
Failure Recovery from Persistent Memory in
Paxos-based State Machine Replication

Jan Kończak
Institute of Computing Science
Poznan University of Technology

Poznań, Poland
Jan.Konczak@cs.put.edu.pl

Paweł T. Wojciechowski
Institute of Computing Science
Poznan University of Technology

Poznań, Poland
Pawel.T.Wojciechowski@cs.put.edu.pl

Abstract—Paxos is one of the most popular protocols for
state machine replication (a technique used for making services
highly available). We are the first to propose a Paxos-based state
machine replication framework which is aimed at persistent (non-
volatile) memory, pmem in short—a new class of memory offering
direct byte-addressable access to memory (e.g., Optane™ DC
Persistent Memory). In the paper, we describe two variants of
the framework, called mPaxosSM and mPaxos, which support
efficient recovery of processes after crash with the use of
pmem. In the latter variant, a part of Paxos’s state, and in the
former also the entire state machine’s state that should survive
crashes, are stored in the persistent memory. This allows to
achieve low failure recovery time. We used a key-value map
to compare our frameworks equipped with different memory
backends (pmem, DRAM, and emulated pmem), with the classical
Paxos that recovers state from snapshots and logs stored in stable
storage, and with Paxos equipped with EpochSS—a state-of-the-
art protocol ensuring state recovery from peer replicas. Our
results show the advantages of pmem and our approach.

Index Terms—state machine replication, Paxos, persistent
memory

I. INTRODUCTION

State machine replication (SMR) [1], [2] is a well-known
technique for developing distributed services requiring high
availability. Paxos [3] is one of the most popular SMR proto-
cols, used in many commercial systems, including data man-
agement systems. Persistent (non-volatile) memories (pmem),
connected to the system memory bus (e.g. DDR4), such as
Intel’s Optane™ DC Persistent Memory (DCPMM) [4] based
on the 3D XPoint technology [5], offer the durability of disk,
latency comparable to DRAM, high throughput, and a better
density than DRAM. These properties have spawned a lot of
efforts to adopt pmem in computer systems. Persistent memory
is exposed by operating systems as memory-mapped files.
Ensuring recoverability of replicated state machine from pmem
rather than from disks can significantly boost performance.
However, our experience has shown that there is much more
to developing a pmem-enabled replication engine than simply
replacing disk writes by pmem writes.

In this paper we propose two novel Paxos-based SMR tools,
which are aimed at computer systems equipped with pmem.

This work was supported by the Foundation for Polish Science, within the
TEAM programme co-financed by the European Union under the European
Regional Development Fund, Grant No. POIR.04.04.00-00-5C5B/17-00.

To achieve this, we had to rethink the design of Paxos-based
state machine replication. In mPaxosSM, that part of the state
of state machine (application) and of Paxos that should survive
crashes is stored in pmem. This allowed us to simplify the
design of SMR, as creating periodic state snapshots is no
more necessary. In mPaxos, the whole application state is in
DRAM, but snapshots (created by the application) and some
part of Paxos state are kept in pmem. Both tools can be used to
build replicated systems that after crash can resume operation
immediately after a sufficient number of replicas is restarted.

We used mPaxosSM and mPaxos to replicate a key-value
map (let us call it KV-Map) and compared its performance with
the replicated map built using JPaxos+SS and JPaxos+epochs,
described in [6]. The former system implements the original
Paxos protocol with the use of stable storage (SS) to recover.
The latter is Paxos equipped with EpochSS [6], a state-of-the-
art recovery algorithm that can recover crashed replicas from
live peers’ snapshots, if only a majority of replicas remains
operational. All evaluated systems share a common code base
that implements a generic Paxos framework, which extends the
original Paxos with practical features, e.g., operation batching,
snapshots, and the catch-up protocol. For a fair comparison
of all systems, as stable storage in JPaxos+SS, we have not
only used solid state drives (SSDs) but, first of all, persistent
memory (pmem), accessed using the standard file API and
fsync(). On the other hand, mPaxos and mPaxosSM write
to persistent memory directly from userspace.

KV-Map using mPaxos is more efficient than the one using
JPaxos+SS during the regular (failure free) execution (unless
the operations or the snapshots are large, then the two systems
are on par), and it also faster recovers after crash. However,
in our 10GbE network, the DRAM-only system built using
JPaxos+epochs outperforms both. But unlike JPaxos+epochs,
all the remaining systems can tolerate catastrophic failures
(crashes of all nodes), which is a great advantage.

What came as a surprise, the KV-Map with mPaxosSM was
the slowest system out of all during the regular (failure free)
execution (though the fastest system if pmem was replaced
by DRAM, but then it cannot tolerate failures). This result is
contributed by the overhead incurred by transactions (required
for atomic writes to pmem) and low write throughput of
DCPMM. But the recovery performance of mPaxosSM is

1

incomparably higher than in case of JPaxos+SS and mPaxos,
as the application state in pmem is immediately ready for use.

Section II defines the system model and Paxos-based SMR.
Section III describes the Paxos framework to a level of detail
sufficient to understand failure recovery mechanisms. Section
IV presents two variants of the framework aimed at persistent
memory. Section V discusses failure recovery. Section VI
contains experimental results. Section VII considers related
work and Section VIII summarizes and concludes the paper.

II. SYSTEM MODEL AND PAXOS-BASED SMR

We assume a distributed environment in which processes
communicate solely by exchanging messages, the network is
asynchronous (no common clocks, no way to know how long
a message will take to get from a to b), the network may drop
messages, processes may crash, the crash failures cannot be
detected reliably, and there is no single point of failure. We
do not consider Byzantine failures.

A state machine (SM) executes an operation by changing
its state and producing a response, with the operation and
machine’s current state determining the new state and the
response. In state machine replication, all state machines
execute the same sequence of deterministic operations1. The
expected guarantee is linearizability [8], which essentially
means that all operations return responses that are consistent
with some serial execution of these operations that respects
the real time order of the operations.

Paxos [3] is a consensus algorithm aimed for SMR, executed
by a set of processes, named replicas, to reach consensus and
agree on (decide) a single operation by votings. An operation
is a command or a sequence of commands that form an input to
the state machine of every replica. If a majority of the replicas
run for long enough without crashing and there are no other
failures, all running replicas are guaranteed to eventually agree
on one of the operations submitted, which is then executed
by the state machines. We assume that crashed replicas may
subsequently recover under the same ID.

The Paxos algorithm consists of two phases, which may be
repeated (because of failures). A very simplistic description
follows. In Phase 1, called leader election, a process that wants
to be a leader—a proposer, selects a ballot number, writes it
to stable storage, and broadcasts it using a Prepare message.
Other replicas write the ballot number to stable storage and
acknowledge it using PrepareOK. In Phase 2, called voting,
the leader selects an operation, writes it to stable storage, and
then broadcasts it using a Propose message. The replicas that
receive the proposal (the followers) write it to stable storage
and then acknowledge the Propose.

In our implementation, replicas do not acknowledge just the
leader in Phase 2, but they broadcast an Accept message. Once
a replica receives both the Propose and the Accept messages
from a majority of all processes, consensus has been reached,
and the replica numbers the operation and outputs it to its state

1In Chubby [7], leases are used to allow reads from one SM replica only.
In our KV-Map, for simplicity, all operations are executed by all SM replicas.

...y 2 y 7x 1

x : 1

y : 7

z : 4
(KV−Map)
State Machine

x : 0

y : 0

z : 4

...y 2 y 7x 1

Storage
Stable

client client...

network

y : 0

z : 4

Replica Thread

x : 0R
ep

li
ca

 <
i>

Snapshot

Paxos
Thread

Log

Fig. 1. The architecture of the JPaxos+SS system. mPaxos and mPaxosSM
do not use stable storage, mPaxosSM does not create periodic snapshots, and
JPaxos+epochs uses stable storage only on system startup.

machine for execution. Operations are then executed by the
state machine according to the operations’ numbers. Obtaining
Propose is necessary, as the Accept messages do not carry
operations, just instance numbers (defined below).

In SMR, state machines repeatedly execute Paxos to achieve
consensus on a sequence of operations (aka Multi-Paxos). We
call each such execution an instance of Paxos. There can be a
number of instances executing Phase 2 concurrently (see [9]).
A leader assigns the lowest instance number that is still free
to choose for each new Paxos instance. An instance is decided
when the consensus has been reached. In our implementation,
several operations are batched by the leader into a single Paxos
instance for efficiency (the size of the batch is variable). In
some failure or execution scenarios, some operations can be
voted in more than one instance, e.g., when a client resubmits
an operation to a second replica falsely assuming that the first
replica has crashed. We detect such repeated, agreed operations
and discard them just before assigning operations’ numbers.

III. THE PAXOS FRAMEWORK

The original papers on Paxos are silent on some important
design choices that impact system efficiency, and the existing
implementations differ in this respect. With the advent of
pmem these choices are even more important, as proved
by our results. Below we describe the mechanism of logs,
snapshots and the catch-up protocol in our generic Paxos
framework, which then will be tailored for pmem in the
following sections. It consists of two main parts (see Fig. 1): a
Paxos thread, which is responsible for agreeing operations in
consecutive instances, and a Replica thread (in fact, a multiple
of threads for efficiency), which receives new operations from
clients, passes the agreed operations for execution by the
state machine, returns the results to the clients, and manages
snapshots created by the application.

A. The Log

In our framework, a log is a sequence of entries for consec-
utive Paxos instances, which is updated by the Paxos thread
on a regular basis, where each entry contains the following
data: an instance state (indicating if the replica got the Propose
and if the instance is decided), the number of the last ballot

2

in which the replica cast a vote (in this instance), the last
batch of operations seen by the replica (in this instance), and a
list of processes LAccept from which an Accept message was
delivered (in this instance), together with the ballot number
of the Accept messages (we delete records in LAccept with a
lower ballot number). The Replica thread passes the operations
from instances marked as decided to the state machine for
execution, according to the natural order of instance numbers
and the position in the batch. Each operation passed to the
state machine is assigned a consecutive operation number.

Paxos requires that some essential data of the Paxos protocol
which are written to the log must be made persistent—such
log writes are flushed to stable storage before the system can
proceed any further, where stable storage (SS) is traditionally a
disk, but it can also be pmem. The log written to stable storage
is used by a replica to recover its state after crash. In our
implementation, followers write to this log prior to sending the
Accept message, and the leader writes to it immediately before
sending the Propose (it is necessary as the leader does not send
itself a separate Accept message). Moreover, a process writes
to the persistent log each ballot number which is higher than
any other it knew. It is either the one it intends to send in
the Prepare message, or which the process learnt from the
PrepareOK or other messages described in the paper.

In our experiments, JPaxos+SS uses either disk or pmem
as stable storage. mPaxos and mPaxosSM store the log ex-
clusively in pmem. In JPaxos+epochs, the log is entirely
maintained in DRAM, and a replica writes to stable storage
only once—at startup and at every replica restart after crash.
We describe the details of recovery algorithms in Section V.

B. Snapshots

The repeated execution of Paxos leads to an ever growing
log. This requires unbounded amount of disk space and may
result in unbounded recovery time, since a recovering replica
has to replay a potentially long log before it has fully caught
up with other replicas. Both space and time overruns are not
acceptable, so we periodically create a snapshot of the current
state of the application, extended with Paxos metadata, and
write it to stable storage (JPaxos+SS) or to pmem (mPaxos),
or keep in volatile DRAM only (JPaxos+epochs). From this
moment any older entries in the log can be erased, and any
subsequent snapshot replaces the previous one.

However, creating snapshots is time consuming. Therefore
we also designed mPaxosSM. It does not create periodic
snapshots for failure recovery, as the critical state of the
application and of Paxos is stored in persistent memory, hence
the state is immediately available after crash. Thus, the log
can be truncated at will. But mPaxosSM still needs to create
snapshots on demand, as required by the catch-up protocol.

As Paxos does not know anything about the application data
structures that are replicated, the state machine (application)
must be responsible for taking snapshots. The application is
free to take a snapshot at any point. But the Paxos framework
maintains the log, so it can know better when to take a
snapshot. In our implementation, when the size of the log

divided by the average size of snapshots is greater than or
equal to a configurable threshold, the framework suggests the
application to take a snapshot. Snapshots are not synchronized
across replicas and each state machine independently decides
when to create a snapshot, based on the received hint.

The application takes a snapshot of its current state, and
informs the Paxos framework that a new snapshot was created
which reflects the state of state machine just after executing an
operation numbered l. Then the Paxos framework extends the
snapshot with the following metadata: l, the number i of the
instance in which this operation was decided, the number k of
the first operation in the batch of operations in that instance,
and the Responses map2. Thus, our system can take snapshots
after executing any operation. After crash, it can recover its
state from the snapshot and log, and resume execution from
the instance i by omitting first l − k + 1 operations in i, as
executed. To find an instance number for a given operation
number, our implementation uses a separate list with instance
numbers paired with their first operation number.

Upon each new snapshot is created in DRAM, it is flushed to
stable storage (except for JPaxos+epochs, where both the log
and the snapshot are in DRAM only, and mPaxosSM, where
the application’s critical state is stored in pmem). Then log
entries containing instances earlier than the previous snapshot,
including that old snapshot, are erased. We still keep in the
log the old operations (with their Paxos-specific metadata) that
were agreed after the previous snapshot was taken and before
the latest snapshot was taken, as they can help other replicas
to catch up efficiently (see Section III-C for details).

C. Catching Up

In Multi-Paxos some slow (or lagging) replicas might not
have participated in recent Paxos instances. This may occur as
consensus is reached once a leader receives messages from at
least a majority of the replicas. Some messages can be slow or
lost due to network failures. In the original Paxos [3], a replica
that did not receive a message for a sufficiently long time
can propose itself as a new leader. However, frequent leader
changes are inefficient and thus should be avoided. In our
implementation, we use a catch-up protocol to enable lagging
replicas to catch up with leading replicas. It uses the log and
snapshot of leading replicas to help lagging replicas to catch
up, as explained below. It is also used by recovery algorithms,
described in Section V.

Any replica should start the catch-up protocol once it notices
that it lags behind, i.e., it does not know operations for
an instance number that is lower (by a configurable offset)
than an instance number i received in a heartbeat message
of a failure detector3, or a Propose/Accept message, or a
RecoveryAck message (defined in Section V-C). To start catch-
up, the lagging replica sends a message with all instance

2Each replica for every client caches the last response sent to the client. If
a client retries sending an operation that was already executed, the operation
is not re-executed, but the cached response is returned to the client.

3The leader periodically broadcasts a heartbeat message to inform other
replicas that it is still alive (aka failure detector), to prevent the leader change.

3

numbers less than or equal to i for which it does not know
operations (we call such instances the missing), to any replica
which is not a leader4. Then that replica replies by sending
a message with its latest snapshot if there were any missing
instances with a number lower than the lowest instance number
recorded in its log, and with the current ballot number and all
the remaining missing instances (pairs of an instance number
with its corresponding operations) that are marked in the log
as “decided”. Note that the replica does not need to send a
snapshot (which can be large), if the lagging replica does not
know only those instances which are stored in the log. We
therefore truncate the log by the one-but-last snapshot, not the
last one.

Once the lagging replica receives the reply it installs the
received snapshot (if any and if still necessary), replaces its old
snapshot with the new one, updates its current ballot number
(if lower then the received one), and then updates its log with
the received decided instances (if still necessary). If some
operations are still missing, it repeats the protocol, contacting
the leader.

IV. PERSISTENT MEMORY AWARE SMR TOOLS

The mPaxos and mPaxosSM systems use the Direct Access
(DAX) mechanism to access persistent memory. The DAX
feature allows accessing and flushing data to pmem without the
need to involve an operating system, as the memory is accessed
with no caches in DRAM (unlike traditional block devices).
So, a program can execute a CPU store instruction followed by
the sfence and clwb instructions to persist data, rather than
executing a write syscall followed by a fsync syscall. To
use DAX, the system administrator creates a file system on
a named persistent memory address range (namespace) and
mounts that file system into the operating system’s file system
tree, and applications use mmap (a memory map syscall) to
attach a region of pmem to its virtual memory.

To implement the systems, we used libpmemobj-cpp, a C++
library for persistent memory programming, which is part
of Persistent Memory Development Kit (PMDK) [10]. The
libpmemobj-cpp library allows persistent memory objects to
be allocated in a way that is power fail safe, allows referring to
them by special pointers (offsets from the beginning of named
memory pools), and allows making an arbitrary number of
changes atomic by encompassing the changes in a transaction.
If the transaction is interrupted by a power failure or a
program crash before it starts committing, any partially done
changes are automatically rolled back (on restart), and when
it is interrupted during commit, the commit is automatically
repeated on restart. We used transactions extensively to ensure
the state is always consistent, e.g., data received in a message
are written to pmem as a transaction.

Obviously, we also use standard read-write locks to protect
objects and prevent the changes made by one thread from be-
coming visible by other threads until the changes are complete.

4The leader has the most up-to-date knowledge, but it is also the most busy
replica, so we avoid burdening it with additional work.

A. mPaxos: SMR with Paxos in pmem

The design of mPaxos follows closely JPaxos+SS, that is,
Paxos equipped with the logs, snapshots, and catch-up as
described in Section III, but the log and snapshot reside in
persistent memory, not in DRAM, which means that no data
are written additionally to other stable storage (e.g., a disk),
as it is not necessary. The following data are maintained up
to date in persistent memory by the Paxos thread (we omit
auxiliary variables):

• snapshots of the application’s state, extended with data
that the Replica thread maintains (explained below),

• the log, with the content as described in Section III-A,
• a bounded list of log entries that predate the last snapshot

(to optimize the catch up protocol),
• the current ballot number, and the state of a proposer

(inactive, executing Phase 1, or elected as a new leader).
The Paxos (producer) and Replica (consumer) threads share

in pmem a producer-consumer queue (list) of instance numbers
which were decided, but not yet executed. Decided instances
are added to this queue on a regular basis (irrespective of
snapshots’ creation). When a new snapshot is created, all
instances having all operations executed before the snapshot
was created are removed from the queue. On every snapshot
creation, the Replica thread updates the following variables
that are also stored in pmem: the number of the next instance
and the next operation to be executed by the state machine,
and the Responses map.

Persistent memory speeds up system recovery after crash.
There is no need to read snapshots and logs from a disk, and
there is no need to recreate the state of Paxos, as this state is
already in the memory ready for use. But pmem is slower than
DRAM, so we chose which data to store in pmem considering
what is necessary to ensure data consistency in case of failures,
and high system performance during failure free runs.

B. mPaxosSM: SMR with Paxos and SM in pmem

We took a different approach when designing mPaxosSM.
Since pmem has matured into a fairly complete programming
model, and libraries have been built on that basic model to
provide application developers with the benefits of persistent
memory, so we propose that the developers design their appli-
cations in such a way that they maintain the state necessary
for failure recovery in pmem. In case of a key-value map, such
as our KV-Map, this state includes the content of the map.

In mPaxosSM, a state machine (application) does not create
periodically snapshots of its state, as the state machine is able
to restart after a crash and resume the execution based on the
state stored in pmem that survives the crash (in Section V-B,
we give more details). The thread executing the Paxos protocol
stores the same data in pmem as it was in mPaxos, except that
there are no snapshots. The log is truncated at will, when the
Paxos framework decides to do it.

However, a replica is still obliged to create a snapshot on
demand, when it is asked for it by a lagging replica executing
the catch up protocol. For this, the Paxos framework simply

4

requests the application to return the name of the file storing
critical data in pmem and to lock computation, so that it can
create a consistent snapshot. Once the snapshot is created,
the computation is released. The lagging replica executes the
reversed procedure to install the catch-up snapshot back to
pmem. To support the mechanism we extended SMR’s API.

The Replica thread modifies on a regular basis in pmem:
the number of the next instance and of the next operation to
be executed by the state machine, a queue with the numbers of
instances decided, but not yet executed, the Responses map, a
list of files created from the snapshot received during catch up,
and a flag signaling if the catch-up snapshot is being installed.

All evaluated systems were implemented in Java, but the
pmem library is in C++. To avoid costly calls to Java Native
Interface (JNI) in mPaxosSM and mPaxos, the following
data are cached: ballot number, the lowest undecided instance
number, the proposer state, the number of the highest instance
in the log, and the numbers of the next instance and operation
to be executed by the state machine.

mPaxosSM facilitates a simpler design of applications (the
programmers do not need to create snapshots), and the instant
time of system recovery after crash.

V. RECOVERING FROM FAILURES

The recovering replica either rebuilds its state from a snap-
shot and log (JPaxos+SS), that are persisted in SS (typically
disks, but it can be pmem, as in our case), or it simply resumes
the execution from pmem (mPaxosSM and mPaxos), or from
other replicas (JPaxos+epochs), as explained below.

A. Recovery from State Read from Stable Storage
In Lamport’s Paxos [3], when a replica crashes and subse-

quently recovers, it replays the persistent log read from stable
storage to reconstruct its state prior to crashing. After this, the
process does not differ from lagging processes, so it can reply
to Paxos messages and catch up current state as usual.

The above mechanism can be optimized using snapshots, as
mentioned in [3]. Should the replica fail, during subsequent
recovery it will install the latest snapshot and then replay the
(truncated) log—both read from stable storage—to rebuild its
state. From now on, the replica is ready to reply to Paxos
messages. After reading a snapshot, Paxos-specific information
from the snapshot is returned to the Paxos framework, which
in turn will use the information to coordinate the snapshot with
the log. In particular, the operation numbers allow to recognize
the moment when the snapshot was created.

In our implementation, to catch up with other replicas, the
recovered replica launches the catch-up protocol. As in case
of non-crashed, lagging replicas, this occurs when the replica
realizes that it lags behind, by comparing its last instance
number (the recovered replica read it from its local disk) with
the instance number i, carried by either the Propose, Accept,
or the heartbeat message of the failure detector that it first
receives. If i is higher than expected it starts catch-up.

In [6], the above recovery algorithm is called FullSS, as
it fully depends on data read from stable storage (a disk or
pmem). The algorithm is used by JPaxos+SS.

B. Resumption from Persistent Memory

When designing mPaxos and mPaxosSM, we took a dif-
ferent approach, as these systems are aimed to take the best
of byte-addressable pmem. So there is no notion of state
recovery from stable storage or from other replica, since all
critical data of Paxos, and in mPaxosSM also the critical
state of the application, are maintained in pmem only. Thus,
a replica restarted after crash can simply resume execution
from the moment in which the system halted. This has a
tremendous impact on Paxos behavior. While JPaxos+SS and
JPaxos+epochs after crash and restart must first recover their
state from stable storage or peers, before they can reply to
Paxos messages, mPaxos and mPaxosSM can immediately
participate in the Paxos protocol. The main difference between
the last two systems is that mPaxos (the Paxos thread, to be
precise) has to recreate the state of application in DRAM from
a last snapshot stored in pmem, while mPaxosSM does not
do it, as the application itself keeps its own critical state in
persistent memory, so it can survive crashes.

Note that in the original Paxos, after a catastrophic failure,
restarted processes must repeat all undecided instances, while
in mPaxos and mPaxosSM, processes store in pmem the full
information about every Paxos instance, including its state and
the list of the received Accepts, and also whether the process
has already received the PrepareOKs from a majority. Thus, a
process can immediately continue voting or receiving Accepts
or sending the Propose messages (if the process was a leader
at crash).

However, there is one pitfall. If a replica crashed while
executing some operation, mPaxosSM does not know after
recovery if the last operation was executed completely or not.
Therefore it has to again issue the operation for execution
with the associated number. The application knows the number
of the last executed operation, so it can recognize that the
operation is repeated and has to decide whether to execute it
or not. Note that the application programmer is responsible
to get it right, as the decision depends on the semantics of
operations. For example, in case of our KV-Map, reexecuting
the same write (or the same read) right after the first execution
is not harmful, but an operation “increment a counter” cannot
be repeated.

C. Recovery from State Received from Other Replicas

Let us consider peer-based recovery algorithms for Paxos,
that do not require that replicas write the state of state machine
and Paxos to storage that survives replica crashes. The crashed
process can recover its state from failure by reading the
missing state from another replica, if only a majority of
processes is always up and running. Such recovery algorithms
are not trivial, as they must prevent a situation when two
groups of processes decide differently, because the recovered
process did not learn all of its state lost at crash. Below we
show an example in Phase 2 (voting) of the Paxos protocol, but
analogous scenarios may occur in Phase 1 (leader election).

Consider three replicas (see Fig. 2). A follower b broadcasts
Accept in an instance i and crashes. After restart, it does

5

Proposecatch up

PrepareOK

Accept X

time

b

a

c

Prepare

Propose

Recovery

RecoveryAck

Accept Y

Fig. 2. An example of incorrect process recovery leading to inconsistent
decisions caused by a stray message. Messages not shown are lost or in transit.

not remember that it has already accepted some operation X
in this instance before the crash, because it did not write to
stable storage before sending Accept X . Moreover, it will not
learn about this decision by asking the other processes for the
missing state—the other follower a did not receive Propose
and Accept yet, and the leader c did not receive Accept yet
(the messages are still in transit). If in the meantime a becomes
a leader, it may form a quorum with the recovered process b
and decide a different operation Y in i than the old leader
c which will eventually receive the Accept X sent before the
crash and decide X in i, which causes inconsistency. Therefore
messages that were sent but not delivered before a crash, called
stray, must be handled properly.

In [6], we show two peer-based recovery algorithms, called
ViewSS and EpochSS. In our experimental evaluation, we used
the JPaxos+epochs framework, which uses the latter that is
more efficient. EpochSS requires that each process maintains
in stable storage a counter, which is incremented only when
the process starts or restarts (after crash). Values of the counter
are called epochs. Epochs are piggybacked in Paxos messages.
Each process maintains a local map of epoch numbers for all
processes. JPaxos+epochs can recover a system from failure
only if a majority of processes is always up and running.

VI. EXPERIMENTAL EVALUATION

A. Environment

In the evaluation we used six machines, on each we used
one of the NUMA nodes with Intel® Xeon® Gold 6252N and
six interleaved Intel® Optane™ DCPMM modules, 128GB
each. The machines were equipped with 1TB Intel® DC P4510
NVMe SSDs, and were connected to the 10Gbps Ethernet
switch. They were running OpenSUSE Tumbleweed with
Linux 5.8, libmemobj-cpp 1.10, and openjdk 14. Each replica
was run on a separate machine and the clients sending requests
were run on other machines.

B. Memory Backends Used in Evaluation

We built our systems on JPaxos [6], a Java implementation
of Paxos equipped with efficient state recovery support, and
extended it with our new proposals, so that we can easily
switch between memory backends. By a memory backend (or
a backend, in short), we mean a set of routines that access data
in memory (pmem, DRAM, and pmem emulated in DRAM,
in our tests). We implemented mPaxos as JPaxos modified to
use pmem (as in Section IV-A). Based on it we developed
mPaxosSM, in which also the state machine writes (a critical
state of the application) to pmem (see Section IV-B), so

TABLE I
SYSTEMS AND MEMORY BACKENDS

System@backend Snapshots Paxos State Machine Crash-Recovery
JPaxos+SS periodic Java, data flushed to stable catastrophic failures

storage (e.g. disks) supported
JPaxos+epochs periodic Java Java catastrophic failures

not supported
mPaxos@RAM periodic JNI / STL Java crash-stop, no recovery
mPaxos@pmem periodic JNI / PMDK Java catastrophic failures

supported
mPaxos@emulp same as mPaxos@pmem, but pmem is emulated in DRAM
mPaxosSM@RAM on demand JNI / STL JNI / STL crash-stop, no recovery
mPaxosSM@pmem on demand JNI / PMDK JNI / PMDK catastrophic failures

supported
mPaxosSM@emulp same as mPaxosSM@pmem, but pmem is emulated in DRAM

requires no periodic snapshots creation. The source code is
available [11].

Table I presents all evaluated systems (with all backends).
JPaxos+SS and JPaxos+epochs are the original JPaxos im-
plementations with FullSS and EpochSS recovery algorithms,
respectively. JPaxos+epochs stores all data in DRAM using
Java Collections. JPaxos+SS writes synchronously to files.
For a fair comparison with other systems, in our experiments
JPaxos+SS writes to files stored in pmem, although we also
give the results for SSDs.

The current support of Java in PMDK [12] is rudimentary,
so we implemented memory backends for the pmem-enabled
systems in C++ and compiled them to shared libraries, which
are then invoked using Java Native Interface (JNI). To estimate
the overhead of JNI, which requires extra memory copying
and prevents JIT optimisations, we compared JPaxos+epochs
with mPaxos@RAM, which (like mPaxosSM@RAM) uses
JNI and C++ standard data structures (aka STL). To estimate
the overhead of pmem and PMDK, we compared mPaxos
and mPaxosSM for three backends: @RAM, @pmem, and
@emulp. They store data to, respectively, DRAM (using STL),
real pmem (using libpmemobj-cpp, a C++ library of PMDK),
and DRAM (using the same PMDK routines that are needed
to write to pmem, where DRAM’s address range is manually
marked as persistent, thus treated by the operating system as
pmem).

C. System Throughput

To measure the system throughput we run the KV-Map state
machine on three replicas. The clients were sending either a
8kB put (50% requests), or a 9B get (50% requests). So the
average request size was 4kB. The result for a get was the
current value of the key, and for a put—the replaced one. We
tested the systems with two snapshot sizes: 10MB and 100MB,
which corresponds, respectively, to 1k and 12.5k unique keys
in the KV-Map.

We use two metrics: system throughput (or throughput, in
short) in requests per second (RPS) and leader uplink use,
i.e., the use of leader outgoing network bandwidth, in bits per
second (bps). The leader’s outgoing network link is the most
busy one in the system. When the network is the bottleneck,
then leader uplink use approaches 10Gbps. We calculate the
link use using network interface statistics and express it in bits

6

TABLE II
SYSTEM THROUGHPUT WITH 4KB REQUESTS

System and backend Snapshot Leader uplink Throughput
or SS (SSD, pmem) size [Mbps] [RPS]
JPaxos+epochs 9 685.44 106 278.43
mPaxos@RAM 9 338.53 100 653.97
mPaxos@emulp 10MB 9 221.89 99 721.62
mPaxos@pmem 8 928.79 96 038.44
JPaxos+SS (pmem) 8 977.74 97 904.78
JPaxos+SS (SSD) 8 072.67 83 265.09
JPaxos+epochs 8 851.13 93 294.19
mPaxos@RAM 7 254.97 72 936.65
mPaxos@emulp 100MB 6 936.74 68 666.71
mPaxos@pmem 6 357.79 64 492.50
JPaxos+SS (pmem) 7 440.99 76 019.19
JPaxos+SS (SSD) 6 231.96 62 100.08
mPaxosSM@RAM 9 765.33 106 306.62
mPaxosSM@emulp — 5 296.43 56 618.73
mPaxosSM@pmem 3 937.50 42 020.00

per second, divided by 106 to get Mbps. The experimental
evaluation results are summarized in Table II and discussed
below.

1) Throughput with Periodic Snapshots: First, we discuss
the systems run with small snapshots (10MB). JPaxos+epochs
uses 9.6Gbps of leader uplink, executes 106k RPS, and the
network bandwidth limits the performance. mPaxos@RAM
uses 9.3Gbps of leader uplink and executes 100k RPS, so is
5% slower than JPaxos+epochs. This is the cost of using JNI5,
which can be eliminated if the systems were implemented in
a language with efficient native pmem support (e.g., C++).
Handling each new application snapshot in mPaxos@RAM
momentarily halts the system, and for the rest of the time
the network limits throughput. In mPaxos@pmem the use
of leader uplink is 8.9Gbps and 96k requests are processed
per second. This is 10% less RPS than JPaxos+epochs and
5% less than mPaxos@RAM. mPaxos@pmem, similarly to
mPaxos@RAM, halts the system while a snapshot is pro-
cessed. The 5% drop in performance can be attributed to the
latency of pmem. In this test, the network, not the performance
of pmem, was the main cause of RPS limit.

With larger snapshots (100MB) the system throughput
decreases for all systems/backends. JPaxos+epochs executes
12% less requests, while mPaxos@RAM and mPaxos@pmem,
respectively, 28% and 33%. The magnitude of the throughput
drop is high for the systems using JNI (mPaxos@RAM and
mPaxos@pmem), and moderate for JPaxos+epochs. Hence,
JNI is a major cause for the RPS drop, but the impact of
limited pmem performance is also visible.

The results show that mPaxos@pmem with small snap-
shots is slower (by 10%) than JPaxos+epochs, but the latter
system restricts the number of simultaneous failures, so it
is less practical. mPaxos@pmem is also slightly slower (by
2%) than JPaxos+SS (pmem) that uses persistent memory
as stable storage. However, when we deduct the cost caused

5The only difference in failure-free operation between JPaxos+epochs and
mPaxos@RAM is that the former stores the data items described in Sec-
tion IV-A using standard Java data structures, while the latter uses equivalent
standard data structures in C++. The performance of the data structures in
C++ is no worse than in Java. However, JNI (the mechanism responsible for
calling C++ code from Java) brings the performance penalty that we observe.

by JNI (which is around 5%, if we compare mPaxos@RAM
with JPaxos+epochs), we estimate that mPaxos@pmem will
be slightly faster than JPaxos+SS (pmem), both of which
tolerate catastrophic failures, and about 20% faster than
JPaxos+SS (SSD) that uses SSDs as stable storage. On the
other hand, mPaxos@pmem with larger snapshots is 31%
slower than JPaxos+epochs, and is also slower (by 15%)
than JPaxos+SS (pmem). As before, this cost includes JNI
overhead, which for large snapshots is around 22%, when
comparing mPaxos@RAM with JPaxos+epochs. So, we ex-
pect that mPaxos@pmem will be no worse than JPaxos+SS
(pmem), if we get rid of JNI. On the other hand, the current
implementation of mPaxos@pmem (with JNI) outperforms
JPaxos+SS that writes to SSDs by 4%.

2) Throughput with On-demand Snapshots: As a base-
line to evaluate mPaxosSM’s throughput we took mPax-
osSM@RAM. mPaxosSM@RAM uses 9.7Gbps of the leader
uplink and processes 106k client requests per second. This
saturates the leader uplink, and is also slightly better than
JPaxos+epochs, as the latter must spend some of its resources
for creating snapshots on a regular basis. So, redesigning the
system to work only on the on-demand snapshots did not incur
any performance problems.

With mPaxosSM@emulp the leader uses only 5.3Gbps of
its outgoing link and the throughput drops to 56k RPS—47%
less than mPaxosSM@RAM, even though mPaxosSM@emulp
still writes to DRAM (emulated pmem) rather than real
pmem. The only difference between mPaxosSM@emulp and
mPaxosSM@RAM is that the former uses the libpmemobj-
cpp library of PMDK and writes to memory using PMDK
transactions, while the latter uses standard C++ data structures.
On the other hand, mPaxosSM@pmem uses 3.9Gbps of leader
uplink and processes 42k RPS, so it is 60% slower than
mPaxosSM@RAM and 26% slower than mPaxosSM@emulp.
Note that mPaxosSM@emulp and mPaxosSM@pmem share
the same code; the only difference is that the former writes
to pmem emulated in DRAM, while the latter writes to real
pmem. Apparently the use of PMDK has a significantly higher
impact (47%) on the system throughput than the difference in
performance between DRAM and pmem (26%).

3) Profiling mPaxosSM: We used a profiler to pinpoint the
cause of the slowdown. It turned out that the performance
of the backends using PMDK is limited by a thread, which
constantly uses 100% CPU, responsible for unbatching the de-
cided instances and passing operations one by one to the state
machine for execution. As the operations must be executed
sequentially, this cannot be parallelized. We profiled the thread
alone (in mPaxosSM@pmem) with the perf tool. In 67% of
the samples, the profiler hit either PMDK’s transaction upkeep,
or PMDK’s memory allocations. Most of the time was spent in
copying data accessed from within a transaction into the undo
log (pmemobj_tx_xadd_range_direct, 26.7% of CPU
time), and in committing the transaction (pmemobj_tx_
commit, 21.1% of CPU time). Allocating memory (pmem
::obj::make_persistent<>) took 8.8%, and freeing
it (pmem::obj::delete_persistent<>) took 3.9% of

7

 0

 100

 200

 300

 400

1kB 2kB 3kB 4kB 5kB 6kB

C
lie

n
t

re
q
u
e
st

s
(M

B
y
te

/s
)

Request size

mPaxosSM@RAM

+

+

+

+

+

+
+

+
+ + + +

+
mPaxosSM@emulp

×
×

×

×
×

×
×

×
× ×

×
×

×
mPaxosSM@pmem🞵🞵

🞵
🞵

🞵 🞵
🞵 🞵 🞵 🞵

🞵 🞵

🞵

JPaxos+epochs

○

○

○

○

○ ○ ○ ○ ○ ○ ○ ○

○
JPaxos+SS (pmem)

□

□

□

□

□
□

□
□ □ □ □ □

□
mPaxos@RAM△

△

△

△

△
△ △ △ △ △ △ △

△
mPaxos@pmem

▽

▽

▽

▽

▽
▽

▽ ▽ ▽ ▽ ▽ ▽

▽

Fig. 3. Throughput for different request sizes.

CPU time.
The results show a huge cost of atomic transactions. The

transactions are there to guarantee that a crash at any point
of time leaves the persistent memory in a state that can be
recovered to a consistent one, so to some extent this cost is
unavoidable. However, we believe that writing the transactions
manually instead of using the ones provided by PMDK could
reduce the overhead. We leave this for future work.

4) Throughput for Different Request Sizes: We also evalu-
ated the throughput of KV-Map on three replicas with different
request sizes, in range from 128B to 10kB. To compare the
throughput, we present it in MBytes/s, calculated as RPS mul-
tiplied by the request size. For each request size, through tests,
we selected the numbers of parallel Paxos instances, clients,
and operations in a batch that maximize the system throughput.
We tested all systems for a wide range of the numbers of
parallel instances (3÷10) and the sizes of operations in a batch
(32k÷320k). The size of a snapshot is in order of 10MB. Fig. 3
presents the vital part of the evaluation results (up to 6kB).

For small requests (< 1kB) all systems with all backends
are limited by the CPU, and apart from mPaxosSM@emulp
and mPaxosSM@pmem have a similar throughput. The latter
two use more CPU for PMDK transactions, so they perform
worse. For moderate requests (1kB÷3.5kB) mPaxos (with any
backend) outperforms JPaxos+SS (pmem), and up to 2kB also
mPaxosSM@RAM. With requests up to 4kB, JPaxos+epochs
is on top, and beyond it stays second best, with mPax-
osSM@RAM taking the lead. With sufficiently large requests
the throughput of all systems apart from mPaxosSM@emulp
and mPaxosSM@pmem is limited by the available network
bandwidth and (except for mPaxosSM@RAM) by the mo-
mentarily halts when periodic snapshots are created. When the
requests are 2.5kB or larger, mPaxos@RAM, mPaxos@emulp
and mPaxos@pmem are, respectively, 5%, 7% and 10% slower
than JPaxos+epochs. With requests beyond 8kB JPaxos+SS
approaches the performance of JPaxos+epochs by 1% when it
uses pmem, but it is 20% slower if it uses SSDs. However,
JPaxos+SS (with SSDs or pmem as SS) requires four times as
many operations to be batched in each instance to reach top
performance when compared to any other system.

D. Restarting after Crash
1) Restarting after Crash in mPaxos: Recovering a crashed

replica in JPaxos+SS and JPaxos+epochs is thoroughly evalu-
ated in [6], including catching up with other replicas. Restart-
ing a replica in mPaxos@pmem differs from JPaxos+SS only
in the time required by the latter to read the logs from stable
storage. Therefore, below we present only a summary of the
results for these backends on our hardware.

We evaluated how long it takes to recover a replica in
JPaxos+epochs, JPaxos+SS and mPaxos@pmem. To this end,
we run three replicas and 1k clients that were continuously
sending requests (3kB on average) to KV-Map. The periodi-
cally created snapshot had 200MB. We crashed one replica (let
denote it Rr), and restarted it after 20s. With JPaxos+epochs,
Rr starts in 0.04s and needs another 0.04s to exchange the
recovery messages. Then it executes the catch-up protocol,
which takes 1.6s. In JPaxos+epochs, Rr can send any Paxos
messages only once the catch-up succeeds, that is 1.7s from
the restart. In JPaxos+SS, Rr can reply to the Paxos messages
once it restores state from SS, which takes less time (1.14s).
However, the recovered state is outdated, so JPaxos+SS starts
catch-up once it learns that other replicas advanced while Rr

was down. When Rr runs with mPaxos@pmem, it can send
any Paxos messages immediately after restart. Starting Rr,
which includes recovering the application from the snapshot
(read from pmem), takes only 0.42s. Obviously, Rr must also
catch up with other replicas to update its state.

2) Restarting after Crash in mPaxosSM: We evaluated how
long it takes for a replica to restart and be fully functional
again, and what impact had the restart on the entire system.
For this, we run three and five replicas, and 1k clients which
were sending non-stop either get (50%) or 6kB put (50%)
requests to KV-Map. In the 30th second we crashed one of
the replicas (Rr), and in the 50th second we restarted it. The
size of the state machine’s pmem was set to 512MB6. The
restarted replica Rr has to catch up with the execution, and it
does so by first querying a follower Rf for the commands.

Typically a client sends requests repeatedly to the same
replica as long as it receives replies on time. Otherwise, the
client connects with another replica. Therefore to make the
restarted Rr reply to the clients, we force the clients to change
replicas (selected randomly) every 1k requests.

Fig. 4 shows how the outgoing link usage changes for all
replicas when one follower crashes and restarts in a system
with three replicas. It takes about 0.3s to start a process, that
is, start Java VM, call the code initializing our system, set up
pmem memory mappings, establish network connections, etc.
More precisely, it takes 0.23s from the start of Rr to establish
connections to other replicas (from now on the replica can
reply to Paxos messages), and after another 0.07s a catch-
up query is sent. In response, Rf generates a snapshot in
0.38s. For this time the processing on Rf stops. Transmitting

6One reason to use a larger size than the snapshot’s size used in the previous
subsection, is that the results are more pronounced, and the other is that the
size of pmem is the memory capacity of a state machine, while a snapshot
prepared by it contains only the vital, and possibly compacted, data.

8

0
2
4

Leader

0
2
4 Follower (Rf)

0
2
4

20 30 40 50 60 70 80 90

Crashing follower (Rr)Up
lin

k
us

ag
e

[G
bi

t/
s]

Fig. 4. Outgoing link usage while a follower crashes and later restarts in
mPaxosSM@pmem with three replicas.

 36

 40

 44

 48

 20 30 40 50 60

R
e
q
u
e
st

s/
s

[k
R

P
S
]

3 replicas

 20 30 40 50 60

5 replicas

Time [s]

Fig. 5. Throughput upon leader crash and restart in mPaxosSM@pmem.

the snapshot (518MB) from Rf to Rr takes 0.85s. Then, Rr

spends 0.55s on writing the snapshot to pmem, and another
0.23s restarting the SM on the newly written pmem. This
concludes the catch-up protocol. Altogether, it takes 2.3s to
start Rr and apply a snapshot received from a peer. The total
number of replicas does not impact the results.

In Fig. 5 we present how the system throughput changes
for a system with three and five replicas when the leader
crashes and restarts. The system throughput slightly drops
at crash, as with Rr down each replica must handle more
clients. Once the recovering Rr executes the catch-up, the
system with three replicas suffers a severe throughput drop,
as Rr is catching up and Rf is preparing a snapshot, so only
one replica is operational. With five replicas the impact of the
catch-up protocol on the overall throughput is moderate—Rr

is catching up and Rf creates a snapshot, and three remaining
replicas are replying to the clients non-stop, and no point in
time decisions are suspended. Once the catch-up concludes,
the throughput is not immediately restored, as while Rr knows
all decided operations, it still needs to execute them.

To tell when the throughput is fully restored, we check when
Rr responds to clients in a timely manner. This can be seen
in the use of Rr’s uplink usage in Fig. 4. At Rr’s crash (28s)
the clients it handled move to other replicas. When Rr has
updated its state from Rf ’s snapshot, the updated state is 2s
outdated (this is the time it takes to create, transfer and apply
a snapshot). So, Rr must not only execute newly decided
operations, but also operations decided for these 2 secs. Once
it completes catching up with execution, its outgoing link
usage rises by the data sent back to the clients (70÷85s).
So, it takes about 35 seconds from the start of Rr until the
throughput from before the crash is restored in a system with

three replicas. With five replicas restoring throughput takes 90
seconds. It takes longer because the system throughput drops
less at crash in a system with five replicas, as handling the
clients previously connected to Rr spreads over four rather
two replicas, so Rr has less CPU time left to catch up
with execution, as the CPU is more occupied by the current
requests.

VII. RELATED WORK

There have been numerous articles related to consensus
algorithms. Lamport’s original description of Paxos in [3], was
followed by attempts to explain it more clearly (e.g., [13]–
[15]), or to fill in any missing details and extend the algorithm
to provide a better foundation for implementation (e.g., [16],
[17]) or to optimize its performance (e.g., [18], [19], [20], [21],
[22], [23]). In addition, some other consensus algorithms were
proposed (e.g. [24], [25]), discussed below.

However, the above papers do not explain how to develop an
efficient replicated state machine system. The rise of demands
for automated solutions to cluster management, failover, and
sharding finally led to the adoption of consensus in practical
systems (such as Chubby [7], ZooKeeper [26], Spinnaker [27],
and Spanner [28]). In [7], the authors describe the design of
Google’s Chubby lock service, which uses Paxos. Paxos, as
originally stated, is a page of pseudocode, while inside of
Chubby the implementation grew up to several thousand lines
of C++. In [29], the authors document the evolution of the
Paxos algorithm from theory into practice while developing
Chubby. A mechanism of durable logs and snapshots serialized
on disk is briefly described, which is similar to ours. As we can
see from these papers, making a centralized consensus system
production-ready can come at the cost of adding optimizations
and recovery mechanisms.

In [6], we discussed the existing work on failure recovery
for replicated state machines, built with Paxos and other
consensus protocols. The cited works include recovery from
a persistent log (e.g, [17]), as in the original Paxos, or a log
and snapshot written to stable storage (e.g., [29] [22]), as in
JPaxos+SS. In [17], the authors evaluated the performance of
Paxos with and without synchronous disk writes and show
a high cost to provide crash resiliency using disks. In [6],
we proposed an alternative approach for Paxos: ViewSS and
EpochSS, in which a replica recovers state from peers. The
latter recovery protocol is more efficient than the former and
JPaxos+SS, hence we used it for comparison with our pmem-
enabled Paxos frameworks in this paper.

In [27], the authors describe Spinnaker’s replication proto-
col, which bears some similarity with Paxos. They explain how
a leader and followers are recovered after a node failure. The
recovery of a follower proceeds in two phases: local recovery
(from a persistent log) and catch up. If the follower has lost all
its data because of a disk failure, then it moves directly to the
catch up phase, which is similar to the one used in our Paxos
framework, but the leader is contacted. The leader responds by
sending the missing committed writes, and at the end of the
catch up phase, it momentarily blocks new writes to ensure

9

that that the follower is fully caught up. In our framework,
the busy leader is not disturbed at first place and the system
is not blocked during catch up.

In [30], the authors proposed failure detectors aimed for the
crash-recovery model, and determined under what conditions
stable storage is necessary in order to solve consensus. They
proposed two consensus algorithms, one requires stable stor-
age and the other does not. They showed that stable storage
is not needed to recover iff always-up replicas outnumber
unstable or eventually-down replicas. They also showed that
if there are no replicas which are always-up, then recovery
without frequent accesses to stable storage is not possible. For
a comparison, the correctness of Paxos equipped with ViewSS
and EpochSS [6] is based on a more practical assumption
about the number of simultaneous failures.

Oki and Liskov’s Viewstamped Replication (VR) [24] (see
also [31], where the core consensus protocol was described)
proposed an alternative approach to consensus (see also [32],
presenting a practical view on VR). The VR algorithm requires
few data to be stored permanently, with sporadic writes. It
also gives a clear description of how the state of lagging
replicas is updated. In [31], Liskov and Cowling describe how
the group reorganizes when a replica fails, and how a failed
replica is able to rejoin the group in the VR (see [33] and
[34] for analogous solutions aimed for Paxos). The method
does not depend on stable storage, but strengths assumptions
on system asynchrony and clock behaviour. The authors do
not explain how a replica joining the system learns whether it
begins execution or recovers after crash. ViewSS and EpochSS
use, respectively, view and epoch numbers for this, which are
recorded in stable storage.

Raft [25] is another consensus algorithm which shares some
similarities to VR, written for managing a replicated log but
designed with the goal of making the algorithm itself more
understandable than Paxos. It allows proposers to be elected
only if they have the most up-to-date logs. This prevents
the need for transferring data from follower to leader upon
election. Raft uses a catch-up method that is similar to ours,
but in order to support recovery all key data of the algorithm
must be written to stable storage.

Periodic state snapshots as well as the log/state transfers can
severely impact the performance of some applications. In [35],
the authors propose sequential checkpointing and collaborative
state transfer to optimize this process. Both methods can be
applied to many systems, including ours. In P-SMR [36], the
recovering replica can execute new commands before the state
of the replica gets fully updated, which is possible as long as
the new commands are independent of the missing ones.

Since the first persistent memory products made it to market,
one can observe an endless stream of new, pmem-optimized
(non-replicated) key-value stores that leverage pmem’s byte
addressability and low latency, yielding systems that greatly
outperform traditional block-based solutions (see, e.g., [37],
[38], [39], [40], [41]). In [37], the authors proposed a key-
value store that leverages both the byte-addressability of pmem
and the lower latency of DRAM, using a technique called

cross-referencing logs to keep most pmem updates off the
critical path. In [41], the authors proposed a persistent hash
index residing in pmem for fast searching and a B+-Tree
index residing in DRAM for fast updating and supporting
range scan. On top of the hybrid index, they built a key value
store. We also split data in DRAM and persistent memory in
the replicated state machine for efficiency. Other optimization
methods described in these papers are orthogonal to the work
presented in this paper, and also apply to KV-Map.

Little work has been done so far on the use of persistent
memory for consensus protocols. In [42], the authors proposed
an approach to providing fault-tolerance for pmem that treats
memory as a replicated storage system, with a programmable
network switch (which cannot fail), which implements a
simple consensus protocol for keeping replicas consistent
through failures. The implementation uses a generalisation of a
protocol in [43] which ensures linearizable read-write access
to memory, while tolerating failures. Contrary to Paxos that
allows for arbitrary operations (e.g., increment), the protocol
can only support reads/writes. We are not aware of other work
than ours on the use of persistent memory to optimize state
recovery in Paxos-based state machine replication.

VIII. CONCLUSIONS

We showed that persistent memory can boost performance
of Paxos based replicated state machines, as it provides access
latencies less than those of SSDs, while data persists in
memory after power interruption like in SSDs and HDDs.
However, the existing Paxos frameworks are unable to take
full advantage of pmem because their internal architectures
are predicated on the assumption that memory is volatile. We
proposed two novel designs, mPaxos and mPaxosSM, which
are tailor-made for pmem. The latter allows some components
of the framework which degrade the system performance to
be removed (e.g. periodic snapshots).

We examined the implications of pmem for recovery in
Paxos. When state snapshots are small, the throughput of the
mPaxos-based replicated hashmap is on par with the one using
JPaxos+epochs that does not depend on stable storage (as the
system recovers after failure from peers). But JPaxos+epochs
requires quorum all the time, while mPaxos and mPaxosSM
can tolerate any number of crashed replicas. Moreover, the
mPaxosSM-based hashmap enjoys an instant recovery time,
as entire critical state survives the crash in pmem.

Although, the mPaxosSM-based hashmap does not create
periodic snapshots, the system throughput is comparable with
the JPaxos+SS-based one that uses cutting-edge SSDs. This
result shows that the overhead of using transactions and
memory allocators in Intel’s PMDK (a library for safe pmem
programming) is high and ought to be reduced to fully gain
the benefits of the new hardware.

ACKNOWLEDGMENT

We thank Intel Corporation and Intel Technology Poland
for providing us with computing resources equipped with the
Intel® Optane™ DC persistent memory technology.

10

REFERENCES

[1] L. Lamport, “Using time instead of timeout for fault-tolerant distributed
systems,” ACM TOPLAS, vol. 6, no. 2, pp. 254–280, Apr. 1984.

[2] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299–319, Dec. 1990.

[3] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems, vol. 16, no. 2, pp. 133–169, May 1998.

[4] Intel Corporation, “Intel® optane™ persistent memory,”
https://www.intel.com/content/www/us/en/architecture-and-technology/
optane-dc-persistent-memory.html.

[5] R. Crooke and M. Durcan, “A revolutionary breakthrough in memory
technology,” 3D XPoint Launch Keynote, 2015. [Online]. Available:
https://www.youtube.com/watch?v=VsioS35D-HY

[6] J. Kończak, P. T. Wojciechowski, N. Santos, T. Żurkowski, and
A. Schiper, “Recovery algorithms for Paxos-based state machine repli-
cation,” IEEE TDSC, vol. 18, no. 2, pp. 623–640, March-April 2021.

[7] M. Burrows, “The Chubby lock service for loosely-coupled distributed
systems,” in Proc. of OSDI ’06, Nov. 2006.

[8] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition
for concurrent objects,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 12, no. 3, pp. 463–492, Jul. 1990.

[9] N. Santos and A. Schiper, “Tuning Paxos for high-throughput with
batching and pipelining,” in Proc. of ICDCN ’12, Jan. 2012.

[10] Persistent Memory Development Kit (PMDK), Intel Corporation, 2020.
[Online]. Available: https://pmem.io

[11] “mPaxos, mPaxosSM – State machine replication tools based on Paxos,
with support of failure recovery form persistent memory (Java/C++),”
2021. [Online]. Available: https://github.com/JPaxos/

[12] S. Scargall, Programming Persistent Memory: A Comprehensive Guide
for Developers. Springer Nature, 2020.

[13] L. Lamport, “Paxos made simple,” SIGACT News, vol. 32, no. 4, pp.
51–58, 2001.

[14] B. W. Lampson, “How to build a highly available system using con-
sensus,” in Proc. of WDAG ’96: the 10th International Workshop on
Distributed Algorithms, ser. LNCS, vol. 1151, Oct. 1996.

[15] ——, “The ABCD’s of Paxos,” in Proc. of PODC ’01, Aug. 2001.
[16] R. van Renesse and D. Altinbuken, “Paxos made moderately complex,”

ACM Computing Surveys, vol. 47, no. 3, pp. 42:1–42:36, 2015.
[17] J. Kirsch and Y. Amir, “Paxos for system builders: An overview,” in

Proc. of LADIS ’08: the 2nd Workshop on Large-Scale Distributed
Systems and Middleware (LADIS), Sep. 2008.

[18] L. Lamport, “Generalized consensus and Paxos,” Microsoft Research,
Tech. Rep. MSR-TR-2005-33, 2005.

[19] ——, “Fast Paxos,” Distributed Computing, vol. 19, no. 2, 2006.
[20] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: Building efficient

replicated state machine for wans,” in Proc. of OSDI ’08, Dec. 2008.
[21] L. J. Camargos, R. M. Schmidt, and F. Pedone, “Multicoordinated

agreement protocols for higher availabilty,” in Proc. of NCA ’08, 2008.
[22] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and P. Li,

“Paxos replicated state machines as the basis of a high-performance data
store,” in Proc. of NSDI ’11, March-April 2011.

[23] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more consensus
in egalitarian parliaments,” in Proc. of SOSP ’13, Nov. 2013.

[24] B. M. Oki and B. H. Liskov, “Viewstamped Replication: A new primary
copy method to support highly-available distributed systems,” in Proc.
of PODC ’88, Aug. 1988.

[25] D. Ongaro and J. K. Ousterhout, “In search of an understandable
consensus algorithm,” in Proc. of USENIX ATC ’14, Jun. 2014.

[26] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems,” in Proc. of USENIX ATC ’10,
Jun. 2010.

[27] J. Rao, E. J. Shekita, and S. Tata, “Using Paxos to build a scalable,
consistent, and highly available datastore,” in Proc. of VLDB ’11, 2011.

[28] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford, “Spanner: Google’s globally-distributed
database,” in Proc. of OSDI ’12, Oct. 2012.

[29] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: An
engineering perspective,” in Proc. of PODC ’07, Aug. 2007.

[30] M. K. Aguilera, W. Chen, and S. Toueg, “Failure detection and consen-
sus in the crash-recovery model,” in Proc. of DISC ’98, Sep. 1998.

[31] B. Liskov and J. Cowling, “Viewstamped Replication revisited,” Com-
puter Science and Artificial Intelligence Lab., MIT, Tech. Rep. MIT-
CSAIL-TR-2012-021, Jul. 2012.

[32] D. Mazières, “Paxos made practical,” Jan. 2007, Unpublished
manuscript. [Online]. Available: http://www.scs.stanford.edu/~dm/home/
papers/paxos.pdf

[33] L. Lamport, D. Malkhi, and L. Zhou, “Vertical Paxos and primary-
backup replication,” in Proc. of PODC ’09, Aug. 2009.

[34] L. Jehl, T. E. Lea, and H. Meling, “Replacement: Decentralized failure
handling for replicated state machines,” in Proc. of SRDS ’15, 2015.

[35] A. N. Bessani, M. Santos, J. Felix, N. F. Neves, and M. Correia, “On
the efficiency of durable state machine replication,” in Proc. of USENIX
ATC ’13, Jun. 2013.

[36] O. M. Mendizabal, F. L. Dotti, and F. Pedone, “High performance
recovery for parallel state machine replication,” in Proc. of ICDCS ’17,
Jun. 2017.

[37] Y. Huang, M. Pavlovic, V. Marathe, M. Seltzer, T. Harris, and S. Byan,
“Closing the performance gap between volatile and persistent key-value
stores using cross-referencing logs,” in Proc. of USENIX ATC ’18, 2018.

[38] K. A. Bailey, P. Hornyack, L. Ceze, S. D. Gribble, and H. M. Levy,
“Exploring storage class memory with key value stores,” in Proc. of
INFLOW ’13: the 1st Workshop on Interactions of NVM/FLASH with
Operating Systems and Workloads, Nov. 2013.

[39] S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main memory,”
in Proc. of VLDB ’15, Aug-Sept 2015.

[40] B. Debnath, A. Haghdoost, A. Kadav, M. G. Khatib, and C. Ungureanu,
“Revisiting hash table design for phase change memory,” ACM SIGOPS
Operating Systems Review, vol. 49, no. 2, pp. 18–26, 2015.

[41] F. Xia, D. Jiang, J. Xiong, and N. Sun, “Hikv: A hybrid index key-value
store for DRAM-NVM memory systems,” in Proc. of USENIX ACT ’17,
Jul. 2017.

[42] H. T. Dang, J. Hofmann, Y. Liu, M. Radi, D. Vucinic, R. Soulé, and
F. Pedone, “Consensus for non-volatile main memory,” in Proc. of ICNP
’18, Sep. 2018.

[43] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly in
message-passing systems,” Journal of the ACM, vol. 42, no. 1, pp. 124–
142, 1995.

11

https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.youtube.com/watch?v=VsioS35D-HY
https://pmem.io
https://github.com/JPaxos/
http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf

	Introduction
	System Model and Paxos-based SMR
	The Paxos framework
	The Log
	Snapshots
	Catching Up

	Persistent Memory Aware SMR Tools
	mPaxos: SMR with Paxos in pmem
	mPaxosSM: SMR with Paxos and SM in pmem

	Recovering from Failures
	Recovery from State Read from Stable Storage
	Resumption from Persistent Memory
	Recovery from State Received from Other Replicas

	Experimental Evaluation
	Environment
	Memory Backends Used in Evaluation
	System Throughput
	Throughput with Periodic Snapshots
	Throughput with On-demand Snapshots
	Profiling mPaxosSM
	Throughput for Different Request Sizes

	Restarting after Crash
	Restarting after Crash in mPaxos
	Restarting after Crash in mPaxosSM

	Related work
	Conclusions
	References

