an understandable
consensus algorithm,” in Proc. of USENIX ATC ’14, 2014.

[22] E. Michael, D. R. K. Ports, N. K. Sharma, and A. Szekeres, “Recov-
ering shared objects without stable storage,” in Proc. of DISC ’17,
2017.

[23] A. N. Bessani, M. Santos, J. Felix, N. F. Neves, and M. Correia,
“On the efficiency of durable state machine replication,” in Proc. of
USENIX Annual Technical Conference ’13, 2013.

[24] O. M. Mendizabal, F. L. Dotti, and F. Pedone, “High performance
recovery for parallel state machine replication,” in Proc. of ICDCS
’17, 2017.

[25] L. Lamport, D. Malkhi, and L. Zhou, “Reconfiguring a state
machine,” SIGACT News, vol. 41, no. 1, pp. 63–73, 2010.

[26] ——, “Vertical paxos and primary-backup replication,” in Proc. of
PODC ’09, 2009.

[27] L. Jehl, T. E. Lea, and H. Meling, “Replacement: Decentralized
failure handling for replicated state machines,” in Proc. of SRDS
’15, 2015.

[28] L. Jehl and H. Meling, “Asynchronous reconfiguration for paxos
state machines,” in Proc. of ICDCN ’14, 2014.

[29] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakest failure
detector for solving consensus,” Journal of the ACM, vol. 43, no. 4,
pp. 685–722, 1996.

[30] L. Lamport, “Time, clocks, and the ordering of events in a dis-
tributed system,” Communications of the ACM (CACM), vol. 21,
no. 7, pp. 558–565, 1978.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2926723

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, OCTOBER 2016 18

[31] L. B. Lamport, “Fault-tolerant system and method for implement-
ing a distributed state machine,” Nov. 1993, US Patent no US
5261085 A.

[32] N. Santos and A. Schiper, “Tuning Paxos for high-throughput with
batching and pipelining,” in Proc. of ICDCN ’12, 2012.

[33] “JPaxos – Java library and runtime system.” [Online]. Available:
https://github.com/JPaxos/JPaxos

[34] L. Rodrigues and M. Raynal, “Atomic broadcast in asynchronous
crash-recovery distributed systems and its use in quorum-based
replication,” IEEE Trans. on Knowl. and Data Eng., vol. 15, no. 5, pp.
1206–1217, 2003.

[35] “Intel’s 3D XPoint,” https://software.intel.com/en-us/articles/
3d-xpoint-technology-products.

Jan Kończak is currently pursuing a PhD degree and working as a
research assistant in the Institute of Computing Science, Poznań Univer-
sity of Technology, Poland, where he also received BS and MS degrees
in Computer Science, in 2011 and 2012 respectively. His research inter-
ests include fault tolerant distributed algorithms, transactional memory,
state machine replication and group communication systems.

Paweł T. Wojciechowski received the Habilitation degree from Poznań
University of Technology, Poland, in 2008, and the PhD degree in
computer science from the University of Cambridge, in 2000. He was a
postdoctoral researcher in the School of Computer and Communication
Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzer-
land, from 2001 to 2005. He is currently an associate professor in the
Institute of Computing Science of Poznań University of Technology. He
has led many research projects and coauthored dozens of papers. His
research interests span topics in concurrency, distributed computing,
and programming languages.

Nuno Santos is a Software Engineer at Raw Labs, a startup developing
tools for data exploration, analysis and mining. In 2012, he received
a PhD in Computer Science from the EPFL, Switzerland, on the topic
of analysis, implementation and evaluation of Paxos-like consensus
algorithms. He received a BSc in Mathematics and a MSc in Computer
Science from the University of Coimbra, Portugal, in 2000 and 2003,
respectively. From 2003 to 2006 he worked for one year as a software
engineer at Wit-Software, Portugal, and for two years at the European
Organization for Nuclear Research (CERN), Switzerland.

Tomasz Żurkowski is currently a Software Engineer at Google, working
on core search infrastructure. He received BS and MS degrees in
Computer Science from Poznań University of Technology, Poland, in
2011 and 2012 respectively.

André Schiper graduated in physics from the ETHZ in Zurich in 1973
and received the PhD degree in computer science from the EPFL in
1980. He has been a professor of computer science at EPFL since
1985 (retiring in 2014) leading the Distributed Systems Laboratory. His
research interests are in the areas of dependable distributed systems,
middleware support for dependable systems, replication techniques (in-
cluding for database systems), group communication, distributed trans-
actions, and MANETs. He was a member of the editorial boards of
Springer-Verlag’s Distributed Computing (2003-2014), the IEEE Trans-
actions on Dependable and Secure Computing (2004-2008), and Inder-
science’s International Journal of Security and Networks (2005-). He is
a member of the IEEE.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2926723

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://github.com/JPaxos/JPaxos
https://software.intel.com/en-us/articles/3d-xpoint-technology-products
https://software.intel.com/en-us/articles/3d-xpoint-technology-products

