
Under consideration for publication in Math. Struct. in Comp. Science

Static Typing and Dynamic Versioning
for Safe Pessimistic Concurrency Control

P A W E Ł T . W O J C I E C H O W S K I

Institute of Computing Science, Poznań University of Technology, Poland.
ptw@cs.put.poznan.pl

Received April 4, 2012

Contents

1 Introduction 2
1.1 Basic Definitions and Motivating Example 3
1.2 Calculus Design 5
1.3 Safe Concurrency Control 7
1.4 Implementation 8
1.5 Paper Structure 9

2 Calculus of Atomic Transactions 9
2.1 Syntax 9
2.2 Operational Semantics 10

2.2.1 Functions, reference cells and threads 12
2.2.2 Transaction creation, termination, threading and isolation 14
2.2.3 Verlock creation, acquisition and release 15

2.3 Concurrency Controller 15
2.3.1 Correctness assumptions 17

2.4 Static Typing 17
3 Well-typed Programs Satisfy Isolation 20

3.1 Absence of Races 22
3.2 Absence of Non-declared Verlocks 23
3.3 The Main Result of Isolation Preservation 26

3.3.1 Deadlocks 27
3.4 Type Soundness 28

3.4.1 Type safety 28
3.4.2 Evaluation progress 30

4 Dynamic Correctness of Basic Versioning 32
4.1 Verlock Access 33
4.2 Access Ordering 34
4.3 Noninterference 35

5 Related Work 36
6 Conclusion and Future Work 39

P. T. Wojciechowski 2

Appendix A 43
A.1 Type Soundness 43

A.1.1 Type safety 43
A.1.2 Evaluation progress 52

1. Introduction

Concurrent programming is notoriously difficult. The low-level abstractions such as fine-
grained locks are intricate and make it hard to write reliable programs and to reason
about program correctness. In recent years, there has been a growing interest in adopt-
ing atomic transactions to general-purpose programming languages (see e.g., (HF03;
HMPH05) among others). They enable an elegant declarative style of concurrency con-
trol in which programmers use high-level programming constructs to indicate the safety
properties that they require. The runtime system ensures that the concurrent transactions
commit atomically and exactly once. A lot of work in this area is based on the concept of
Software Transactional Memory (STM) (ST95), relaying on optimistic concurrency con-
trol. Optimistic concurrency control allows more parallelism than locks since transaction
operations are executed without blocking. In case of any conflicts, transactions are rolled
back and reexecuted. This approach is, however, problematic. Firstly, native methods
having irrevocable effects cannot be used freely inside transactions. Secondly, high con-
tention in accessing shared data by a large number of concurrent transactions will cause
many conflicts. The conflicting transactions have to be aborted and reexecuted decreasing
the overall system throughput. Various contention managers have been proposed (see e.g.,
(SS05)). They may help to decrease the transaction abort rate but they are not able to
solve the problem of methods with irrevocable effects. Thus, some STM implementations
combine optimistic and pessimistic concurrency control (see e.g. (NWAT+08)), where the
latter is used for transactions that cannot be executed optimistically. In general, using
pessimistic concurrency control based on locks eliminates conflicts between transactions,
so they are never forced to abort. However, standard locking principle requires some
additional means to deal with deadlocks statically or dynamically.

This paper defines a calculus of atomic transactions with pessimistic concurrency con-
trol based on versioning, where versioning replaces locks by versioning locks (or velocks)
that give transactions safe and deadlock-free exclusive access to shared resources with
isolation guarantee (explained below). Deadlock can still occur due to incorrect use of
locks inside a transaction. This problem is, however, orthogonal to our design, and exist-
ing solutions of deadlock avoidance or detection can be applied to solve it. The calculus is
equipped with a structural operational semantics, describing a high-level semantics of the
programming language constructs and a low-level semantics of a concurrency controller.
The key concept of our design is the use of data derived from a program statically to
support efficient and safe transaction execution at runtime. We present a first-order type
system that can statically verify input data for an example versioning algorithm that is
used to implement the concurrency controller. We have used one of the simplest algo-

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 3

rithms possible. It does not permit much concurrency between the transaction threads
that may access the same data but it makes the presentation of the calculus simpler.

We have used the operational semantics of our calculus to formalize and prove type
soundness and the runtime correctness of our versioning algorithm. In particular, we show
several results (theorems) about our type-directed approach to pessimistic concurrency
control of atomic transactions. The main result is that the execution of any well-typed
program expressed in our language is guaranteed to satisfy the isolation property (defined
formally in Section 2.2). We give a rigorous proof of isolation preservation and progress
(up to deadlocks). The proof makes data accesses made by transactions explicit, and deals
with multiple threads within an atomic transaction. This paper is a revised and extended
version of (Woj05). An older version has also appeared in the author’s habilitation thesis
(Woj07).

1.1. Basic Definitions and Motivating Example

In the database community, atomic transactions are described by a set of properties
referred to by the acronym ACID: Atomicity means that all changes to data are performed
as if they are a single operation. That is, all the changes are performed, or none of them
are. Consistency ensures that any transaction will take a database from one consistent
state to another (this is a property that should be ensured by a program). Isolation means
that the intermediate state of a transaction is invisible to other transactions. As a result,
transactions that run concurrently appear to be serialized. Durability means that after a
transaction successfully completes, changes to data persist and are not undone, even in
the event of a system failure. In the programming language community, atomicity often
implies isolation. A block of code that requires atomic execution is called a critical section.
However, the “all-or-nothing” semantics is usually not guaranteed if a thread is killed in
the middle of executing a critical section. Concurrent execution of critical sections (or
atomic blocks) is isolated (or serialized). In this paper, we use the term isolation, meaning
isolation as defined in databases and atomicity as defined in programming languages.

Let us begin from a small example. In Figure 1, we present a short program expressed
using a ML-like programming language with let-binders and references, extended with
software-based atomic transactions.

The example program consists of two concurrent parts that use the atomic construct
to spawn two concurrent transactions A and B. They share two reference cells a1 and a2,
which have been created and initiated to 1000 using the ref construct. The let x = v in
P construct from ML is used to bind a value v (here a reference cell) with a name x and
continue with program P (x binds in P). Transaction A is performing a bank transfer—
it withdraws 10 from an account a1 and deposits 10 to an account a2. The accounts
are implemented using reference cells. The ’read’ expression !x returns the current value
stored in x, while the ’write’ expression x := v overwrites x with v. Transaction A also
invokes a native method print of the operating system that prints out the state of
accounts a1 and a2 before and after the update. Transaction B is computing the current
balance balance, which is equal the total amount of assets deposited on accounts a1 and

P. T. Wojciechowski 4

Shared data structures:

let a1 = ref 1000 in
let a2 = ref 1000 in
let balance = ref 0 in

Transaction A:

atomic (
print a1;
a1 := !a1 - 10;
print a1, a2;
a2 := !a2 + 10;
print a2
)

Transaction B and continuation C:

atomic (
balance := !a1 + !a2
);

let double = !balance + !balance in
print double

Figure 1. Atomic transactions A and B execute concurrently and exactly once.

a2. After the balance has been committed by transaction B, the program’s continuation
C prints out its double value.

A sequence of operations e1;...;en to be executed atomically by an atomic transaction,
is declared using the construct atomic (e1;...;en). Isolation (or atomicity) means that
transactions that run concurrently appear to be serialized and all transaction operations
are executed exactly once (as are the operations of a critical section), unless an explicit
rollback construct is invoked. Thus, a sequence of transaction operations can be regarded
as a single unit of computation, regardless of any other operations occurring concurrently.
So, the total balance is equal 2000, even if the concurrent ’read’ and ’write’ operations
would be interleaved. The concurrent execution of code blocks A and B without atomic
might give balance equal 1990.

To support concurrency on multicore CPUs, the implementation of atomic should
allow transaction operations to be executed in parallel whenever possible. A single lock
is therefore not suitable. An implementation of atomic using optimistic concurrency
control will allow transactions to be executed in parallel and without blocking. If on
transaction commit or earlier, the system would detect that some transaction (we call it a
conflicting transaction) has read inconsistent state then the transaction is rolled back and
reexecuted. Unfortunately, this behaviour invalidates the intended semantics of the print
function call and any other methods whose effects are not easily revocable; such methods
must be executed by a transaction exactly once. A workaround is to forbid the use of
native methods inside transactions (e.g. (PJGF96)) or defer the execution of operations
with irrevocable effects after transaction commit (e.g. (Har05)). Unfortunately, these
simple techniques are not always plausible. For example, in our program the values
printed by transaction A reflect intermediate states of transaction processing, so printing
these values cannot be shifted before or after this transaction.

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 5

1.2. Calculus Design

In this paper, we define a calculus of atomic transactions relaying entirely on pessimistic
concurrency control. In this approach, a transaction is never conflicting with other trans-
actions, so no implicit rollback is required. The key idea of our design is to schedule
the ’read’ and ’write’ operations of concurrent atomic transactions, so that the isola-
tion (or atomicity) property is preserved and the transactions are executed exactly once.
The scheduling algorithm may delay (temporarily block) the execution of the ’read’ and
’write’ operations that appear “too early”. The decision whether to delay an operation
on some object or not, is made by comparing versions associated with the object with
versions hold by the atomic transaction. We can think of versions as integer values that
are incremented after some actions have occurred. Each atomic transaction has to obtain
a consistent snapshot of versions for all objects it may ever use before it is allowed to
access any shared object for the first time. Since a version snapshot is guaranteed to be
unique for all atomic transactions, it can therefore be used to obtain an exclusive access
to the objects. Moreover since versions are ordered, atomic transactions can access the
shared objects in the order which guarantees isolation (or atomicity). In our previous
work (Woj07; WRS04), we have designed several such algorithms, varying in the level of
concurrency and required input data.

Our calculus of atomic transactions can be seen as the core of an intermediate language
for translation from the concrete syntax of a programming language used by programmers
to the executable code. In Figure 2, we present the translation of our example program
to the calculus. Below we briefly explain the language constructs used in this translation.
The syntax and operational semantics of all constructs of our calculus will be given in
Section 2. The details of the translation algorithm are beyond scope if this paper.

Execution of newlock l :m in e creates a new unique name of a versioning lock l (or
verlock in short) of type m to be used in program e. The type m is a singleton verlock
type, i.e. the type of a single verlock. Both l and m may be referred to in the expression
e, i.e. x and m are bound in e. A fresh verlock is created for every native method and a
data structure that must be accessed atomically. In our example program, verlocks l1,
l2 and l3 have been created for the reference cells respectively, a1, a2 and balance. A
reference creation refm e is decorated with a singleton verlock type m (for some m).

Execution of atomic e e creates a new atomic transaction for the evaluation of expres-
sion e. Concurrent execution of atomic transactions satisfies the isolation property. After
the creation, e commences execution, in parallel with the rest of the body of the spawning
program. Each transaction is therefore executed by a new fresh thread. The e expression
should give the input data for the concurrency controller. In the simplest case, it is a
sequence of verlocks l1, ..., ln that are used by an atomic transaction to guard critical
operations, where the critical operations are all ’read’ and ’write’ operations on reference
cells and other operations (or method calls) that must be executed by the transaction
atomically.

Each critical operation of an atomic transaction is enclosed by the sync construct,
which implements a critical section guarded by a verlock. The verlocks provide ’hooks’
for the scheduling algorithm, which may then delay operations guarded by verlocks, so

P. T. Wojciechowski 6

Shared data structures:

newlock l1 : m in
newlock l2 : n in
newlock l3 : o in

let a1 = ref_m 1000 in
let a2 = ref_n 1000 in
let balance = ref_o 0 in

Transaction A:

atomic l1,l2 (
print a1
sync l1 a1 := !a1 - 10;
print a1, a2;
sync l2 a2 := !a2 + 10;
print a2
)

Transactions B and C:

atomic l1,l2,l3 (
sync l3 balance := sync l1 !a1
+ sync l2 !a2

);

atomic l3 (
let double = sync l3 !balance
+ sync l3 !balance in
print double
)

Figure 2. Concurrent execution of atomic transactions B and C is equivalent to a
sequential execution of B followed by C.

that the execution of concurrent transactions is isolated. Other critical operations (not
guarded by verlocks) are not isolated. This design decision allows isolation to be relaxed
if needed, e.g. some input/output operations should never be blocked.

Evaluation of the sync e e′ expression is as follows. The expression e is evaluated
first, and should yield a verlock, which is then acquired when possible. The expression
e′ is then evaluated, giving a value v. Finally, the verlock is released and the value v is
returned as the result of the whole expression. Note that the assignment expression :=
enclosed in sync will return just an empty value. At first sight, the sync e e′ expression
is similar to the synchronized statement in Java (GJSB00). However, verlocks combine
simple locks (mutexes) for protection against simultaneous access by concurrent threads,
with a pessimistic concurrency control algorithm responsible for isolated execution of
atomic transactions. An example algorithm will be described in Section 2.3.

Atomic transactions can be nested. If a transaction would be nested (or enclosed) in
some other atomic transaction (let us call it external), then as long as they can acquire
verlocks, they run in parallel. If the two transactions would like to acquire the same
verlock, the scheduling algorithm ensures that the nested transaction will acquire this
verlock after the external transaction has acquired the verlock and released it for the
last time. Thus, in the (ideal) serial execution of the transactions, the nested transac-
tion would commence after the external transaction has completed. It follows from the
definition, that the isolation property of atomic transactions is satisfied.

In order to better utilize multicore CPU architectures, we require transactional code
to be executed in parallel with the main program code whenever possible. To achieve
this goal, each atomic transaction is executed by a separate thread and the continuation
code of every atomic transaction (which is not explicitly declared as a transaction) is

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 7

translated at the level of the intermediate language to a single atomic transaction that
can be executed in parallel with other transactions (see transaction C in Figure 2). Any
transactions declared by the continuation code in the source program will be nested in the
continuation transaction in the translated program. The concurrency control algorithm
ensures, however, that the concurrent execution of all transactions is equivalent to a serial
execution of these transactions. The order in this serial run agrees with the (partial) order
defined by the source program.

Our language allows multithreaded programs by including the expression fork e, which
spawns a new thread for the evaluation of expression e. This evaluation is performed only
for its effect; the result of e is never used. Threads spawned by an atomic transaction are
executed within the scope of this transaction. i.e. isolation (or atomicity) is defined with
respect to complete code executed by the transaction, including any threads spawned
by the transaction but excluding any nested transactions that these threads may spawn.
An atomic transaction terminates when all its threads have completed. In general, an
execution of a single multithreaded transaction may not be deterministic due to the in-
terleaving of transaction internal threads. However, the isolation (or atomicity) property
of transactions is defined with respect to whole transactions (encapsulating these inter-
nal threads). Thus, when talking about whole transactions we can still use the above
definitions to describe behaviour of programs expressed in our calculus.

Our calculus also includes the rollback and retry language constructs. They can be
used inside transactions to respectively, rollback and rollback-and-restart a transaction
on demand, if some condition is not met. Transaction rollback increases language ex-
pressiveness, however, this feature is orthogonal to the design of a type system for safe
pessimistic concurrency control, which is our primary focus in this paper. We therefore
present the calculus without these constructs.

1.3. Safe Concurrency Control

The first argument of the atomic e e construct specifies the input data required for
the scheduling algorithm to work correctly. Passing wrong data can jeopardize isolation.
Thus, to make our language safe, we present in this paper a type system that can statically
verify if the data passed to the scheduling algorithm will be correct. For instance, our
example program does not typecheck if any argument of atomic (i.e. l1, l2, or balance)
would be removed. A type-error also occurs when access to any reference cell (or method)
decorated by some verlock type is not enclosed by the sync construct.

The type system verifies two conditions: (1) all ’read’ and ’write’ operations on refer-
ence cells are guarded by some verlock, and (2) a verlock being an argument of a critical
section declared using sync is an argument of the atomic construct used to declare an
atomic transaction enclosing this critical section. These two conditions are necessary to
guarantee the correct execution of the scheduling algorithm used for pessimistic concur-
rency control. The type system builds on Flanagan and Abadi’s (FA99) type system for
detection of race conditions, which ensures that all accesses to shared data are protected
by locks. We extended this simple locking principle to verify the above two conditions.

P. T. Wojciechowski 8

The type system could be refined if needed, so that operations having immutable effects
could be left unguarded and thus invisible to the concurrency controller.

Isolation has been proposed as the correctness condition of concurrency control algo-
rithms for atomic transactions (BHG87). The isolation guarantee in our language stems
from three sources: (1) compile time enforcement that each shared data location (or an
input/output operation) is guarded by a verlock and that threads acquire the correspond-
ing verlock before accessing the location (or performing the input/output operation), (2)
compile time enforcement that requires that all verlocks to be acquired during a transac-
tion, are declared at the beginning of the transaction, and (3) a runtime locking strategy
that assigns versions to transactions that allow them to acquire verlocks so that isolation
is preserved.

Given the type system, it is easy to propose a simple but inefficient algorithm trans-
lating from the source language used to express our example program in Figure 1 to
the calculus of atomic transactions: (1) annotate each new reference cell (and definition
of a method) that must be executed atomically with a fresh verlock type; (2) create
fresh verlocks, one per verlock type; (2) wrap occurrences of all critical operations with
sync, using verlocks corresponding to verlock types introduced in step (1); and (3) as-
sign an argument of every atomic construct, permuting over all declared verlocks and
type-checking the program until the verification succeeds. The type-checking algorithm
will be described in Section 3. We leave open the problem of finding a more efficient
translation algorithm.

1.4. Implementation

To demonstrate usefulness of our approach, we developed Atomic RMI (ARM11)—an
extension of Java Remote Method Invocation (RMI) (RMI) with support of distributed
atomic transactions. Java RMI is a system for creating distributed applications, where
methods of remote objects may be invoked from other Java Virtual Machines (JVMs),
located on the same host or on different hosts. Java RMI marshals and unmarshals ar-
guments and results of remotely-called methods retaining object-oriented polymorphism
and type information. Our library provides constructs on top of Java RMI, allowing
the programmer to declare a series of method calls on remote objects as a distributed
atomic transaction. Such a transaction guarantees the properties of atomicity (either all
of the operations of a transaction are performed or none), consistency (after any trans-
action finishes, the system remains in a valid—or consistent—state), and isolation (each
transaction perceives itself as being the only currently running transaction).

Atomic RMI exercises pessimistic concurrency control using fine grained verlocks (a
single verlock per remote object) while simultaneously providing support for rolling back
transactions (using a rollback construct), and restarting them (using a retry con-
struct). The two constructs increase expressiveness while retaining the advantages of
pessimistic concurrency control, such as a free use of methods that may have irrevocable
effects in transactions that do not use the rollback and retry constructs. The con-
currency control protocol that we have implemented in Atomic RMI is the combination
of the BVA versioning algorithm defined in this paper and SVA (Woj07) which allows

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 9

more concurrency than BVA; the algorithms have been extended to support transaction
rollback and distribution. Versioning locks are built into the remote method invocation
mechanism and completely transparent to the programmer. The version counters are
kept as part of the object stubs which are used to handle calls on the objects.

Our system also includes Atomic RMI Precompiler—a tool which serves to help the
users of Atomic RMI by automatically inferring upper bounds on the number of times
each transactional remote object may be used in each transaction (such data are required
by the SVA algorithm). It is a commandline utility which analyzes Java source files (or
complete projects) relying on the Jimple intermediate language (VRH98) and, on the
basis of the information collected during the analysis, generates some additional lines
of code. This code specifies for each transaction which objects may be used within that
transaction and up to how many times each of them may be expected to be invoked.
These instructions are then inserted into the source code (either in-place, or into new
files) before each transaction begins. If the upper bounds on object calls cannot be
inferred for a given transaction, the transaction is executed using the BVA algorithm.

1.5. Paper Structure

The paper is organized as follows. Section 2—the heart of our paper—defines syntax,
semantics, and typing of the calculus. Section 3 states and proves the main results of
isolation preservation and type soundness. Section 4 shows and proves dynamic correct-
ness of the BVA versioning algorithm. Section 5 discusses related work, and Section 6
concludes. Appendix A contains the standard part of proofs.

2. Calculus of Atomic Transactions

Below we define the core part of our language formally as a statically typed calculus,
equipped with a structural operational semantics. The semantics has been split into a
high-level semantics of the intermediate language, and a low-level semantics of an example
concurrency control algorithm. We have used the semantics to formally prove correct the
algorithm, and to show several results (theorems) about our type-directed approach to
pessimistic concurrency control. The main result is that well-typed programs satisfy the
isolation property. In the Appendix, we give a rigorous proof of isolation preservation
and progress for our language (up to deadlocks); the proof makes data accesses explicit
and deals with multiple threads within an atomic transaction. This is one of the first
such proofs for atomic transactions.

2.1. Syntax

The calculus of atomic transactions is defined as the call-by-value λ-calculus, extended
with atomic transactions and versioning locks. The abstract syntax is in Figure 3. The
main syntactic categories are values and expressions. We write x as shorthand for a
possibly empty sequence of variables x1, ..., xn (and similarly for t, e, etc.).

P. T. Wojciechowski 10

Variables x, y ∈ Var

Type Var-s m, o ∈ TypVar

Allocations a, b ∈ 2TypVar

Permissions p ∈ 2TypVar

Types s, t ::= Unit | t→a,p t | Refm t | m
Values v, w ∈ Val ::= () | λa,px : t. e

Expressions e ∈ Exp ::= x | v | e e | refm e | !e

| e := e | newlock x :m in e | sync e e
| fork e | atomic e e

We work up to alpha-conversion of expressions throughout, with x binding in e in
expressions λx : t. e.

Figure 3. The calculus of atomic transactions: Syntax

Types include the base type Unit of unit expressions, which abstracts away from con-
crete ground types for basic constants (integers, Booleans, etc.), the type t →a,p t of
functions, the type Refm t of reference cells containing a value of type t, and finally a
singleton verlock type m. The types of references and functions are decorated by corre-
spondingly, m and a, p, where m is a singleton verlock type of a verlock used to protect the
reference cell against simultaneous accesses by concurrent threads, and a and p describe
an allocation and permission. Allocations and permissions are sets of singleton verlock
types, representing respectively, the set of all verlocks that may be demanded during
evaluation of a function, and the set of verlocks that must be held before a function call.

A value is either an empty value () of type Unit, or function abstraction λa,px :

t. e (decorated with allocation a and permission p). Values are first-class programming
objects, they can be passed as arguments to functions and returned as results and stored
in reference cells. Basic expressions e are mostly standard and include variables, values,
function applications, reference creation refm e (decorated with a singleton verlock type
m), and the usual imperative operations on references, i.e. dereference !e and assignment
e := e. We also assume existence of let-binders, and use syntactic sugar e1; e2 (sequential
execution) for let x = e1 in e2 (for some x, where x is fresh). The remaining expressions
have already been explained in Section 1.2.

2.2. Operational Semantics

We specify the operational semantics using the rules defined in Figure 4, 5, and 6. The
isolation (or atomicity) property is defined with respect to a program state. A state S
(see Figure 4) consists of three elements: a verlock store π, a reference store σ, and a
collection of expressions T , which are organized as a sequence T0, ..., Tn. They first two
compounds are sometimes referred to collectively as a store π, σ. Each expression Ti in
the sequence represents a concurrent thread.

The lock store π is a finite map (or dictionary) from lock locations to their states. A
verlock location has two states, unlocked (0) and locked (1), and is initially unlocked.

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 11

State Space

S ∈ State = LockStore × RefStore × ThreadSeq

π ∈ LockStore = LockLoc → {0, 1}
σ ∈ RefStore = RefLoc → Val

l ∈ LockLoc ⊂ Var

r ∈ RefLoc ⊂ Var

pv ∈ VerMap ⊂ LockLoc → Nat

gv ∈ VerMap ⊂ LockLoc → Nat

lv ∈ VerMap ⊂ LockLoc → Nat

T ∈ ThreadSeq ::= f | T, T
f ∈ Expext ::= x | v | f e | v f

| refm f | !f | f := e | r := f

| newlock x :m in e | sync f e | insync l f
| fork e | atomic fe e | atomic lf e | transact pv T

Evaluation Contexts

E = [] | E e | v E
| refm E | !E | E := e | r := E
| sync E e | insync l E
| atomic lEe e | transact pv E | E , T | T, E

Figure 4. Reduction semantics – Part I

The reference store σ is a finite map from reference locations to values stored in the
references. Lock locations l and reference locations r are simply special kinds of variables
that can be bound only by the respective stores.

The expressions f are written in the calculus presented in Section 2.1, extended with
a new construct transact pv T . The construct is not part of the language to be used by
programmers—it will be used later to explain semantics.

We define a small-step evaluation relation 〈π, σ | e〉 −→ 〈π′, σ′ | e′〉, read “expression
e reduces to expression e′ in one step, with stores π, σ being transformed to π′, σ′”. We
also use −→∗ for a sequence of small-step reductions.

By concurrent evaluation, or concurrent run, we mean a sequence of small-step re-
ductions in which the reduction steps can be taken by different threads with possible
interleaving.

Reductions are defined using evaluation context E for expressions e and f . The evalu-
ation context ensures that the left-outermost reduction is the only applicable reduction
for each individual thread in the entire program. Context application is denoted by [],
as in E [e]. Structural congruence rules allow us to simplify reduction rules by removing
the context whenever possible.

The evaluation of a program e starts in an initial state with empty stores (∅, ∅) and
with a single thread that evaluates the program’s expression e. Evaluation then takes

P. T. Wojciechowski 12

Structural Congruence

T, T ′ ≡ T ′, T

T, () ≡ T

〈π, σ | T 〉 −→ 〈π′, σ′ | T ′〉
〈π, σ | E [T]〉 −→ 〈π′, σ′ | E [T ′]〉

T −→ T ′

〈π, σ | T 〉 −→ 〈π, σ | T ′〉

Transition Rules

eval ⊆ Exp ×Val

eval(e, v0) ⇔ 〈∅, ∅ | e〉 −→∗ 〈π, σ | v0, (),· · · , ()〉

λx. e v −→ e{v/x} (R-App)

r /∈ dom(σ)

〈π, σ | refm v 〉 −→ 〈π, (σ, r 7→ v) | r〉 (R-Ref)

〈π, σ | !r〉 −→ 〈π, σ | v〉 if σ(r) = v (R-Deref)

〈π, σ | r := v〉 −→ 〈π, σ[r 7→ v] | ()〉 (R-Assign)

E [fork e] −→ E [()], e (R-Fork)

vi, v
′
j −→ vi if i < j (R-Thread)

Figure 5. Reduction semantics – Part II

place according to the transition rules in Figure 5 and 6. The evaluation terminates once
all threads have been reduced to values, in which case the value v0 of the initial, first
thread T0 is returned as the program’s result (typing will ensure that other values are
empty values). Subscripts in values reduced from threads denote the sequence number
of the thread, i.e. vi is reduced from i’s thread, denoted Ti (i = 0, 1..). The execution of
threads can be arbitrarily interleaved. Since different interleavings may produce different
results, the evaluator eval(e, v0) is therefore a relation, not a partial function.

2.2.1. Functions, reference cells and threads Below we describe evaluation reduction rules
in Figure 5. These are the standard rules of a call-by-value λ-calculus (Plo75), extended
with references and threads.

The rule (R-App) is a beta-reduction rule of the call-by-value λ-calculus. We write
{v/x}e to denote the capture-free substitution of v for x in the expression e.

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 13

pv = F(l)

〈π, σ | E [atomic l e]〉 −→ 〈π, σ | E [()], transact pv e〉
(R-Transact)

transact pv E [fork e] −→ transact pv (E [()], e) (R-Fork’)

pv(l) OK for all l ∈ dom(pv)

〈π, σ | transact pv v〉 −→ 〈π, σ | ()〉 (R-Commit)

〈π, σ | transact pv e1〉 −→∗ 〈π′, σ′ | v1〉
〈π, σ | transact pv e1; transact pv′ e2〉 −→∗ 〈π′, σ′ | v1, transact pv′ e2〉

(R-Serial)

〈π, σ | transact pv e1; transact pv′ e2〉 −→∗ 〈π′, σ′ | v1, v2〉
〈π, σ | transact pv e1, transact pv′ e2〉 −→∗ 〈π′, σ′ | v1, v2〉

(R-Isolated)

l /∈ dom(π)

〈π, σ | newlock x :m in e〉 −→ 〈(π, l 7→ 0), σ | e{l/x}{ol/m}〉
(R-Lock)

π(l) = 0 pv(l) OK
〈π, σ | transact pv E [sync l e]〉 −→ 〈π[l 7→ 1], σ | transact pv E [insync l e]〉 (R-Sync)

π(l) = 1

〈π, σ | insync l v〉 −→ 〈π[l 7→ 0], σ | v〉 (R-InSync)

Figure 6. Transition Rules – Part III

The rules (R-Ref), (R-Deref), and (R-Assign) correspondingly, create a new reference
cell with a store location r initially containing v, read the current store value, and assign
a new value to the store located by r. The notation (σ, r 7→ v) means “the store that
maps r to v and maps all other locations to the same thing as σ”. For instance, let us
look at the rule (R-Assign). We use the notation σ[r 7→ v] to denote update of map σ at
r to v. Note that the term resulting from this evaluation step is just (); the interesting
result is the updated store. An expression f accesses a reference location r if there exists
some evaluation context E such that f = E [!r] or f = E [r := v]. (Note that both assign
and dereference operations are non-commutative.)

Evaluation of expression fork e in (R-Fork) creates a new thread which evaluates e. The
result of evaluating expression e is discarded by rule (R-Thread). A program completes,
or terminates, if all its threads reduce to a value. By (R-Thread), values of more recent
threads are ignored, so that eventually only the value of the first thread T0 will be
returned by a program.

Below we explain the rules in Figure 6. They are common for all versioning concurrency
control algorithms, while rules that will be described later, define our example versioning
algorithm.

P. T. Wojciechowski 14

2.2.2. Transaction creation, termination, threading and isolation Evaluation of a term
atomic l e spawns a new atomic transaction transact pv e for isolated evaluation of ex-
pression e, where pv are data specific to this transaction that are used by the concurrency
control algorithm. In case of an algorithm presented in this paper, it is a map of private
version counters, initialized to 0. pv remains constant for the transaction’s lifetime. The
transaction will be evaluated by a new thread; see (R-Transact). Transactions can also
spawn their own threads using fork; see (R-Fork’).

An atomic transaction transact pv e has completed (or terminated) if expression e

yields a value and the concurrency controller allows the transaction to commit (modelled
as ’pv OK’). The whole expression reduces then to an empty value; see (R-Commit). Thus,
atomic transactions (similarly to threads) are used only for their side-effects, which are in
our case modifications to the store or values read from the store. In a full-size language,
these operations can also be regarded as operations with input/output irrevocable effects
(e.g. delivering/sending a message).

We say that a state S is transaction-free if it does not have a context E [transact pv T].
Any transaction-free state is called a result state. The result states subsume data stored
in all reference cells.

Two transactions are executed serially if one transaction commences after another one
has completed; see (R-Serial). This rule is never executed by our abstract machine–it is
only used to define the isolation property (below). By serial evaluation, or serial run, we
mean evaluation, in which all transactions are executed serially. Note that a serial run
is also concurrent since serialized transactions may be themselves multithreaded.

Concurrent evaluation of atomic transaction expressions (of the form transact pv e)
satisfies the isolation property if the intermediate state of a transaction is invisible to
other transactions. As a result, transactions that run concurrently appear to be serialized.
This property is formalized by rule (R-Isolated): the concurrent execution of transactions
evaluates to the values and the store, that can also be obtained by a serial evaluation of
these transactions.

The isolation can be captured precisely using the notion of transaction noninterference,
defined as follows.

Definition 1 (Noninterference) Transactions in a concurrent run do not interfere (or
satisfy the noninterference property) if there exists some ideal serial run Rs of these trans-
actions (a transaction can appear in Rs only once), such that given any reference cell,
the order of accessing this reference cell by transactions in the concurrent run (possibly
several times) is the same as in Rs.

Note that if some reference cell is accessed by a transaction several times, then no other
concurrent non-interfering transaction is allowed to access the intermediate state of this
reference cell. Otherwise, we would not be able to construct an equivalent serial run of
such transactions. The reference cell can only be accessed by some another transaction
after the former transaction has accessed this reference for the last time.

By isolated evaluation (or isolated execution) of an expression (containing some atomic

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 15

transactions) we mean any evaluation of this expression that satisfies the isolation prop-
erty, defined as follows.

Definition 2 (Isolation Property) Evaluation of an expression e satisfies the isolation
property if all atomic transactions evaluated as part of e do not interfere. A given program
has the isolation property if all its terminating evaluations satisfy this property.

Our definition of isolation is more conservative than in database systems, since both
read and write operations are always isolated. We do so since we would like to be able to
isolate all operations with irrevocable effects, performing both an output and an input.

Note that the isolated evaluation of critical operations defined by an atomic transaction
is atomic since they appear to other transactions as a single operation.

2.2.3. Verlock creation, acquisition and release The expression newlock x :m in e (see
rule (R-Lock)) dynamically creates a new verlock location l (with the initial state 0),
extending a verlock store π accordingly, and replaces the occurrences of x in e with l. It
also replaces occurrences of m in e with a type variable ol that denotes the corresponding
singleton verlock type. A verlock store π that binds a verlock’s location l also implicitly
binds the corresponding type variable ol with kind Lock; the only value of ol is l. Below
we sometimes confuse a verlock and the verlock’s location, where it is clear from the
context what we mean.

A verlock location l is free if π(l) = 0, otherwise it is not free.
The expression sync l e evaluated by an atomic transaction reduces to insync l e (with

π(l) assigned a value 1), which means that verlock l has been acquired, if two conditions
are met (see (R-Sync)): (1) the verlock is free and, (2) pv(l) hold by the transaction
allows it to safely proceed without invalidating isolation (modelled as ’pv OK’). If neither
condition holds, the transaction’s thread executing sync l e′ must wait (other threads
of this transaction are however not blocked). The decision whether safely ’proceed’ or
’wait’ is made dynamically by the scheduling algorithm. The expression e enclosed by
insync l e′ is then evaluated. The condition (1) is required just to avoid races inside a
transaction, and could be removed if a transaction is single-threaded.

The insync l e expression is evaluated until expression e reduces to a value v; see (R-
InSync). Then the whole expression is replaced by v with π(l) assigned a value 0, which
means that verlock l has been released and becomes free.

Our language guarantees evaluation progress, i.e. each verlock requested by a trans-
action will be eventually acquired, if only transactions are themselves deadlock-free and
terminate. We discuss the deadlock issue in Section 3.3, after explaining typing.

2.3. Concurrency Controller

The abstract machine of our language employs a runtime locking strategy for pes-
simistic concurrency control based on versioning. Below we describe the Basic Versioning
Algorithm (BVA)—an example algorithm that implements this strategy. In order to keep
the abstract machine simple, we have chosen one of the simplest algorithms possible.

P. T. Wojciechowski 16

Require:
for each verlock name l do
gvli ← 0

lvli ← 0

end for

Operation atomic l e:
lock
forall li ∈ l
gvli ← gvli + 1

pvk(l)← gvli
end for

end lock
execute transact pvk e

Operation sync l e:
wait l is free and pvk(l)− 1 = lvl
execute e

Operation transact pvk v:
for all li ∈ dom(pvk) do
wait pvk[l]− 1 = lvli
lvli = lvli + 1

end for

Figure 7. The Basic Versioning Algorithm for ensuring isolation of atomic transactions

We need to define some data structures that are required by the algorithm. Firstly,
the program state S is extended with a map gv of global version counters gv(l) for each
verlock l in π (initialized to 0), where a version is a natural number playing a rôle of
access capability. Secondly, each verlock l maintains a local version counter lv(l), which
is also initialized to 0. A map lv of local version counters is part of the state S, too.
We write gvl and lvl as shorthand for gv(l) and lv(l). For clarity we usually omit the
counters in the rules when possible. The BVA algorithm maintains an invariant that a
local version of each verlock is equal or less than a global version of the verlock, and it
is equal or greater than zero. Each atomic transaction holds a map pv which associates
verlocks with globally unique versions. The map pv is created for a given set of verlocks
atomically, and remains constant for the transaction’s lifetime.

The algorithm is given by the following set of steps (see also pseudocode in Figure 7):

BVA-0 : Upon verlock creation, initialize global and local counters for this new verlock
to zero.

BVA-1 : At the moment of spawning a new atomic transaction k using atomic l e, for each
verlock li ∈ l, where i = 1, .., |l|, increment counter gvli by one. Create a fresh read-
only map (dictionary) pvk that contains bindings from the locks li to their upgraded
versions gvli . Upgrading the version counters gvli and creation of the transaction’s
private copy pvk of the upgraded versions is an atomic operation.

BVA-2 : An atomic transaction k can acquire a verlock l using sync l e guarding a critical
operation e, only when two conditions are met: the verlock is free and the transaction
holds a version of this verlock that matches the current local version lvl of l, i.e.

pvk(l)− 1 = lvl . (1)

Otherwise, the verlock acquisition operation is pending. Checking the two conditions
is an atomic operation. If the condition (1) is satisfied then we say that the transaction
is safe to acquire the verlock l, i.e. accessing data guarded by this verlock does not
invalidate isolation. Otherwise, the verlock l is not acquired even if it is free, thus
blocking the transaction’s thread (any other threads are not blocked).

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 17

BVA-3 : After an atomic transaction transact pvk e has completed its execution, i.e. all
threads of this transaction have terminated, for each verlock li ∈ dom(pvk) in parallel,
wait until condition (1) is true, then increment the local version of each verlock li, so
that we have lvli = pvk(li).

The BVA algorithm guarantees the isolated evaluation of transactions: a transaction
is verlocked if it tries to access a reference cell accessed by some transaction that has not
terminated yet. The verlock will be released after the latter transaction completes. This
concurrency controller does not allow for much concurrency. In (Woj07), we describe the
SVA and RVA algorithms that can–whenever possible–release the blocked transactions
earlier, and so they permit more concurrency in the system but they are more complex.

We can define the BVA algorithm precisely using the operational semantics of our
language. The reduction rules corresponding to the four steps of the algorithm are given
in Figure 8. They can be seen as rules of an example abstract machine implementing the
semantic rules (R-Lock), (R-Transact), (R-Sync), and (R-Commit) in Figure 6.

The rules of the abstract machine are mostly straightforward. Some explanation re-
quires the rule (R-Commit). A terminating transaction must wait till condition (1) is
true before it is allowed to increment local versions lv of verlocks and terminate. This is
required since some verlocks declared by a transaction may never be used, e.g. if some
branch of code has not been executed. If the condition (1) is not true for these versions,
then it means that they are held by some other (older) concurrent transactions that may
use them to access shared data. Thus, they cannot be incremented yet.

2.3.1. Correctness assumptions The BVA algorithm guarantees noninterference, pro-
vided the following two conditions hold. Firstly, programs do not have race conditions,
i.e. no data can be accessed without first acquiring a verlock. Secondly, all verlocks that
may (not necessarily have to) be used by a transaction are known at a time when the
transaction is spawned, so that the (R-Transact) rule can create the private version for
each such verlock type, stored in the transaction’s map pv. To maximize parallelism, we
require only such verlocks to be declared. In Section 2.4 we define typing rules intended
for checking statically if these two conditions hold in programs expressed using our lan-
guage. Then, we show in Section 3 that our type system is sound, making the language
safe by construction.

2.4. Static Typing

The type system is formulated in Figure 9 as a deductive proof system, defined using
conclusions (or judgments) and the static inference rules for reasoning about the judg-
ments. The typing judgment for expressions has the form Γ; a; p ` e : t, read “expression
e has type t in environment Γ with allocation a and permission p”, where an environment
Γ is a finite mapping from free variables to types. An expression e is a well-typed program
if it is closed and it has a type t in the empty type environment, written ` e : t.

Our intend is that, if the judgment E; a; p ` e : t holds, then any terminating execution
of expression e is race-free, satisfies the isolation property, and yields values of type t,
provided:

P. T. Wojciechowski 18

gv ∈ VerMap ⊂ LockLoc → Nat

lv ∈ VerMap ⊂ LockLoc → Nat

eval(e, v0)⇔ 〈∅, ∅, ∅, ∅ | e〉 −→∗ 〈π, σ, gv, lv | v0, (),· · · , ()〉

π(l) ∈ {0, 1}
0 ≤ lv(l) ≤ gv(l) for all l ∈ dom(π)

〈π, σ, gv, lv | e〉 −→ 〈π′, σ′, gv′, lv′ | e′〉 (Invar)

BVA-0 :

l /∈ dom(π)

gv′ = (gv, l 7→ 0) lv′ = (lv, l 7→ 0)

〈π, σ, gv, lv | newlock x :m in e〉 −→
〈(π, l 7→ 0), σ, gv′, lv′ | e{l/x}{ol/m}〉

(R-Lock)

BVA-1 :

l = l1, ..., ln

gv′ = gv[li 7→ gv(li) + 1] i = 1..n

pv = (l1 7→ gv′(l1), ..., ln 7→ gv′(ln))

〈π, σ, gv, lv | E [atomic l e]〉 −→
〈π, σ, gv′, lv | E [()], transact pv e〉

(R-Transact)

BVA-2 :
π(l) = 0 pv(l)− 1 = lv(l)

〈π, σ, gv, lv | transact pv E [sync l e]〉 −→
〈π[l 7→ 1], σ, gv, lv | transact pv E [insync l e]〉

(R-Sync)

BVA-3 :

pv(l)− 1 = lv(l)

lv′ = lv[l 7→ pv(l)] for all l ∈ dom(pv)

〈π, σ, gv, lv | transact pv v〉 −→ 〈π, σ, gv, lv′ | ()〉 (R-Commit)

Figure 8. Transition Rules of Basic Versioning Algorithm

(i) the thread executing e holds at least versioning locks (verlocks) described by permis-
sion p (Condition 1),

(ii) if expression e is part of a transaction, then the transaction has declared all verlocks
described by allocation a (Condition 2), and

(iii) the free variables of e are given bindings consistent with Γ.

We will show in Section 3 that the type system is sound. Based on this result, we state
dynamic correctness of our example concurrency control algorithm, which together with
type soundness gives the expected result of isolation preservation.

Our type system is an extension of Flanagan and Abadi’s type system for detecting race

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 19

Judgments

Γ ` � Γ is a well-formed typing environment

Γ ` t t is a well-formed type in Γ

Γ ` a, p a, p is a well-formed resource allocation and permission in Γ

Γ; a; p ` e : t e is a well-typed expression of type t in Γ with allocation a and

permission p

Typing Rules

∅ ` � (Env-∅)

Γ ` t x /∈ dom(Γ)

Γ, x : t ` � (Env-x)

Γ ` � m /∈ dom(Γ)

Γ,m :: Lock ` � (Env-m)

Γ ` �
Γ ` Unit (Type-Unit)

Γ ` t Γ ` t′

Γ ` a, p
Γ ` t→a,p t′

(Type-Fun)

Γ ` t Γ ` m
Γ ` Refm t

(Type-Ref)

m :: Lock ∈ Γ

Γ ` m (Type-Lock)

Γ ` � Γ ` m
for all m ∈ a ∪ p

Γ ` a, p (Alloc)

Γ ` �
Γ; a; p ` () : Unit

(T-Unit)

x : t ∈ Γ

Γ; a; p ` x : t
(T-Var)

Γ, x : s; a; p ` e : t

Γ; a′; p′ ` λa,px : s. e : s→a,p t
(T-Fun)

Γ; a; p ` e : s→a′,p′
t

Γ; a; p ` e′ : s a′ ⊆ a p′ ⊆ p
Γ; a; p ` e e′ : t

(T-App)

Γ ` m Γ; a; p ` e : t

Γ; a; p ` refm e : Refm t
(T-Ref)

Γ; a; p ` e : Refm t m ∈ p
Γ; a; p `!e : t

(T-Deref)

Γ; a; p ` e : Refm t

Γ; a; p ` e′ : t m ∈ p
Γ; a; p ` e := e′ : Unit

(T-Assign)

Γ,m :: Lock, x : m; a; p ` e : t

Γ ` a, p Γ ` t
Γ; a; p ` newlock x :m in e : t

(T-Lock)

Γ; a; p ` e : m m ∈ a
Γ; a; p ∪ {m} ` e′ : t

Γ; a; p ` sync e e′ : t
(T-Sync)

Γ; a; ∅ ` e : Unit
Γ; a; p ` fork e : Unit

(T-Fork)

Γ; a; p ` ei : mi for all i = 1..|e|
Γ; {m1} ∪ ... ∪ {m|e|}; ∅ ` e0 : t

Γ; a; p ` atomic e e0 : Unit
(T-Atomic)

Figure 9. The first-order type system for the iso-calculus

P. T. Wojciechowski 20

conditions (FA99). It provides rules for proving that the above two conditions are always
true for well-typed programs. Condition 1 is verified using an approach described in
(FA99). The set of typing rules in Figure 9 has been obtained by extending this approach
with allocations (needed to verify Condition 2), and adding rules for typing constructs of
our calculus. Most of the typing rules are fairly straightforward. For simplicity, we present
a first-order type system and omit subtyping of allocations. The subtyping rules would
be similar to the subtyping rules in (FA99), where also extensions with polymorphism
and existential types have been described.

To verify Conditions 1 and 2, a verlock l is represented at the type level with a sin-
gleton verlock type m that contains l. The singleton type allows typing rules to assert
that a thread holds verlock l by referring to that type rather than to the verlock l.
During typechecking, each expression is evaluated in the context of allocations a and
permissions p. Including a singleton verlock type in the allocation a, respectively permis-
sion p, amounts to assuming that the corresponding verlock’s version, respectively the
corresponding verlock, are held during the evaluation of e.

For instance, consider typing dereference and assignment operations on references,
as part of typechecking some expression e′′. The corresponding rules (T-Deref) and (T-
Assign) check if a singleton verlock type m decorating the reference type is among verlock
types mentioned in the current permission p. The permission p can be extended with m

only when typechecking a synchronization expression sync e e′′, where e has type m (see
typing of e in (T-Sync)).

To verify if a transaction e0 executing sync e e′ has declared verlock e of some type
m, we introduce an allocation a and require that m is mentioned in a. Note that m
can be added to allocation a only while typechecking the construct atomic that has
spawned transaction e0. The rule (T-Isol) creates the allocation a from singleton types of
all verlocks declared by the transaction; the allocation is then used for typechecking the
body of the transaction.

An allocation a and permission p decorate a function type and function definition,
representing respectively, allocation a—the set of all verlocks that may be requested
while evaluating the function and any thread spawned by it, and permission p—the set
of verlocks that must be held before a function call. Note that allocations are preserved
by thread spawning since we allow transactions to be multithreaded, while permissions
are nulled since spawned threads do not inherit verlocks from their parent thread.

Rules (T-Fork) and (T-Isol) require the type of the whole expression to be Unit; this
is correct since threads are evaluated only for their side-effects.

3. Well-typed Programs Satisfy Isolation

The fundamental property of the type system and abstract machine of our language is
that evaluation of well-typed, terminating programs satisfies isolation. The first compo-
nent of the proof of this property is a type preservation result, stating that typing is
preserved during evaluation. The second one is a progress result, stating that evaluation
of an expression never enters into a state for which there is no evaluation rule defined. To
prove both results, we extended typing judgments from expressions Exp to expressions

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 21

Judgments

` S : t S is a well-typed state of type t

Rules

Σ(l) = {0, 1} Σ(ol) = Lock
Σ | Γ; a; p ` l : ol

(T-LockLoc)

Γ ` m Σ(r) = t

Σ | Γ; a; p ` r : Refm t
(T-RefLoc)

dom(π) = {l1, ..., lj} dom(σ) = {r1, ..., rk}
Σ = l1 : {0, 1}, ..., lj : {0, 1}, r1 : s1, ..., rk : sk,

ol1 :: Lock, ..., olj :: Lock

|T | > 0 Σ | Γ; ai; pi ` Ti : ti for all i < |T |
` 〈π, σ | T 〉 : t0

(T-State)

` S : t0 ` S′ : t0
` S + S′ : t0

(T-Choice)

Σ | Γ; a; p ` fi : ti

Σ | Γ; a′; p′ ` f ′j : tj i < j

Σ | Γ; a; p ` fi, f ′j : ti
(T-Thread)

a = {ol1 , ..., oln} Σ | Γ; a; p ` li : oli

Σ | Γ; a; p ` pv(li) : Nat for all i = 1..n

Σ | Γ; a; p ` T : t

Σ | Γ; a; p ` transact pv T : Unit
(T-Transact)

Σ | Γ; a; p ` l : m

Σ | Γ; a; p ` f : t m ∈ a m ∈ p
Σ | Γ; a; p ` insync l f : t

(T-InSync)

Nat = 0, 1, 2, .. (includes zero)

Figure 10. Additional judgments and rules for typing states

P. T. Wojciechowski 22

Expext, and then to states as shown in Figure 10. The judgment ` S : t says that “S is
a well-typed state yielding values of type t”. We assume a single, definite type for every
location in the store π, σ. These types have been collected as a store typing Σ—a finite
function mapping locations to types, and type variables to kinds.

Type preservation and progress yield that our type system is sound, i.e. it guarantees
that if a program is well-typed then:

(i) each operation on references requires to first obtain a verlock, and
(ii) if obtaining a verlock is part of some transaction spawned using the atomic construct,

then the transaction has a private version of this verlock (which is possible only if
the name of it is the argument of the construct).

The first property is called absence of race conditions and is guaranteed by Abadi and
Flanagan’s type system for avoiding race conditions that we have extended. The second
property is called absence of non-declared verlocks and is guaranteed by our extension of
their type system. Based on the two properties of the type system, we have proven that
evaluation of well-typed, terminating programs satisfies the isolation property. Below
we give some nonstandard or more interesting parts of the proof; the rest is in the
Appendix A.

Below we state formally the absence of race conditions and the absence of non-declared
verlocks properties. Next, we give our main result of isolation preservation in Section 3.3.

3.1. Absence of Races

After removing allocations a and the rule (T-Isol) for typing the construct atomic in
Figure 9, and replacing the semantics of verlocks by simple locks, we obtain Flanagan and
Abadi’s first-order type system (FA99). The fundamental property of this type system is
that well-typed programs do not have race conditions. Below are three Lemmas and one
Theorem as found in (FA99), with locks replaced by verlocks and extended with store
typing Σ and allocations that appear in our language. (We quote these lemmas and the
theorem since they will be used in our proof of type soundness.) We give them without
any proofs since our extensions do not invalidate the original proof of race-freedom.

The semantics can be used to formalize the notion of a race condition, as follows. A
state has a race condition if its thread sequence contains two expressions that access the
same reference location. A program e has a race condition if its evaluation may yield a
state with a race condition, i.e. if there exists a state S such that 〈∅, ∅ | e〉 −→∗ S and S
has a race condition.

Independently of the type system, verlocks provide mutual exclusion, in that two
threads can never be in a critical section on the same verlock. An expression f is in
a critical section on a verlock location l if f = E [insync l f ′] for some evaluation con-
text E and expression f ′. The judgment `cs S says that at most one thread is in a critical
section on each verlock in S. According to Lemma 1, the property `cs S is maintained
during evaluation.

Lemma 1 (Mutual Exclusion)
If `cs S and S −→ S′, then `cs S′.

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 23

Lemma 2 says that a well-typed thread accesses a reference cell only when it holds the
protecting verlock.

Lemma 2 (Lock-Based Protection)
Suppose that Σ | Γ; a; p ` f : t, and f accesses reference location r. Then Σ | Γ; a; p ` r :

Refm t′ for some verlock type m and type t′. Furthermore, there exists verlock location l

such that Σ | Γ; a; p ` l : m and f is in a critical section on l.

The lemma below implies that states that are well-typed and well-formed with respect
to critical sections do not have race conditions.

Lemma 3 (Race-Conditions-Free States) Suppose ` S : t and `cs S. Then S does
not have a race condition.

Finally, we can conclude that well-typed programs do not have race conditions.

Theorem 1 (Absence of Race Conditions)
If ` e : t then e does not have a race condition.

3.2. Absence of Non-declared Verlocks

Let us first define the notions used to state the properties of our type system (see the
beginning of Section 3). An expression f is part of an atomic transaction transact pv T
if T = E [f] for some evaluation context E . A transaction transact pv T has a version
of a verlock l if pv(l) is defined. An expression f has a version of a verlock l if there
exists some transaction which has a version of l, and f is part of this transaction. An
expression f requests a verlock location l if f = E [sync l e] for some evaluation context
E and expression e. An atomic transaction transact pv T is in a critical section on a
verlock location l, if some thread of T is in a critical section on the verlock location l.

Now, for the complete language with atomic and transact, the judgment `cs S says
in addition to mutual exclusion property stated in Section 3.1, that each transaction
being in a critical section on some verlock in state S has a version of this verlock (see
Figure 11). According to Lemma 4, the property `cs S is maintained during evaluation.

Lemma 4 (Version-Completeness Preservation) If `cs S and S −→ S′, then `cs
S′.

Proof. State S may consist of several threads that are evaluated concurrently. Suppose
S = π, σ | E [transact pv T] for some well-typed store π, σ, context E and (possibly
multithreaded) term T . By rule (R-Commit) and evaluation context for transact, we
know that transaction transact pv T can either reduce to the empty value () if T is a
value, or to transact pv T ′ otherwise, where T ′ is some expression. The former case is
trivial since we have immediately

∅ `cs () (2)

P. T. Wojciechowski 24

Judgments

M `cs f f has exactly one critical section for each verlock in M
M `cs transact pv T transaction T has a version pv(l) for each verlock l in M
`cs S S is well-formed with respect to critical sections and transactions

`tf S S is well-formed and transaction-free

Rules for Critical Sections

f = x | v | newlock x :m in e | fork e
∅ `cs f

(CS-Empty)

M `cs f
f ′ = f e | v f | refm f | !f

| f := e | r := f | sync f e
M `cs f ′

(CS-Exp)

M `cs f
M] {l} `cs insync l f

(CS-InSync)

∀i < |T | Mi `cs Ti

M =M0] . . .]M|T |−1

∀l ∈M π(l) = 1

`cs 〈π, σ | T 〉
(CS-State)

∀i = 1..|f | Mi `cs fi
M =M1] . . .]M|f |

f ′ = atomic f e

M `cs f ′
(CS-Isol)

∀i < |T | Mi `cs Ti

M =M0] . . .]M|T |−1

∀l ∈M pv(l) is defined and pv(l) > 0

M `cs transact pv T
(CS-Task)

`cs 〈π, σ | T 〉
∀i < |T | Ti 6= transact pv T ′

`tf 〈π, σ | T 〉
(TF-State)

Figure 11. Judgments and rules for reasoning about critical sections and transaction free states

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 25

by (CS-Empty), which is what we needed.
Let us now consider the latter case. Suppose that transaction transact pv T is in a

critical section on some verlock location l. From premise `cs S, we have

M `cs transact pv T (3)

for some M by (CS-State) and the fact that transaction transact pv T is a thread in S
(by (R-Transact)). But then by (CS-Task)

l ∈M (4)

and version pv(l) is defined. Now we need to consider two subcases, depending on if the
reduction step of T enters a new critical section, or not.

Case a). Reduction to a new critical section.
Consider an evaluation step from T to T ′, such that T has sync l′ e in its redex position.
Thus, by rule (R-Sync) T ′ = E ′[insync l′ e] and π(l′) = 1 for some context E ′, lock
location l′, and expression e, where l′ 6= l. Hence, T ′ is in a critical section on verlock
l′. Note that by mutual exclusion (Lemma 1) it is not possible to have a reduction step
from T to T ′ if l′ = l since (3) and (4) hold.

Let us assume that transact pv T ′ does not have a version of verlock l′, i.e. pv(l′) is
not defined. But this is not possible, since by version-based protection Lemma 5 (below),
if a transaction transact pv T requests verlock location l′, then version pv(l′) is defined,
which contradicts our assumption (since we also know that the private versions map pv

is preserved by the reduction step as it is never modified). Thus,M′ `cs transact pv T ′
and precisely M′ =M] {l′} by (CS-InSync). From the latter, we have l ∈M′ by (4).

Case b). No new critical section.
Consider reduction from T to T ′ such that T has in its redex position an expression
other then sync l′ e. But then from (3) we have M `cs transact pv T ′ since T ′ is in
the same critical sections as T , and we know that l ∈M and pv(l) is defined.

From (2), a) and b) we obtain the needed result `cs S′ by type preservation Corollary 2
(in Section A.1.1) and (CS-State) and induction on threads in S.

Lemma 5 says that a well-typed thread obtains a verlock only when it holds a version
of this verlock.

Lemma 5 (Version-Based Protection) Suppose that Σ | Γ; a; p ` f : t, and f requests
a verlock location l. Then Σ | Γ; a; p ` l : m for some verlock type m. Furthermore,
there exists a transaction transact pv T which f is part of, such that Σ | Γ; a; p `
transact pv T : Unit and version pv(l) is defined.

Proof. If f requests a verlock location l then from the definition of “requesting a
verlock location” we have f = E [sync l e′] for some evaluation context E and expression
e′. Suppose that Σ | Γ; a; p ` sync l e′ : t′ for some type t′. Then, by (T-Sync) we have

Σ | Γ; a; p ` l : m (5)

P. T. Wojciechowski 26

for some verlock type m, and m ∈ a. From the latter and premise Σ | Γ; a; p ` f : t, we
know that f must be part of some transaction with allocation a (since a 6= ∅).

Hence, by (T-Isol) f is reduced from some expression atomic l e0, such that
Σ | Γ; a′; p′ ` atomic l e0 : Unit (for some a′ and p′), where l is a sequence of ver-
lock locations. Moreover, since allocation a is preserved during transaction evaluation
(since only (T-Isol) can modify a) we have Σ | Γ; a; ∅ ` e0 : t′′ for some t′′, also by
(T-Isol).

From the above, we have immediately l ∈ l by (5) and (T-Isol) since m ∈ a. (Note that
(T-Isol) is the only rule which could add m to allocation a.)

But then, by (R-Transact) expression e0 can only reduce to transact pv e0 for some pv,
such that version pv(l) is defined, which is precisely the needed result since pv is constant
and so it does not change while expression e0 would reduce to T such that T = E ′[f] for
some context E ′. By (T-Transact), term transact pv T has type Unit, which completes
the proof.

Note that the above property implies that in our language all verlock requests are part
of some transaction. This feature has simplified the type system and reasoning about
the isolation property. A full-size language could make a difference between accessing a
verlock as part of some transaction, or outside transactions.

We conclude that all verlocks used by each transaction in well-typed programs are
known a priori.

Theorem 2 (Verlock-Usage Predictability) All verlocks that may be requested by an
atomic transaction of a well-typed program are known before the transaction begins.

Proof. By lock-based protection Lemma 2, it is enough to show that the argument l
of the atomic l e construct used to spawn a transaction, is a sequence of all verlocks
that may be requested by the transaction. The proof is straightforward by the version-
based protection Lemma 5, version-completeness preservation Lemma 4, and induction
on transactions and verlock location requests.

The above result implies that the BVA algorithm will be able to create upon a trans-
action’s creation, a private version of each verlock that may be used by the transaction.

3.3. The Main Result of Isolation Preservation

We have defined the isolated evaluation for complete transactions (see Section 2.3). This
is however not a problem since in practice we are interested only in result states of
this evaluation. Below we therefore formulate an isolation preservation result for traces
(i.e. sequences of evaluated states) that begin and finish in a transaction-free state. The
judgment for such states has the form `tf S, read “state S is well-formed and transaction-
free”, which means that either no transaction has been spawned yet, or if there were any,
then they have already completed.

Below we state that each trace of a well-typed program has the “isolation up to”
property, provided that the corresponding evaluation finishes in a result state.

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 27

Lemma 6 (Isolation Property Up To) Suppose Σ | ∅; ∅; ∅ ` S : t and `tf S. If S −→∗
S′ and `tf S′, then the run S −→∗ S′ satisfies the isolation property up to S′.

Proof. From premise `tf S, we have `cs S by (TF-State). From the latter and premise
Σ | ∅; ∅; ∅ ` S : t, each transaction in S (if we would let S not to be transaction-free)
is well-typed by (T-State), and by version-based protection Lemma 5, it has versions of
all verlocks it may request. Moreover, by version-completeness preservation Lemma 4,
we know that this property is preserved by reduction from S to S′′ for some state S′′.
Hence, it is also preserved by any following reductions up to S′ (by re-applying Lemma 4).
Thus, it holds in all states reached by any transactions that could be spawned by these
reductions. But this is precisely one of the two requirements for the correctness of the
“isolated evaluation” using the BVA algorithm (i.e. Property 2, see ??).

Moreover, from `cs S, the lock-based protection Lemma 2 and mutual exclusion
Lemma 1 give another requirement (i.e. Property 1, see Section ??) for the correctness
of evaluation using the BVA algorithm.

By premises `tf S and `tf S′, we also know that the evaluation has begun and finished
with no active transactions. Hence, by dynamic correctness of the BVA algorithm, stated
by the noninterference Theorem 6 (the theorem and the proof will be given in Section 4)
and the definition of isolation, we obtain the needed result.

We say that a program is terminating if all its runs terminate; a run terminates if it
reduces to a value. Based on the above lemma, we can prove that well-typed, terminating
programs satisfy the isolation property:

Theorem 3 (Isolation Property) If ` e : t, then all terminating runs e −→∗ v0, where
v0 is some value of type t, satisfy the isolation property.

Proof. From premise ` e : t, e is a closed, well-typed term. Consider any well-typed
store π, σ, that is Σ | ∅; ∅; ∅ ` π, σ for some Σ. Then ` π, σ | e : t by Definition 6 (see
Section A.1.1) and (T-State). Moreover, we have

`tf π, σ | e (6)

since program e (before commencing its execution) does not have any transaction by
syntax (see Figure 3). Pick up any terminating trace such that π, σ | e −→∗ π′, σ′ | v0
for some store π′, σ′ and value v0. From (6), we have `cs π′, σ′ | v0 by (TF-State) and
version-completeness preservation (Lemma 4). From the latter, and the fact that v0 6=
transact pv T for any pv and T , we get `tf π′, σ′ | v0, which together with (6) implies
that the run satisfies the isolation property up to v0 by Lemma 6. Then the result follows
by induction on the length of the terminating reduction sequences from π, σ | e to any
value.

3.3.1. Deadlocks We stated our main result for terminating programs. Note however that
if a program deadlocks or never terminates, all its runs reaching some result state have
the “isolation up to” property (up to this state). Thus, the deadlock issue is orthogonal
to the goals of our work, and can be solved using the existing approaches.

P. T. Wojciechowski 28

The only deadlocks possible in our language stem from either two threads of the same
transaction trying to acquire two verlocks l1 and l2 in parallel but in a different order,
or when a thread tries to acquire a verlock again before releasing it. This means however
that other transactions that want to acquire these verlocks will be also blocked. Deadlock
can be avoided by imposing a strict partial order on verlocks within each transaction,
and respecting this order when acquiring verlocks; our language and type system can be
extended with this principle by embodying the solution described in (FA99).

Some thread systems (e.g. C# and Java) implement “re-entrant locking”: from within
a “lock” statement the program can call another of its methods that also locks the same
object, with no risk of deadlock. However, the feature is double-edged (Bir05) since the
other method may be called at a time when the monitor invariants are not true, leading to
misbehavior. Our system prohibits re-entrant locking and such misbehavior is prevented,
being replaced by a deadlock.

3.4. Type Soundness

Reduction of a program may either continue forever, or may reach a final state, where
no further evaluation is possible. Such a final state represents either an answer or a type
error. Since programs expressed in our language are not guaranteed to be deadlock-free
(unless all transactions are single-threaded and re-entrant locking is allowed), we also
admit a deadlocked state to be an (acceptable) answer. Thus, proving type soundness
means that well-typed programs yield only well-typed answers.

Our proof of type soundness rests upon the notion of type preservation (also known as
subject reduction). The type preservation property states that reductions preserve the
type of expressions. Type preservation by itself is not sufficient for type soundness. In
addition, we must prove that programs containing type errors are not typable. We call
such expressions with type errors faulty expressions and prove that faulty expressions
cannot be typed. Below are only the main results. A proof of type safety and evaluation
progress can be found in the Appendix A.

3.4.1. Type safety The statement of the main type preservation lemma must take stores
and store typings into account. For this we need to relate stores with assumptions about
the types of the values in the stores. Below we define what it means for a store π, σ to be
well typed. (For clarity, we omit permissions p from the context and global gv and local
lv counters from states when possible.)

Definition 3 A store π, σ is said to be well typed with respect to a store typing Σ and a
typing context Γ, written Σ | Γ; a ` π, σ, if dom(π, σ) = dom(Σ) and Σ | Γ; a ` µ(l) : Σ(l)

for every store µ ∈ {π, σ} and every l ∈ dom(µ).

Intuitively, a store π, σ is consistent with a store typing Σ if every value in the store
has the type predicted by the store typing.

By canonical forms (Lemma 31 in Section A.1.2), each location value l ∈ dom(π, σ)

can be either a verlock location, or a reference location, depending on a concrete type.

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 29

For simplicity, we often refer to π, σ as the store, meaning individual stores, i.e. either
π or σ, depending on a given value and type. If a location value l is a verlock location
then it is kept in a verlock store π; if the value is a reference location then it is kept in
a reference store σ.

Type preservation for our language states that the reductions defined in Figures 4, 5
and 8 preserve type:

Theorem 4 (Type Preservation) If Σ | Γ; a ` T : t and Σ | Γ; a ` π, σ and
〈π, σ | T 〉 −→ 〈(π, σ)′ | T ′〉, then for some Σ′ ⊇ Σ, Σ′ | Γ; a ` T ′ : t and Σ′ | Γ; a ` (π, σ)′.

The type preservation theorem asserts that there is some store typing Σ′ ⊇ Σ (i.e.,
agreeing with Σ on the values of all the old locations) such that a new term T ′ is well
typed with respect to Σ′. This new store typing Σ′ is either Σ or it is exactly (Σ, l : t0),
where l is a newly allocated location, i.e. the new element of dom((π, σ)′), and t0 is the
type of the initial value bound to l in the extended store (µ, l 7→ v0) for some µ ∈ {π, σ}.

Proof. The proof is a straightforward induction on a derivation of T : t, using the
lemmas below and the inversion property of the typing rules. The proof proceeds by case
analysis according to the reduction T −→ T ′. See Appendix A for the proof. �

A key lemma that we use in the proof of type preservation is the replacement lemma. It
allows the replacement of one of the subexpressions of a typable expression with another
subexpression of the same type, without disturbing the type of the overall expression.

Lemma 7 (Replacement)If:

1 D is a deduction concluding Σ | Γ; a ` E [e1] : t,
2 D′ is a subdeduction of D concluding Σ′ | Γ′; a′ ` e1 : t′,
3 D′ occurs in D in the position corresponding to the hole (E) in E [], and
4 Σ′ | Γ′; a′ ` e2 : t′

then Σ | Γ; a ` E [e2] : t.

Proof. See a proof in (WF94) for a language with no stores and store typing; the proof
is also valid for our language.

The substitution lemma is the key to showing type preservation for reductions involving
substitution.

Lemma 8 (Substitution)If Σ | (Γ, x : t); a ` e : t′ and Σ | Γ; a ` v : t, then Σ | Γ; a `
e{v/x} : t′.

Proof. We proceed by induction on a derivation of the statement (Γ, x : t) `
e : t′, and case analysis on the final typing rule used in the proof. (For clarity, we remove
store typing Σ, allocation and permission whenever possible.) See Appendix A for the
proof. �

A corollary of Type Preservation (Theorem 7) is that reduction steps preserve type.

P. T. Wojciechowski 30

Corollary 1 (Type Preservation)If Σ | Γ; a ` T : t and Σ | Γ; a ` π, σ and
〈π, σ | T 〉 −→∗ 〈(π, σ)′ | T ′〉, then for some Σ′ ⊇ Σ, Σ′ | Γ; a ` T ′ : t and
Σ′ | Γ; a ` (π, σ)′.

Proof. If 〈π, σ | T 〉 −→ 〈(π, σ)′ | T ′〉, then T = E [e1] and T ′ = E [e2], and
〈π, σ | e1〉 −→ 〈(π, σ)′ | e2〉 and Σ′ | Γ; a ` (π, σ)′, for some Σ′ ⊇ Σ, so Σ′ | Γ; a ` T ′ : t

by the replacement Lemma 26. Then the result follows by induction on the length of the
reduction sequence 〈π, σ | T 〉 −→∗ 〈(π, σ)′ | T ′〉.

3.4.2. Evaluation progress Subject reduction ensures that if we start with a typable ex-
pression, then we cannot reach an untypable expression through any sequence of reduc-
tions. This by itself, however, does not yield type soundness.

Below we prove that evaluation of a typable expression cannot get stuck, i.e. either the
expression is a value or there is some reduction defined. However, we do allow reduction
to be suspended indefinitely since our language is not deadlock-free. This is acceptable
since we define and guarantee isolation, respectively isolation-up-to, only for programs
that either terminate, or reach some result state (see Theorem 3 and Lemma 6).

A canonical forms lemma states the possible shapes of values of various types.

Lemma 9 (Canonical Forms)
1) If v is a value of type Unit, then v is ().
2) If v is a value of type t→a,p s, then v = λa,px : t. e.
3) If v is a value of type m, then v is a verlock location.
5) If v is a value of type Refm t, then v is a reference cell location (or reference location,
in short) of a reference cell storing values of type t.

Proof. Straightforward from the grammar in Figure 3 and the extended grammar in
Figure 4.

We state progress only for closed expressions, i.e. with no free variables. For open terms,
the progress theorem fails. This is however not a problem since complete programs—
which are the expressions we actually care about evaluating—are always closed.

Independently of the type system and store typing, we should define which state we
regard as well-formed. Intuitively, a state is well-formed if the content of the store is
consistent with the expression executed by the thread sequence. (We omit global and
local counters that are also part of the state, as they are not represented in expressions
explicitly.) In case of store π, if there is some evaluation context E [insync l e] in the
thread sequence for any verlock location l, then π(l) should contain 1, marking that the
verlock has been acquired. As for the store σ, containing the content of each reference
cell, we may only require that it is well typed.

Definition 4Suppose π, σ is a well-typed store, and f is a well-typed sequence of expres-
sions, where each expression is evaluated by a thread. Then, a state π, σ | f is well-formed,
denoted `wf π, σ | f , if for each expression fi (i < |f |) such that fi = E [insync l e] for
some l, there is π(l) = 1.

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 31

Of course, a well-typed, closed expression with empty store is well-formed.
According to Lemma 32, the property `wf π, σ | f is maintained during evaluation.

Lemma 10 (Well-Formedness Preservation)If `wf π, σ | f and π, σ | f −→
(π, σ)′ | f ′ then `wf (π, σ)′ | f ′.

Proof. Consider a well-formed state π, σ | e0, for some well-typed program ` e0 : t and
well-typed store π, σ. Suppose that e0 = E [sync l e] for some context E , and π(l) = 0.
(Note that when a verlock location l is created, then initially π(l) = 0 by (R-Lock).) From
the latter and premise that the state is well-formed, we know that there is no context E ′
such that e0 = E ′[insync l e′] for any e′. From the latter and premise, by (R-Sync), we
could reduce expression e0 to (π, σ)′ | e1, such that e1 = E [insync l e]. But then, after
reduction step, we have π(l) = 1 (again by (R-Sync)). Moreover, by type preservation
Theorem 7, the new state is well typed. Thus, from the definition of well-formedness, we
get immediately that `wf (π, σ)′ | e1. Finally, we obtain the needed result by induction
on thread creation.

A state π, σ | T is deadlocked if there exist only evaluation contexts E , such that
T = E [sync l e] for some verlocks l, such that π(l) = 1 for each l (i.e. the verlocks are
not free) and there is no other evaluation context possible.

Now, we can state the progress theorem.

Theorem 5 (Progress)Suppose T is a closed, well-typed term (that is, Σ | ∅; ∅; ∅ `
T : t for some t and Σ). Then either T is a value or else, for any store π, σ such
that Σ | ∅; ∅; ∅ ` π, σ and `wf π, σ | T , there is some term T ′ and store (π, σ)′ with
π, σ | T −→ (π, σ)′ | T ′, or else T is deadlocked on some verlock(s).

Proof. Straightforward induction on typing derivations. We need only show that
either π, σ | T −→ (π, σ)′ | T ′, or T is a value, or π, σ | T is a deadlocked state. From
the definition of −→, we have T −→ T ′ iif T = E [e1], T ′ = E [e′1], and e1 −→ e′1.

Case The variable case cannot occur (because e is closed).
Case The abstract case is immediate, since abstractions are values.
Case T = e1 e2 with ` e1 : t→b,p s and ` e2 : t

By the induction hypothesis, either e1 is a value or else it can make a step of evaluation,
and likewise e2, or T is a deadlocked state. If e1 can take a step, then e1 = E1[e′] and
e′ −→ e′′. But then T = E [e′] where E = E1 e2 ; thus T −→ E [e′′]. Otherwise, e1 is
a value. If e1 is a value and e2 can take a step, then e2 = E2[e′] and e′ −→ e′′ then
T = E [e′] where E = e1 E2 ; thus T −→ E [e′′]. Otherwise, e1 and e2 are values, or T is a
deadlocked state. Finally, if both e1 and e2 are values, then the canonical forms lemma
tells us that e1 has the form λb,px : t. e′1, and so rule (R-App) applies to T .

Other cases are straightforward induction on typing derivations, following the pattern
of the case with T = e1 e2 . �

P. T. Wojciechowski 32

4. Dynamic Correctness of Basic Versioning

Independently of the type system, we must prove that our example versioning algorithm
(BVA) used for scheduling of transaction operations is correct, i.e. it can be used to
evaluate programs so that all possible executions satisfy the isolation property.

The BVA algorithm is correct only for programs that have the following two properties:

Property 1All data accesses are protected by verlocks.

Property 2Each transaction has a version of each verlock it may use.

But these two properties correspond precisely to the absence of race freedom, and the
absence of undeclared verlocks properties. We have shown that they hold for all well-typed
programs (see Theorems 1 and 2). Thus, to prove the correctness of the BVA algorithm,
it remains to show that all transactions of a well-typed program never interfere (from
the definition of isolation).

From the definition of sync l e, we know that a locked expression e can be executed only
by a single thread since other threads would be blocked (due to the atomicity property
of verlocks). Moreover, by the absence of race conditions Theorem 1, we know that in
order to access a reference, first a verlock must be taken. Therefore, we can formulate
the definition of noninterference using verlocks instead of references:

Definition 5 (Noninterference (Verlocks))Tasks in a concurrent run do not inter-
fere (or satisfy the noninterference property) if there exists some ideal serial run Rs of
all these transactions, such that given any verlock, the order of acquiring the verlock by
transactions in the concurrent run is the same as in Rs.

Below we prove the BVA algorithm, given by evaluation rules BVA-0-3 in Figure 8.
We require steps BVA-1 and BVA-2 to be atomic. We write gvl and lvl as shorthand for
gv(l) and lv(l).

Essentially, the BVA algorithm implements ordering of verlock acquisitions based on
versions. Tasks acquire verlocks in such order as is required to satisfy the noninterference
property. We need to show that all possible evaluations of a typable expression cannot
lead to a transaction-free state that is not obtainable by some serialized evaluation of
transactions. Note that we do not require a program to terminate. However, we consider
its correctness only for a set of transactions that will eventually terminate.

To prove the correctness of the algorithm, we only need to show that all transactions
of each well-typed program never interfere (from the definition of isolation).

The proof proceeds by proving lemmas about safety and liveness properties of verlocks,
verlock-based mutual exclusion, and finally about ordering properties of verlock-based
access to references. We begin from introducing a few definitions.

For a transaction transact pv e where pv(l) is defined, we define access of this transac-
tion to a verlock l, denoted a, as a pair (pv(l), lvl), where pv(l) and lvl are correspondingly,
a private and local versions of verlock l. Access of transact pv e to a verlock l is defined
if pv(l) is defined.

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 33

Access ak = (pvk(l), lvl) of a transaction k is valid if condition (1) is true. A transaction
gets a valid access (pvk(l), lvl) when condition (1) is becoming true.

4.1. Verlock Access

Lemma 11 (Verlock Safety)A verlock can be acquired only by a transaction which has
valid access to the verlock.

Proof. Straightforward from the definition of access and the premise of (R-Sync).

Lemma 12 (Access Liveness)Each access of a given transaction in a concurrent run
will be eventually valid, provided that all transactions terminate.

Proof. Let k0 be the first transaction, with access ak0 to some verlock l defined. By
steps BVA-0 and BVA-1 , ak0

= (pvk0
(l), lvl), where pvk0

(l) = 1 and lvl = 0. Moreover,
access ak0 is valid since condition (1) is true. Consider a transaction k1 created after k0,
with access ak1

to l defined, where ak1
= (2, 0). The access ak1

is not valid since (1)
is false (2 − 1 6= 0). However, since we assumed that transactions terminate, then by
step BVA-3 , the local version of verlock l will be eventually upgraded by 1 as soon as
k0 terminate. But then ak1 is valid. Hence, by induction on transactions, we will get the
needed result.

Lemma 13 (Verlock Liveness)Each non-free verlock requested by a transaction will
be eventually acquired, provided that it will be released.

Proof. Straightforward from access liveness Lemma 12 and the premise of (R-Sync).

Lemma 14 (Private-Version Uniqueness)Each transaction has a unique private
version of each verlock during transaction lifetime.

Proof. Immediate from step BVA-1 , where for each verlock l, pv(l) is given a value
equal gvl increased by one, and the fact that step BVA-1 is atomic and pv(l) is constant.

Lemma 15 (Access Uniqueness)For each verlock and any transaction which has ac-
cess to this verlock defined, the access is globally unique.

Proof. Immediate from the definition of access and the private version uniqueness
Lemma 14.

Lemma 16 (Valid-Access Mutual Exclusion)At any time, there is only one access
to a given verlock which is valid.

Proof. Consider a verlock l. Since local version lvl of this verlock is the same for all
transactions at any time, from private-version uniqueness Lemma 14, we have that at
any given time, there is only one transaction which can have access for which validity
condition (1) is true. Hence, we obtain the needed result.

P. T. Wojciechowski 34

Lemma 17 (Access Privacy)A valid access ak of a transaction k can be invalidated
only by transaction k.

Proof. Consider a valid access ak = (pvk(l), lvl) of some transaction k to a verlock l. By
access uniqueness Lemma 15, there is no other transaction k′ with access (pvk′(l), lvl) such
that pvk′(l) = pvk(l). On the other hand, from valid-access mutual exclusion Lemma 16,
we know that it is not possible that some other transaction could have (different) access
to verlock l that is also valid. Thus, we know that only k has a valid access to l. Moreover,
by step BVA-3 we know that transaction k can only upgrade lvl if (1) is true. It means
that lvl can only be upgraded if k has a valid access ak to l. But this is precisely the
needed result, since by modifying lvl access ak to l is no longer valid.

Lemma 18 (Valid-Access Preservation)If a transaction has got valid access to a
verlock, then it will have valid access to it at any time (until it would invalidate it).

Proof. Straightforward from valid-access mutual exclusion Lemma 16 and access pri-
vacy Lemma 17.

Lemma 19 (Verlock-Set Mutual Exclusion)As long as a transaction is allowed to
acquire a verlock l, no other transaction can acquire verlock l.

Proof. Straightforward from valid-access-preservation Lemma 18 and verlock safety
Lemma 11.

By verlock-set mutual exclusion Lemma 19, and the fact that we are not interested in
the relative order of lock acquisitions made by the same transaction (since any such order
would satisfy Definition 5 of noninterference), we can represent all acquisitions of a given
verlock made by a given transaction by any single such acquisition. Thus, in the rest of
the proof, we can consider a system in which each verlock is acquired by a transaction
at most once. By Lemma 19, the proven result will be valid for any system.

4.2. Access Ordering

Lemma 20 (Access Ordering)The order of acquiring a verlock by transactions corre-
sponds to the order in which transactions got valid access to it.

Proof. Immediate by verlock safety Lemma 11 and verlock-set mutual exclusion
Lemma 19.

Lemma 21 (Valid-Access Ordering)The relative order of getting valid access to a
verlock by transactions corresponds to the order of creating the transactions.

Proof. Consider a transaction k, which gets valid access to some verlock l. Access
becomes valid when condition (1) becomes true. By step BVA-3 , this occurs when some
other transaction k′ upgrades a local version lvl by 1. By access privacy and valid-access
mutual exclusion, the transaction k′ has valid access to l and is the only one which has

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 35

it. The valid access of k′ becomes invalidated after upgrading lvl by 1, and then given to
k. From the latter and (1), we can derive that

pvk′(l) = pvk(l)− 1 . (7)

Moreover, from step BVA-1 , we know that the order of private versions corresponds to the
order of creating transactions, i.e. if ki has been created before kj , then pvki

(l) < pvkj
(l)

for each verlock l such that both transactions have defined access to it. Hence, from (7),
we know that k′ has been created before k. Finally, by induction on transactions we
obtain the needed result.

Lemma 22 (Total Ordering)The relative order of acquiring a verlock by transactions
is the same for every verlock.

Proof. Immediate from verlock safety Lemma 11, verlock-set mutual exclusion
Lemma 19, and access ordering Lemma 20, valid-access ordering Lemma 21, and the
fact that the order of creating transactions is total (by step BVA-1).

Lemma 23 (Natural Ordering)The order of acquiring verlocks by transactions in a
concurrent run is the same as in some serial run.

Proof. By the definition of a serial run of transactions, we have immediately that all
verlocks are acquired by the transactions in the order in which the transactions have
been created (let’s call this property a “natural order”).

From verlock safety Lemma 11, valid-access ordering Lemma 21, verlock-set mutual
exclusion Lemma 19, and total ordering Lemma 22, it is straightforward that any concur-
rent run has the “natural order” property. Moreover, since we only consider isolation for
expressions that reached a transaction-free state (see Lemma 6), hence we are allowed to
consider only concurrent runs in which all transactions terminate. This means that each
verlock acquired must be eventually released (note that all verlocks are initially free by
(R-Lock)). Thus, by verlock liveness Lemma 13, all verlocks requested will be eventually
acquired. From the latter, we conclude that there can be a plausible serial run considered,
and obtain the needed result.

4.3. Noninterference

We can now state the main result about the BVA algorithm:

Theorem 6 (Noninterference)If a given program has Properties 1 and 2, then any
evaluation of this program up to any result state, using the BVA concurrency control
algorithm, satisfies the noninterference property.

Proof. By natural ordering Lemma 23, the noninterference property is satisfied in any
concurrent run in which verlocks are acquired when permitted by the algorithm, which
completes the proof.

P. T. Wojciechowski 36

By the noninterference theorem and definition of isolation property in Section 2.2.2,
we conclude that the BVA algorithm can be used to implement the isolated execution of
transactions.

5. Related Work

The work in this paper builds on research on atomic transactions (or atomicity) in three
areas: programming language design and verification, formal semantics, and concurrency
control. We give some examples below.

There have been a lot of proposals of extending programming languages with support
of atomicity or atomic transactions. The authors in (HKM+94; WFMN92) proposed
an extension of the ML programming language with atomic transactions, which can be
composed by the programmer using higher-order functions, each function implementing
one transactional feature. Thus, transactions can be declared to satisfy only a subset
of the atomicity, isolation, and durability features. Transactions can be multithreaded,
similarly to our atomic transactions.

In recent years, there has been a growing interest in adopting atomic transactions to
general-purpose programming languages. These efforts are centered around the notion of
Software Transactional Memory (STM) (ST95). STM allows the declaration of atomic
transactions for controlling access to shared memory in concurrent computing. It can be
regarded as an alternative to lock-based synchronization. The STM mechanism is similar
to database transactions but it operates on (volatile) memory and it is incorporated
into a general-purpose programming language. For the last few years, many object-level
and word-level STMs have been developed for different programming languages (see e.g.
(HF03; HMPH05; RG05; NWAT+08; HLMS03; HLM06) among others).

For instance, Harris and Fraser (HF03) Extented Java with Conditional Critical Re-
gions (CCRs) (Hoa72). The programmer can guard a conditional region by an arbitrary
boolean condition, with calling threads blocking until the guard is satisfied. It is also
possible to explicitly terminate and rollback an execution of an atomic block, if some
condition is not met. The implementation is based on mapping CCRs onto a word-level
STM, which groups together series of memory accesses and makes them appear atomic.
Unlike our language, atomic transactions are executed optimistically. This restricts the
availability of I/O operations within an atomic block.

Despite similar APIs, the semantics of various STM implementations often differ sig-
nificantly (see e.g., (LR07; DS07)). This is a result of many design decisions that have to
be considered, which make these implementations almost incomparable one another and
to the language defined in this paper. Some design decisions are determined by the choice
of a programming language. For example, STM for Haskell (PJGF96) is based on mon-
ads, STM for OCaml (RG05) is based on light-weight threads, STM for C (SATH+06)
requires machine code instrumentation while STM for Java (HF03) usually operates on
bytecode. Other design decisions are the result of expected STM’s functionality which
may lead to different semantics—we may have different support for rollback, exception
handling, I/O operations, and native operations. Contrary to our language, most of STMs
forbids the use of I/O operations (native methods) with irrevocable effects inside trans-

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 37

actions. Sometimes this property is verified statically e.g., in STM for Haskell (HMPH05;
PJGF96).

The semantics also depends on issues like: the concurrency control used (optimistic
vs. pessimistic) which influences behaviour of transactional code with respect to non-
transactional code, and the existence of a memory model (MPA05) for a particular pro-
gramming language which influences behaviour of concurrent, non-synchronised code.
An example isolation policy implemented by STMs is the serializability property, which
corresponds to isolation defined in this paper. The property can be relaxed. For example,
many database systems do not guarantee serializable transactions but provide relaxed
isolation properties which are called transaction isolation levels (ALO00). Contrary to
database systems, the designers of STM systems must take into account interaction of
transactional code with the code outside the scope of transactions. This influences the
semantics of atomicity and isolation. To address this problem, various authors differenti-
ate between strong and weak atomicity (MBL06). Our language can support both strong
and weak atomicity if, respectively, all data accesses are protected by verlocs, or some
data accesses are left unprotected.

Several authors described pitfalls when replacing lock-based synchronization constructs
by a particular model of STM (see e.g. (MBL06)). Transition from lock-based synchro-
nisation to transactional synchronization cannot be performed automatically, just by
substitution of synchronised blocks with atomic. It is a consequence of optimistic con-
currency control (and weak atomicity) which can lead to deadlock in some situations.
However, this specific problem does not occur if pessimistic concurrency control were
used. In particular, our language allows standard locks and atomic transactions to be
used together. Deadlocks are possible but they can only be caused by the standard lock-
ing principle, without anomalies described in (MBL06).

Another line of research is on type systems for specifying and verifying the atomicity
of methods in multithreaded programs (see (FQ03) and follow-up papers). Our work has
also similarities to work on lock inference, where a number of static analysis techniques is
used to create locks for shared objects or memory locations in code to ensure atomicity or
similar properties. In (HFP06) the authors present a method of inferring locks for atomic
sections using type-based analysis, points-to analysis, and label flow analysis (PFH06)
to determine which memory locations are shared and a domination relationship between
shared locations to establish which locations may share a lock. In Autolocker (MZGB06)
pessimistic atomic sections are converted into lock-guarded critical sections by analyzing
dependencies among annotated locks based on a computation history derived from a
transformation of the code using a type system. In (CGE08) backward data flow analysis
is employed to transform the CFG into a path graph which then serves to derive locks.

There is no commonly accepted formal definition of semantics and abstract machines
for STMs, although some proposals exist (e.g. (JV04; VJWH04), see also the fomalization
of transactional systems (CR90)). Berger and Honda (BH00) have used a variant of π-
calculus (MPW92) to formalize the operational semantics of the standard two-phase
commitment protocol for distributed transactions. This work however does not address
local concurrency control (on a machine) and the isolation property. In (BMM05), the
authors formalize the mechanism of transaction compensations, which can be regared as

P. T. Wojciechowski 38

an alternative to rollback in atomic transactions. Transaction compensations are implicit
or programmable procedures that can undo the effects of a transaction that fails to
complete. Yu (Yu93) defines an analytical model of various concurrency control schemes
used in transactional processing.

The closest work to us is the work of Jagannathan and Vitek (JV04; VJWH04) who
proposed a calculi-based model of atomic transactions. They have formalized the op-
timistic concurrency control and two-phase locking strategies for software-based atomic
transactions. Similarly to our approach, their formalization of the isolation property refers
to the order (or scheduling) of concurrent actions. However, the soundness result rests
upon an abstract notion of permutable actions, while our soundness result and proofs
make explicit data accesses and transaction noninterference. This degree of detail allowed
us to formally encode an example, version-based concurrency control algorithm.

Research on transaction management began appearing in the early to mid 1970s. Quite
a large number of concurrency control algorithms have been proposed for use in cen-
tralised and distributed database systems. Database systems use concurrency control to
avoid interference between concurrent transactions, which can lead to an inconsistent
database. Isolation is used as the definition of correctness for concurrency control algo-
rithms in these systems. The algorithms generally fall into one of three basic classes:
locking algorithms, timestamp algorithms, and optimistic (or certification) algorithms. A
comprehensive study of example techniques with pointers to literature can be found in
(BHG87). Concurrency control problems had been also treated in the context of oper-
ating systems beginning in the mid 1960s. Most textbooks on operating systems survey
this work, see e.g. (SGG02; Tan01).

Our versioning algorithms have some resemblance with basic two-phase locking. How-
ever, instead of acquiring all locks needed (in the 1st phase) and releasing them (in the
2nd phase), tasks take and dynamically upgrade version numbers, which optimizes un-
necessary blocking. The conflicting operations are ordered according to version numbers,
which is similar to ordering timestamps in timestamp algorithms (BHG87; WV02). How-
ever, we associate versions (“timestamps”) with services, not with transactions. Therefore
all service calls are always made in the right order for the isolation property (the call re-
quests with too high versions are simply delayed), unlike common timestamp algorithms
for database atomic transactions, where if an operation has arrived too late (that is it
arrives after the transaction scheduler has already output some conflicting operation),
the transaction must abort and be rolled back. The “ultimate conservative” timestamp
algorithms avoid aborting by scheduling all operations in timestamp order, however,
they produce serial executions (except complex variants that use transaction classes)
(BHG87).

Methods of deadlock avoidance in allocating resources (SGG02; Tan01) are also rel-
evant to our work. The banker’s algorithm (introduced by Dijkstra (Dij65)) considers
each request by a process as it occurs, and assigns the requested resource to the process
only if there is a guarantee that this will leave the system in a safe state, that is no
deadlock can occur. Otherwise the process must wait until some other process releases
enough resources. The resource-allocation graph (Hol72) algorithm makes allocation de-
cisions using a directed graph that dynamically records claims, requests and allocations

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 39

of resources by processes. The request can be granted only if the graph’s transformation
does not result in a cycle. Resources must be claimed a priori in these algorithms.

In our case, a task must also know a priori all its resources (methods or protocols)
before it can commence. However, the history of service calls by different tasks is always
acyclic since versions impose a total order on call requests performed by different tasks.
Since tasks are assumed to complete, old versions will be eventually upgraded. Therefore
our versioning algorithms are deadlock-free. Moreover, the calls are assigned according to
the order that is necessary to satisfy the isolation property, unlike the resource allocation
algorithms, which do not deal with ordering of operations on resources.

6. Conclusion and Future Work

The calculus of atomic transactions defined in this paper lays foundation for an intermedi-
ate concurrent language aimed at multicore CPUs, which employs software-based atomic
transactions relaying on pessimistic concurrency control. The transactions can perform
arbitrary operations on shared data, including I/O operations and native methods with
irrevocable effects, with the isolation (or atomicity) guarantee. Only operations guarded
by a special construct are isolated, which allows isolation to be relaxed for operations
that should not be isolated.

The language of atomic transactions is typed, with a type system able to verify if
an example versioning algorithm (BVA) obtains correct input data. This feature pro-
vides guarantees that the runtime execution of atomic transactions satisfies isolation.
The operational semantics of the language has enabled formal proofs of language safety,
including the proof of dynamic correctness of the BVA versioning algorithm. For effi-
ciency, the type system could be easily extended to add distinction between read-only
and read-write locking. It may be also worthwhile to investigate algorithms for inferring
the typing annotations.

For clarity, we have presented somewhat idealised concurrency control algorithms. For
instance, if a thread of some transaction is preempted while holding a verlock then no
other thread can access the verlock; this can be solved in any practical implementation
using some detection mechanism. In the future, we would like to find more robust ways
of implementing atomic. Independently, we develop a mechanism of distributed atomic
transactions, which is based on the ideas developed in this paper.

References

Atul Adya, Barbara Liskov, and Patrick E. O’Neil. Generalized isolation level definitions.
In Proceedings of ICDE ’00: Conference on Data Engineering, 2000.

Atomic RMI. http://www.it-soa.eu/atomicrmi, 2011.

Martin Berger and Kohei Honda. The two-phase commitment protocol in an extended
pi-calculus. Electronic Notes in Theoretical Computer Science, 39(1), 2000.

Philip Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

P. T. Wojciechowski 40

Andrew Birrell. An introduction to programming with c# threads. Technical Report
TR-2005-68, Microsoft Research Technical Report, May 2005.

Roberto Bruni, Hernán Melgratti, and Ugo Montanari. Theoretical foundations for com-
pensations in flow composition languages. In Proceedings of POPL ’05: the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, January
2005.

David Cunningham, Khilan Gudka, and Susan Eisenbach. Keep off the grass: Locking the
right path for atomicity. In Proceedings of CC ’08: the 17th International Conference
on Compiler Construction, LNCS 4959, April 2008.

Panos K. Chrysanthis and Krithi Ramamritham. ACTA: A framework for specifying
and reasoning about transaction structure and behavior. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, May 1990.

Edsger W. Dijkstra. Cooperating sequential processes. Technical Report EWD-123,
Technological University, Eindhoven, the Netherlands, 1965.

Dave Dice and Nir Shavit. Understanding tradeoffs in software transactional memory.
In Proceedings of CGO ’07: the International Symposium on Code Generation and
Optimization, pages 21–33, 2007.

Cormac Flanagan and Martin Abadi. Types for safe locking. In Proceedings of ESOP
’99: the 8th European Symposium on Programming, volume 1576 of LNCS. Springer,
March 1999.

Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In Proceed-
ings of PLDI ’03: Conference on Programming Language Design and Implementa-
tion, June 2003.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification,
Second Edition. Addison Wesley, 2000.

Tim Harris. Exceptions and side-effects in atomic blocks. Science of Computer Program-
ming, 58(3):325–343, 2005.

Timothy Harris and Keir Fraser. Language support for lightweight transactions. In Pro-
ceedings of OOPSLA ’03: the 18th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, October 2003.

Michael Hicks, Jeffrey S. Foster, and Polyvios Prattikakis. Lock inference for atomic
sections. In Proceedings of TRANSACT ’06: the 1st ACM SIGPLAN Workshop on
Languages, Compilers, and Hardware Support for Transactional Computing, June
2006.

Nicholas Haines, Darrell Kindred, J. Gregory Morrisett, Scott M. Nettles, and Jean-
nette M. Wing. Composing first-class transactions. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 16(6):1719–1736, November 1994.

Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexible framework for imple-
menting software transactional memory. In Proceedings of OOPSLA ’06: the 21st
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications, pages 253–262, October 2006.

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 41

Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. Software
transactional memory for dynamic-sized data structures. In Proceedings of PODC
’03: the 22nd ACM Symposium on Principles of Distributed Computing, pages 92–
101, July 2003.

Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Composable
memory transactions. In Proceedings of PPoPP ’05: the 10th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, June 2005.

C. A. R. Hoare. Towards a theory of parallel programming. In Operating Systems
Techniques, volume 9 of A.P.I.C. Studies in Data Processing, pages 61–71. Academic
Press, 1972.

Richard C. Holt. Some deadlock properties of computer systems. ACM Computing
Surveys, 4(3):179–196, 1972.

Suresh Jagannathan and Jan Vitek. Optimistic concurrency semantics for transactions
in coordination languages. In Proceedings of COORDINATION ’04: the 6th Inter-
national Conference on Coordination Models and Languages, volume 2949 of LNCS.
Springer, February 2004.

Jim Larus and Ravi Rajwar. Transactional Memory (Synthesis Lectures on Computer
Architecture). Morgan & Claypool Publishers, 2007.

Milo Martin, Colin Blundell, and E. Lewis. Subtleties of transactional memory atomicity
semantics. IEEE Comput. Archit. Lett., 5(2):17, 2006.

Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory model. In Pro-
ceedings of POPL ’05: the 32nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, January 2005.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I and II.
Information and Computation, 100(1):1–77, 1992.

Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Autolocker: synchronization
inference for atomic sections. In Proceedings of POPL ’06: the 33rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 346–358, 2006.

Yang Ni, Adam Welc, Ali-Reza Adl-Tabatabai, Moshe Bach, Sion Berkowits, James
Cownie, Robert Geva, Sergey Kozhukow, Ravi Narayanaswamy, Jeffrey Olivier, Ser-
guei Preis, Bratin Saha, Ady Tal, and Xinmin Tian. Design and implementation
of transactional constructs for C/C++. In Proceedings of OOPSLA ’08: the 23rd
ACM SIGPLAN Conference on Object-oriented Programming, Systems Languages
and Applications, October 2008.

Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. Existential label flow inference
via CFL reachability. In Proceedings of SAS 2006: the 13th International Symposium
on the Static Analysis, LNCS 4134, pages 88–106, 2006.

Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell. In Pro-
ceedings of POPL ’96: the 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 295–308, 1996.

Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer
Science, 1:125–159, 1975.

P. T. Wojciechowski 42

Michael F. Ringenburg and Dan Grossman. AtomCaml: first-class atomicity via rollback.
In Proceedings of ICFP ’05: the 10th ACM SIGPLAN International Conference on
Functional Programming, September 2005.

Java RMI. http://java.sun.com/products/jdk/rmi/.

Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Benjamin
Hertzberg. McRT-STM: a high performance software transactional memory system
for a multi-core runtime. In Proceedings of PPoPP ’06: the eleventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 187–197, New
York, NY, USA, 2006. ACM.

Avi Silberschatz, Peter B. Galvin, and Greg Gagne. Operating System Concepts, Sixth
Edition. John Wiley & Sons, Inc, 2002.

William N. Scherer, III and Michael L. Scott. Advanced contention management for
dynamic software transactional memory. In Proc. of PODC ’05, pages 240–248,
2005.

Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of PODCS
’95: the 14th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting, August 1995.

Andrew S. Tanenbaum. Modern Operating Systems, Second Edition. Prentice Hall,
Englewood Cliff, NJ, 2001.

Jan Vitek, Suresh Jagannathan, Adam Welc, and Antony L. Hosking. A semantic frame-
work for designer transactions. In Proceedings of ESOP ’04: the 13th European
Symposium on Programming, volume 2986 of LNCS. Springer, March/April 2004.

Raja Vallée-Rai and Laurie J. Hendren. Jimple: Simplifying Java bytecode for analyses
and transformations. Technical Report 1998-4, McGill University, July 1998.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994.

Jeannette M. Wing, Manuel Faehndrich, J. Gregory Morrisett, and Scott Nettles. Exten-
sions to Standard ML to support transactions. In Proceedings of the ACM SIGPLAN
Workshop on ML and its Applications, June 1992.

Paweł T. Wojciechowski. Isolation-only transactions by typing and versioning. In Pro-
ceedings of PPDP ’05: the 7th ACM-SIGPLAN International Symposium on Prin-
ciples and Practice of Declarative Programming, July 2005.

Paweł T. Wojciechowski. Language Design for Atomicity, Declarative Synchronization,
and Dynamic Update in Communicating Systems. The Poznań University of Tech-
nology Press, 2007. Habilitation thesis.

Paweł T. Wojciechowski, Olivier Rütti, and André Schiper. SAMOA: A framework for a
synchronisation-augmented microprotocol approach. In Proceedings of IPDPS ’04:
the 18th IEEE International Parallel and Distributed Processing Symposium, April
2004.

Gerhard Weikum and Gottfried Vossen. Transactional Information Systems. Morgan
Kaufmann, 2002.

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 43

Philip S. Yu. Modeling and analysis of transaction processing systems. In Performance
Evaluation of Computer and Communication Systems, LNCS 729. Springer-Verlag,
1993.

Appendix A.

A.1. Type Soundness

Reduction of a program may either continue forever, or may reach a final state, where
no further evaluation is possible. Such a final state represents either an answer or a type
error. Since programs expressed in our language are not guaranteed to be deadlock-free
(unless all transactions are single-threaded and re-entrant locking is allowed), we also
admit a deadlocked state to be an (acceptable) answer. Thus, proving type soundness
means that well-typed programs yield only well-typed answers.

Our proof of type soundness rests upon the notion of type preservation (also known as
subject reduction). The type preservation property states that reductions preserve the
type of expressions.

Type preservation by itself is not sufficient for type soundness. In addition, we must
prove that programs containing type errors are not typable. We call such expressions
with type errors faulty expressions and prove that faulty expressions cannot be typed.

A.1.1. Type safety The statement of the main type preservation lemma must take stores
and store typings into account. For this we need to relate stores with assumptions about
the types of the values in the stores. Below we define what it means for a store π, σ to be
well typed. (For clarity, we omit permissions p from the context and global gv and local
lv counters from states when possible.)

Definition 6A store π, σ is said to be well typed with respect to a store typing Σ and a
typing context Γ, written Σ | Γ; a ` π, σ, if dom(π, σ) = dom(Σ) and Σ | Γ; a ` µ(l) : Σ(l)

for every store µ ∈ {π, σ} and every l ∈ dom(µ).

Intuitively, a store π, σ is consistent with a store typing Σ if every value in the store
has the type predicted by the store typing.

By canonical forms (Lemma 31 in Section A.1.2), each location value l ∈ dom(π, σ)

can be either a verlock location, or a reference location, depending on a concrete type.
For simplicity, we often refer to π, σ as the store, meaning individual stores, i.e. either
π or σ, depending on a given value and type. If a location value l is a verlock location
then it is kept in a verlock store π; if the value is a reference location then it is kept in
a reference store σ.

Type preservation for our language states that the reductions defined in Figures 4, 5
and 8 preserve type:

Theorem 7 (Type Preservation)If Σ | Γ; a ` T : t and Σ | Γ; a ` π, σ and
〈π, σ | T 〉 −→ 〈(π, σ)′ | T ′〉, then for some Σ′ ⊇ Σ, Σ′ | Γ; a ` T ′ : t and Σ′ | Γ; a ` (π, σ)′.

P. T. Wojciechowski 44

The type preservation theorem asserts that there is some store typing Σ′ ⊇ Σ (i.e.,
agreeing with Σ on the values of all the old locations) such that a new term T ′ is well
typed with respect to Σ′. This new store typing Σ′ is either Σ or it is exactly (Σ, l : t0),
where l is a newly allocated location, i.e. the new element of dom((π, σ)′), and t0 is the
type of the initial value bound to l in the extended store (µ, l 7→ v0) for some µ ∈ {π, σ}.

Proof. The proof is a straightforward induction on a derivation of T : t, using the
lemmas below and the inversion property of the typing rules. The proof proceeds by
case analysis according to the reduction T −→ T ′.

Case 〈π, σ | λb,px : s. e v 〉 −→ 〈π, σ | e{v/x}〉.

From Σ | Γ; a ` λb,px : s. e v : t we have Σ | Γ; a ` v : s and Σ | Γ; a ` λb,px : s. e : s→b,p t

and b ⊆ a by (T-App). From the latter, Σ | (Γ, x : s); b ` e : t follows by (T-Fun). Hence
Σ | Γ; b ` e{v/x} : t by substitution Lemma 27 and Σ | Γ; a ` π, σ from premise.

Case 〈π, σ | refm v 〉 −→ 〈π, (σ, r 7→ v) | r〉 if r /∈ dom(σ).

From Σ | Γ; a ` refm v : t where t = Refm t′, we have

Σ | Γ; a ` v : t′ (8)

and Γ ` m by (T-Ref), and (Σ, r : t′) | Γ; a ` v : t′ by store typing Lemma 30, where r is
a fresh reference cell location. Hence (Σ, r : t′) | Γ; a ` r : Refm t′ by (T-RefLoc), which
is the first part of the needed result.

From the latter, since Σ | Γ; a ` π, σ (premise) and r : t′ /∈ Σ (immediate from
the premise that π, σ is well-typed and the assumption that r /∈ dom(σ)) hence
(Σ, r : t′) | Γ; a ` π, (σ, r 7→ v) by (8) and store extension (Lemma 29), which completes
the second part of the needed result.

Case 〈π, σ | !r〉 −→ 〈π, σ | v〉 if σ(r) = v.

From Σ | Γ; a `!r : t, we have Σ | Γ; a ` r : Refm t by (T-Deref). From the lat-
ter, we have Σ(r) = t and Σ | Γ ` m by (T-RefLoc), and so Σ | Γ; a ` σ(r) : Σ(r)

by premise that the store π, σ is well typed and Definition 6. Hence Σ | Γ; a ` v : t

(immediate from the assumption that σ(r) = v) and Σ | Γ; a ` π, σ from premise.

Case 〈π, σ | r := v〉 −→ 〈π, σ[r 7→ v] | ()〉.

From Σ | Γ; a ` r := v : t where t = Unit, and Σ | Γ; a ` () : Unit by (T-Unit),
we have immediately the first part of the needed result. From Σ | Γ; a ` r := v : Unit,
we have Σ | Γ; a ` r : Refm t′ and

Σ | Γ; a ` v : t′ (9)

by (T-Assign). From the former, we have Σ(r) = t′ and Σ | Γ ` m by (T-RefLoc), hence

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 45

Σ | Γ; a ` π, σ[r 7→ v] by (9), premise that the store π, σ is well typed, and the store
update Lemma 28, which completes the second part of the needed result.

Case 〈π, σ | E [fork e]〉 −→ 〈π, σ | E [()], e〉.

From Σ | Γ; a ` E [fork e] : t we have

Σ′ | Γ′; a ` e : Unit (10)

Σ′ | Γ′; a ` fork e : Unit (11)

for some Σ′ and Γ′ by (T-Fork). From Σ | Γ; a ` E [fork e] : t and (11) we have
Σ | Γ; a ` E [()] : t by (T-Unit) and replacement Lemma 26. From the latter and (10) we
have Σ | Γ; a ` E [()], e : t by (T-Unit) and (T-Thread), which together with Σ | Γ; a ` π, σ
(premise), completes both parts of the needed result.

Case 〈π, σ | fi, f ′j〉 −→ 〈π, σ | fi〉 if i < j.

From Σ | Γ; a ` fi, f
′
j : t and i < j we have immediately Σ | Γ; a ` fi : t and

Σ | Γ; a′ ` f ′j : t′ for some a′ and t′ by (T-Thread). The former derivative and
Σ | Γ; a ` π, σ (premise) complete both parts of the needed result.

Case 〈π, σ | E [atomic l e]〉 −→ 〈π, σ | E [()], transact pv e〉.

From Σ | Γ; a ` E [atomic l e] : t, by (T-Isol) we have Σ′ | Γ′; a ` li : oli for all i = 1..|l|,
and Σ′ | Γ′; {ol1} ∪ ... ∪ {ol|l|} ` e : t′ for some t′, and Σ′ | Γ′; a ` atomic l e : Unit for
some Σ′ and Γ′. Hence Σ | Γ; a ` E [()] : t by (T-Unit) and replacement Lemma 26. Since
Σ′ | Γ′; a ` transact pv e : Unit by (T-Transact), hence 〈π, σ | E [()], transact pv e〉 : t

by (T-Unit) and (T-Thread), which together with Σ | Γ; a ` π, σ (premise), completes
both parts of the needed result.

Case 〈π, σ | transact pv v〉 −→ 〈π, σ | ()〉.

From Σ | Γ; a ` transact pv v : t we have t = Unit by (T-Transact), and
Σ | Γ; a ` () : Unit by (T-Unit), which together with Σ | Γ; a ` π, σ (premise),
completes both parts of the needed result.

Case 〈π, σ | newlock x :m in e〉 −→ 〈(π, l 7→ 0), σ | e{l/x}{ol/m}〉 if l /∈ dom(π).

From Σ | Γ; a ` newlock x : m in e : t and Σ | Γ; a ` π, σ (premise), we have
Σ | (Γ,m :: Lock, x : m); a ` e : t and Σ | Γ ` a and Σ | Γ ` t by (T-Lock), and hence

(Σ, l : {0, 1}, ol :: Lock) | (Γ,m :: Lock, x : m); a ` e : t (12)

by store typing (Lemma 30). Since (Σ, l : {0, 1}, ol :: Lock) | Γ; a ` l : ol by (T-LockLoc),
hence (Σ, l : {0, 1}, ol :: Lock) | Γ; a ` e{l/x}{ol/m} : t by (12), substitution (Lemma 27)
and the definition of a singleton verlock type, which is the first part of the needed result.

P. T. Wojciechowski 46

From the latter, since Σ | Γ; a ` π, σ (premise), l : {0, 1} /∈ Σ (immediate from
the premise that π, σ is well-typed and the assumption that l /∈ dom(π)), and
Σ | Γ; a ` 0 : {0, 1} hence (Σ, l : {0, 1}, ol :: Lock) | Γ; a ` (π, l 7→ 0), σ by store extension
(Lemma 29).

Case 〈π, σ | sync l e〉 −→ 〈π[l 7→ 1], σ | insync l e〉 if π(l) = 0.

From Σ | Γ; a ` sync l e : t, we have

Σ | Γ; a ` l : ol ol ∈ a (13)

Σ | Γ; a ` e : t (14)

by (T-Sync). From (13) and Σ | Γ; a ` π, σ (premise), we have

Σ(l) = {0, 1} (15)

and Σ(ol) = Lock by (T-LockLoc). From (13) and (14) and Σ | Γ; a ` π, σ (premise), we
have Σ | Γ; a ` insync l e : t by (T-InSync), which completes the first part of the needed
result.

From Σ | Γ; a ` π, σ (premise) and (15) and Σ | Γ; a ` 1 : {0, 1}, we have
Σ | Γ; a ` π[l 7→ 1], σ by the store update Lemma 28, which completes the second part
of the needed result.

Case 〈π, σ | insync l v〉 −→ 〈π[l 7→ 0], σ | v〉 if π(l) = 1.

From Σ | Γ; a ` insync l v : t, we have

Σ | Γ; a ` l : ol (16)

Σ | Γ; a ` v : t (17)

and ol ∈ a by (T-InSync), which completes the first part of the needed result. From
Σ | Γ; a ` π, σ (premise) and (16), we have Σ(l) = {0, 1} and Σ(ol) = Lock by
(T-LockLoc). From the latter and Σ | Γ; a ` π, σ (premise) and Σ | Γ; a ` 0 : {0, 1}, we
have Σ | Γ; a ` π[l 7→ 0], σ by the store update Lemma 28, which completes the second
part of the needed result. �

This completes the main part of the proof. It remains to establish several technical
lemmas.

Some obvious facts about deductions that we use:

—if Σ | Γ ` E [e] : t then there exist Σ′, Γ′ and t′ such that Σ′ | Γ′ ` e : t′;

—if there are no Σ′, Γ′ and t′ such that Σ′ | Γ′ ` e : t′, then there are no Σ, Γ, and t

such that Σ | Γ ` E [e] : t.

These follow from the facts that (1) there is exactly one inference rule for each expres-
sion form e, and (2) each inference rule requires a proof for each subexpression of the
expression in its conclusion.

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 47

The first lemma states that we may permute the elements of a context, as convenient,
without changing the set of typing elements that can be derived from under it.

Lemma 24 (Permutation)If Σ | Γ; a ` T : t and ∆ is a permutation of Γ, then
Σ | ∆; a ` T : t. Moreover, the latter derivation has the same depth as the former.

Proof. Straightforward induction on typing derivations.

The following lemma states that extra variables in the typing environment Γ of a
judgment Γ ` e : t that are not free in the expression e may be ignored.

Lemma 25 (Weakening)If Γ(x) = Γ′(x) for all x ∈ fv(e) then Σ | Γ; a ` e : t iff
Σ | Γ′; a ` e : t.

Proof. Straightforward induction on typing derivations.

A key lemma that we use in the proof of type preservation is the replacement lemma. It
allows the replacement of one of the subexpressions of a typable expression with another
subexpression of the same type, without disturbing the type of the overall expression.

Lemma 26 (Replacement)If:

1 D is a deduction concluding Σ | Γ; a ` E [e1] : t,

2 D′ is a subdeduction of D concluding Σ′ | Γ′; a′ ` e1 : t′,

3 D′ occurs in D in the position corresponding to the hole (E) in E [], and

4 Σ′ | Γ′; a′ ` e2 : t′

then Σ | Γ; a ` E [e2] : t.

Proof. See (WF94) (for a language with no stores and store typing; the proof is also
valid for our language).

The substitution lemma is the key to showing type preservation for reductions involving
substitution.

Lemma 27 (Substitution)If Σ | (Γ, x : t); a ` e : t′ and Σ | Γ; a ` v : t, then Σ | Γ; a `
e{v/x} : t′.

Proof. We proceed by induction on a derivation of the statement (Γ, x : t) `
e : t′, and case analysis on the final typing rule used in the proof. (For clarity, we remove
store typing Σ, allocation and permission whenever possible.)

Case e = ().

If so then Γ ` () : t′ and t′ = Unit by (T-Unit). Then Γ ` (){v/x} : t′ since
(){v/x} = () (the same would be for any other constants).

Case e = x′.

P. T. Wojciechowski 48

There are two sub-cases to consider, depending on whether x′ is x or another
variable.

(1) If x′ 6= x, then x′ : t′ ∈ Γ by (T-Var), and Γ ` x′ : t′ again by (T-Var). Then
Γ ` x′{v/x} : t′ since x′{v/x} = x′.

(2) If x′ = x, then x : t′ ∈ Γ by (T-Var), and Γ ` x : t′ again by (T-Var). Since
x{v/x} = v, hence Γ ` x{v/x} : t′ .

Case e = λb,px′ : t1. e1.

By (T-Fun), it follows from the assumption (Γ, x : t) ` λb,px′ : t1. e1 : t′ that
t′ = t1 →b,p t2 and (Γ, x : t, x′ : t1) ` e1 : t2. Using permutation on the given
subderivation, we obtain (Γ, x′ : t1, x : t) ` e1 : t2. Using weakening (Lemma 25) on the
other given derivation (Γ ` v : t), we obtain (Γ, x′ : t1) ` v : t.

Now, by the inductive hypothesis, (Γ, x′ : t1) ` e1{v/x} : t2. By (T-Fun), we have
Γ ` λb,px′ : t1. e1{v/x} : t1 →b,p t2. But this is precisely the needed result, since, by the
definition of substitution, Γ ` (λb,px′ : t1. e1){v/x} : t1 →b,p t2.

Case e = e1 e2 .

From (Γ, x : t); a ` e1 e2 : t′ by the first premise of (T-App), we have
(Γ, x : t); a ` e1 : t1 →b,p t′ for some t1 and b ⊆ a, and

Γ; a ` e1{v/x} : t1 →b,p t′ (18)

by induction hypothesis. By the second premise of (T-App), we have (Γ, x : t); a ` e2 : t1,
and

Γ; a ` e2{v/x} : t1 (19)

by induction hypothesis.
Then by (T-App) with (18) and (19) Γ; a ` e1{v/x} e2{v/x} : t′. But this is precisely

the needed result, since, by the definition of substitution Γ; a ` (e1 e2){v/x} : t′.

Case e = refm e : Refm t1 .

By (T-Ref), it follows from the assumption (Γ, x : t) ` refm e : t′ that t′ = Refm t1, and
(Γ, x : t) ` e : t1 and Γ ` m.

Now, by the induction hypothesis, Γ ` e{v/x} : t1. By (T-Ref), we have
Γ ` refm e{v/x} : Refm t1 . But this is precisely the needed result, since, by the
definition of substitution Γ ` (refm e){v/x} : Refm t1 .

Case e = !e.

By (T-Deref), it follows from the assumption (Γ, x : t); a ` !e : t′ that
(Γ, x : t); a ` e : Refm t′ for some m ∈ a.

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 49

Now, by the induction hypothesis, Γ; a ` e{v/x} : Refm t′. By (T-Deref), we have
Γ; a `!e{v/x} : t′. But this is precisely the needed result, since, by the definition of
substitution Γ; a ` (!e){v/x} : Refm t′.

Case e = e1 := e2.

From (Γ, x : t); a ` e1 := e2 : t′, where t′ = Unit, by the first premise of (T-Assign), we
have (Γ, x : t); a ` e1 : Refm t1 for some t1, and

Γ; a ` e1{v/x} : Refm t1 (20)

by induction hypothesis. By the second premise of (T-Assign), we have (Γ, x : t); a ` e2 : t1
and m ∈ a, and

Γ; a ` e2{v/x} : t1 (21)

by induction hypothesis.
Then by (T-Assign) with (20) and (21) Γ; a ` e1{v/x} := e2{v/x} : Unit.

But this is precisely the needed result, since, by the definition of substitution
Γ; a ` (e1 := e2){v/x} : Unit.

Case e = newlock x′ :m in e′.

By (T-Lock), it follows from the assumption (Γ, x : t); a ` newlock x′ :m in e′ : t′ that
(Γ, x : t,m :: Lock, x′ : m); a ` e′ : t′ and Γ ` a and Γ ` t′.

Now, by the induction hypothesis, (Γ,m :: Lock, x′ : m); a ` e′{v/x} : t′. By (T-Lock),
we have Γ; a ` newlock x′ : m in e′{v/x} : t′. But this is precisely the needed result,
since, by the definition of substitution, Γ; a ` (newlock x′ :m in e′){v/x} : t′.

Case e = sync e1 e2.

From (Γ, x : t); a; p ` sync e1 e2 : t′ by the first premise of (T-Sync), we have
(Γ, x : t); a; p ` e1 : m and

m ∈ a . (22)

By induction hypothesis

Γ; a ` e1{v/x} : m . (23)

By the second premise of (T-Sync), we have (Γ, x : t); a; p ∪ {m} ` e2 : t′. By induction
hypothesis

Γ; a; p ∪ {m} ` e2{v/x} : t′ . (24)

Then by (T-Sync) with (22), (23) and (24) we have Γ; a; p ` sync e1{v/x} e2{v/x} : t′.
But this is precisely the needed result, since, by the definition of substitution
Γ; a; p ` (sync e1 e2){v/x} : t′.

P. T. Wojciechowski 50

Case e = insync e f .

By (T-InSync), it follows from the assumption (Γ, x : t); a; p ` insync e f : t′

that (Γ, x : t); a; p ` e : m and (Γ, x : t); a; p ` f : t′ and m ∈ a, m ∈ p.
Now, by induction hypothesis, Γ; a; p ` e{v/x} : m and Γ; a; p ` f{v/x} : t′. By

(T-InSync), we have Γ; a; p ` insync e{v/x} f{v/x} : t′. But this is precisely the needed
result, since, by the definition of substitution Γ; a; p ` (insync e f){v/x} : t′.

Case e = fork e.

By (T-Fork), it follows from the assumption (Γ, x : t) ` fork e : t′ that (Γ, x : t) ` e : t′

and t′ = Unit.
Now, by the induction hypothesis, Γ ` e{v/x} : t′. By (T-Fork), we have

Γ ` fork e{v/x} : t′. But this is precisely the needed result, since, by the defini-
tion of substitution Γ ` (fork e){v/x} : t′.

Case e = atomic e1, ..., en e0.

From (Γ, x : t); a; p ` atomic e1, ..., en e0 : t′ and t′ = Unit, by the first premise
of (T-Isol), we have (Γ, x : t); a; p ` ei : mi for all i = 1..n, and

Γ; a; p ` ei{v/x} : mi for all i = 1..n (25)

by induction hypothesis. By the second premise of (T-Isol), we have (Γ, x : t); {m1}∪ ...∪
{mn}; p ` e0 : t0 for some t0, and

Γ; {m1} ∪ ... ∪ {mn}; ∅ ` e0{v/x} : t0 (26)

by induction hypothesis.
Then by (T-Isol) with (25) and (26) we have Γ; a; p ` atomic e1{v/x}, ..., en{v/x}

e0{v/x} : Unit. But this is precisely the needed result, since, by the definition of
substitution Γ; a; p ` (atomic e1, ..., en e0){v/x} : Unit.

Case e = fi, f
′
j and i < j.

By (T-Thread), it follows from the assumption (Γ, x : t) ` fi, f
′
j : t′ and i < j,

that (Γ, x : t) ` fi : t′ and (Γ, x : t) ` f ′j : t′′ for some t′′.
Now, by the induction hypothesis, Γ ` fi{v/x} : t′ and Γ ` f ′j{v/x} : t′′. By

(T-Thread) and i < j, we have Γ ` fi{v/x}, f ′j{v/x} : t′. But this is precisely the needed
result, since, by the definition of substitution Γ ` (fi, f

′
j){v/x} : t′.

Case e = transact pv f .

By (T-Transact), it follows from the assumption (Γ, x : t); a ` transact pv f : t′ where
t′ = Unit, that a = {ol1 , ..., oln} and (Γ, x : t); a ` li : oli and (Γ, x : t); a ` pv(li) : Nat

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 51

for all i = 1..n, and

Γ; a ` pv(li){v/x} : Nat for all i = 1..n (27)

by induction hypothesis. By the last premise of (T-Transact), we have (Γ, x : t); a ` f : t

for some t, and

Γ; a ` f{v/x} : t (28)

by induction hypothesis.
Then by (T-Transact) with (27, 28) Γ; a ` transact pv{v/x} f{v/x} : Unit.

But this is precisely the needed result, since, by the definition of substitution
Γ; a ` (transact pv f){v/x} : Unit. �

The next lemma states that replacing the contents of a store with a new value of
appropriate type does not change the overall type of the store.

The notation (π, σ)[l 7→ v] should be read as π[l 7→ v], σ if l is a verlock location,
or π, σ[l 7→ v] if l is a reference cell location. See the canonical forms Lemma 31 in
Section A.1.2 that states the possible shapes of values of various types.

Lemma 28 (Store Update)If Σ | Γ; a ` π, σ and Σ(l) = t and Σ | Γ; a ` v : t then
Σ | Γ; a ` (π, σ)[l 7→ v].

Proof. Immediate from the definition of Σ | Γ; a ` π, σ (see Definition 6).

The next lemma states that extending the contents of a store with a new value of
appropriate type is consistent with the store typing.

The notation ((π, σ), l 7→ v) should be read as (π, l 7→ v), σ if l is a verlock location,
or π, (σ, l 7→ v) if l is a reference cell location. See the canonical forms Lemma 31 in
Section A.1.2 that states the possible shapes of values of various types.

Lemma 29 (Store Extension)If Σ | Γ; a ` π, σ and l : t /∈ Σ and Σ | Γ; a ` v : t then
(Σ, l : t) | Γ; a ` ((π, σ), l 7→ v).

Proof. Immediate from the definition of Σ | Γ; a ` π, σ.

Finally, we need a kind of weakening lemma for stores, stating that, if a store is
extended with a new location then the extended store still allows us to assign types to
all the same terms as the original.

Lemma 30 (Store Typing)
If Σ | Γ; a ` e : t and Σ′ ⊇ Σ, then Σ′ | Γ; a ` e : t.

Proof. Easy by induction.

A corollary of Type Preservation (Theorem 7) is that reduction steps preserve type.

Corollary 2 (Type Preservation)If Σ | Γ; a ` T : t and Σ | Γ; a ` π, σ and
〈π, σ | T 〉 −→∗ 〈(π, σ)′ | T ′〉, then for some Σ′ ⊇ Σ, Σ′ | Γ; a ` T ′ : t and
Σ′ | Γ; a ` (π, σ)′.

P. T. Wojciechowski 52

Proof. If 〈π, σ | T 〉 −→ 〈(π, σ)′ | T ′〉, then T = E [e1] and T ′ = E [e2], and
〈π, σ | e1〉 −→ 〈(π, σ)′ | e2〉 and Σ′ | Γ; a ` (π, σ)′, for some Σ′ ⊇ Σ, so Σ′ | Γ; a ` T ′ : t

by the replacement Lemma 26. Then the result follows by induction on the length of the
reduction sequence 〈π, σ | T 〉 −→∗ 〈(π, σ)′ | T ′〉.

A.1.2. Evaluation progress Subject reduction ensures that if we start with a typable
expression, then we cannot reach an untypable expression through any sequence of re-
ductions. This by itself, however, does not yield type soundness.

Below, we prove that evaluation of a typable expression cannot get stuck, i.e. either the
expression is a value or there is some reduction defined. However, we do allow reduction
to be suspended indefinitely since our language is not deadlock-free. This is acceptable
since we define and guarantee isolation, respectively isolation-up-to, only for programs
that either terminate, or reach some result state (see Theorem 3 and Lemma 6).

A canonical forms lemma states the possible shapes of values of various types.

Lemma 31 (Canonical Forms)
1) If v is a value of type Unit, then v is ().
2) If v is a value of type t→a,p s, then v = λa,px : t. e.
3) If v is a value of type m, then v is a verlock location.
5) If v is a value of type Refm t, then v is a reference cell location (or reference location,
in short) of a reference cell storing values of type t.

Proof. Straightforward from the grammar in Figure 3 and the extended grammar in
Figure 4.

We state progress only for closed expressions, i.e. with no free variables. For open terms,
the progress theorem fails. This is however not a problem since complete programs—
which are the expressions we actually care about evaluating—are always closed.

Independently of the type system and store typing, we should define which state we
regard as well-formed. Intuitively, a state is well-formed if the content of the store is
consistent with the expression executed by the thread sequence. (We omit global and
local counters that are also part of the state, as they are not represented in expressions
explicitly.) In case of store π, if there is some evaluation context E [insync l e] in the
thread sequence for any verlock location l, then π(l) should contain 1, marking that the
verlock has been acquired. As for the store σ, containing the content of each reference
cell, we may only require that it is well typed.

Definition 7Suppose π, σ is a well-typed store, and f is a well-typed sequence of expres-
sions, where each expression is evaluated by a thread. Then, a state π, σ | f is well-formed,
denoted `wf π, σ | f , if for each expression fi (i < |f |) such that fi = E [insync l e] for
some l, there is π(l) = 1.

Of course, a well-typed, closed expression with empty store is well-formed.
According to Lemma 32, the property `wf π, σ | f is maintained during evaluation.

Static Typing and Dynamic Versioning for Safe Pessimistic Concurrency Control 53

Lemma 32 (Well-Formedness Preservation)If `wf π, σ | f and π, σ | f −→
(π, σ)′ | f ′ then `wf (π, σ)′ | f ′.

Proof. Consider a well-formed state π, σ | e0, for some well-typed program ` e0 : t and
well-typed store π, σ. Suppose that e0 = E [sync l e] for some context E , and π(l) = 0.
(Note that when a verlock location l is created, then initially π(l) = 0 by (R-Lock).) From
the latter and premise that the state is well-formed, we know that there is no context E ′
such that e0 = E ′[insync l e′] for any e′. From the latter and premise, by (R-Sync), we
could reduce expression e0 to (π, σ)′ | e1, such that e1 = E [insync l e]. But then, after
reduction step, we have π(l) = 1 (again by (R-Sync)). Moreover, by type preservation
Theorem 7, the new state is well typed. Thus, from the definition of well-formedness, we
get immediately that `wf (π, σ)′ | e1. Finally, we obtain the needed result by induction
on thread creation.

A state π, σ | T is deadlocked if there exist only evaluation contexts E , such that
T = E [sync l e] for some verlocks l, such that π(l) = 1 for each l (i.e. the verlocks are
not free) and there is no other evaluation context possible.

Now, we can state the progress theorem.

Theorem 8 (Progress)Suppose T is a closed, well-typed term (that is, Σ | ∅; ∅; ∅ `
T : t for some t and Σ). Then either T is a value or else, for any store π, σ such
that Σ | ∅; ∅; ∅ ` π, σ and `wf π, σ | T , there is some term T ′ and store (π, σ)′ with
π, σ | T −→ (π, σ)′ | T ′, or else T is deadlocked on some verlock(s).

Proof. Straightforward induction on typing derivations. We need only show that
either π, σ | T −→ (π, σ)′ | T ′, or T is a value, or π, σ | T is a deadlocked state. From
the definition of −→, we have T −→ T ′ iif T = E [e1], T ′ = E [e′1], and e1 −→ e′1.

Case The variable case cannot occur (because e is closed).
Case The abstract case is immediate, since abstractions are values.
Case T = e1 e2 with ` e1 : t→b,p s and ` e2 : t

By the induction hypothesis, either e1 is a value or else it can make a step of evaluation,
and likewise e2, or T is a deadlocked state. If e1 can take a step, then e1 = E1[e′] and
e′ −→ e′′. But then T = E [e′] where E = E1 e2 ; thus T −→ E [e′′]. Otherwise, e1 is
a value. If e1 is a value and e2 can take a step, then e2 = E2[e′] and e′ −→ e′′ then
T = E [e′] where E = e1 E2 ; thus T −→ E [e′′]. Otherwise, e1 and e2 are values, or T is a
deadlocked state. Finally, if both e1 and e2 are values, then the canonical forms lemma
tells us that e1 has the form λb,px : t. e′1, and so rule (R-App) applies to T .

Other cases are straightforward induction on typing derivations, following the pattern
of the case with T = e1 e2 . �

