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ABSTRACT
Transactional memory, an approach aiming to replace cum-
bersome locking mechanisms in concurrent systems, has be-
come a popular research topic. But due to problems posed
by irrevocable operations (e.g., system calls), the viability
of pessimistic concurrency control for transactional memory
systems is being explored, in lieu of the more typical opti-
mistic approach. However, in a distributed setting, where
partial transaction failures may happen, the inability of pes-
simistic transactional memories to roll back is a major short-
coming. Therefore, this paper presents a novel transactional
memory concurrency control algorithm that is both fully
pessimistic and rollback-capable.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming

Keywords
Concurrency control; Software transactional memory

1. INTRODUCTION
Transactional Memory (TM) [8, 13] is an increasingly

popular research topic and a promising way to reduce the
effort overhead introduced by concurrent programming by
using the transaction abstraction. This approach is also ap-
plied to distributed systems, although additional issues like
partial failures need to be addressed there.

In TM emphasis is placed on optimistic concurrency con-
trol. There are variations, but generally speaking in this
approach a transaction executes regardless of other transac-
tions and performs validation only when it finishes executing
(at commit-time). If two transactions try to access the same
object, and one of them writes to it, they conflict and one

∗This work was funded by NCN grant 2012/06/M/ST6
/00463.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPAA’13, July 23–25 2013, Montréal, Québec, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
Copyright 2013 ACM 978-1-4503-1572-2/13/07 ...$15.00.

of them aborts and restarts. When a transaction aborts, it
should not change the system state, so aborting transactions
must revert the objects they modified to a checkpoint. Al-
ternatively, they work on local copies and merge them with
the original object on a successful commit.

Unfortunately, there is a problem with irrevocable opera-
tions in the optimistic approach. Such operations as system
calls, I/O operations, or network messages, once executed,
cannot be canceled and so, cause aborted transactions to
have a visible effect on the system. In a distributed context
these operations are common. The problem was avoided by
using irrevocable transactions that run sequentially, and so
cannot abort [16], or providing multiple versions of transac-
tion view for reads [1, 12]. In other cases, irrevocable oper-
ations are just forbidden in transactions (e.g., in Haskell).

A different approach, as suggested by [10] and our earlier
work [17, 18], is to use fully-pessimistic concurrency control.
This involves transactions waiting until they have permis-
sion to access shared objects. In effect, conflicting opera-
tions are postponed and transactions avoid forced aborts.
And therefore, transactions naturally avoid the problems
stemming from irrevocable operations.

However, distributed transactional memory, pessimistic or
optimistic, must still support rollback, because it is possible
for partial failures to occur in the system. More precisely,
rollback is ideal for reverting the system to a consistent state
as part of a recovery procedure. Moreover, rollback makes a
TM more expressive. That is, there are situations where the
programmer wants to abort transactions as part of program
logic. If there is no rollback and the programmer implements
an ad hoc stand-in within the transaction, this detract from
readability and is inefficient due to extra network commu-
nication with objects. To make it efficient, the programmer
has to make changes to the object code (i.e., allow object-
local backup copies).

In this paper we propose the Supremum Versioning Al-
gorithm (SVA) with rollback support, a novel algorithm for
fully-pessimistic concurrency control aimed for distributed
wide-area transactions. Given precise information on object
use within transactions, SVA provides optimal scheduling
of transaction operations comparable to manually-designed
fine-grained locking. This is due to its ability to release ob-
jects before committing (after the object was used for the
last time). The ability to use rollback allows SVA to react to
failures and makes it more expressive and easier to use from
the point of view of the programmer. SVA preserves opac-
ity and strong progressiveness guarantees while supporting
both rollbacks and the early release mechanism.



O ⊆ Objects
T ⊆ Transactions
L ⊆ Objects→ Locks
Vg, Vl, Vlt, Vc ⊆ Objects→ N0

Vp, C, Vr ⊆ Objects× Transactions→ N0

Os ⊆ Objects× Transactions→
ObjectData ∪ {null}

Figure 1: SVA structures.

2. RELATED WORK
Several distributed TM systems were proposed (see e.g.,

[2, 5, 9, 19]). Most of them replicate a non-distributed TM
on many nodes and guarantee that replicas are consistent.
Their programming model is different from our distributed
transactions. Other systems extend non-distributed TMs
with a communication layer, e.g., DiSTM [9] extends [7] with
distributed coherence protocols. HyFlow [15] uses a similar
model to ours. However, these are optimistic TMs.

Distributed transactions are successfully used where re-
quirements for strong consistency meet wide-area distribu-
tion, e.g., in Google’s Percolator [11] and Spanner [4]. Perco-
lator supports multi-row, ACID-compliant, pessimistic database
transactions that guarantee snapshot isolation. A drawback
in comparison to TM is that writes must follow reads. Span-
ner provides semi-relational replicated tables with general
purpose distributed transactions. It uses real-time clocks
and Paxos to guarantee consistent reads. Spanner defers
commitment like SVA, but buffers writes and aborts on con-
flict. Irrevocable operations are banned in Spanner.

Matveev and Shavit [10] propose pessimistic non-distributed
TM that runs transactions sequentially (as in [16]) but al-
lows parallel read-only transactions (a plausible extension
of SVA). Operations are synchronized by delaying writes of
the write-set location (with busy waiting). This is done us-
ing version numbers of transactions. In contrast, SVA uses
object versions for similar purposes, which enables early re-
lease. However, direct comparison is difficult, because [10]
aims at non-distributed environments with fast access, while
SVA assumes network communication with overheads.

In [3], the authors prove that in a TM with faulty pro-
cesses, local progress (analogous to wait-freedom) and opac-
ity cannot both be ensured. Faulty processes either crash or
are parasitic—they run without ever attempting to commit
or abort. This is also evident for SVA.

There is no rigorous performance comparison of pessimistic
and optimistic (or hybrid) distributed TM. However, our
previous work [19] can shed some light. We compared pes-
simistic state-machine–based and optimistic deferred-update
replication schemes in a faulty system. We showed that nei-
ther scheme is clearly superior, but performance of the for-
mer is less dependent on workload and contention.

3. SVA WITH ROLLBACK
The Supremum Versioning Algorithm (SVA) is a pessimistic

concurrency control algorithm with rollback support; it builds
on our rollback-free variant in [18]. The modus operandi of
SVA is that transactions receive a version number during
initialization and use it to determine whether they can ac-
cess a shared object or whether they must wait until another
transaction finishes using that object. Finally a transaction

1 proc @t start(t ∈ T, S ⊆ O → N0 ∪ {ω}) ,
2 for each o ∈ dom(S) according to ≺L do
3 @o lock L(o)
4 for each o ∈ dom(S) in parallel do
5 @o Vg[o 7→ Vg(o) + 1]
6 @o Vp[(o, t) 7→ Vg(o)]
7 for each o ∈ dom(S) according to ≺L do
8 @o unlock L(o)

9 proc @t call(t ∈ T, S ⊆ O → N0 ∪ {ω}, o ∈ O) ,
10 @o wait until Vp(o, t)− 1 = Vl(o)
11 @o checkpoint(t, o)
12 if Vr(o, t) 6= Vc(o) then
13 @t rollback(t, S) and exit
14 @o call o
15 @o C[(o, t) 7→ C(o, t) + 1]
16 if C(o, t) = S(o) then
17 @o Vc[o 7→ Vp(o, t)]
18 @o Vl[o 7→ Vp(o, t)]

19 proc @t rollback(t ∈ T, S ⊆ O → N0 ∪ {ω}) ,
20 for each o ∈ dom(S) in parallel do
21 @o dismiss(t, o)
22 @o restore(t, o)

23 proc @t commit(t ∈ T, S ⊆ O → N0 ∪ {ω}) ,
24 for each o ∈ dom(S) in parallel do
25 @o dismiss(t, o)
26 if ∃o ∈ dom(S), Vr(o, t) > Vc(o) then
27 @t rollback(t, S) and exit
28 for each o ∈ dom(S) in parallel do
29 @o Os(o, t)← null
30 @o Vlt[o 7→ Vp(o, t)]

31 proc @o checkpoint(t ∈ T, o ∈ O) ,
32 if C(o, t) = 0 then
33 @o Os(o, t)← copy o
34 @o Vr[(o, t) 7→ Vc(o)]

35 proc @o dismiss(t ∈ T, o ∈ O) ,
36 @o wait until Vp(o, t)− 1 = Vlt(o)
37 if C(o, t) 6= 0 ∧ Vr(o, t) = Vc(o) then
38 @o Vc[o 7→ Vp(o, t)]
39 if Vp(o, t)− 1 = Vl(o) then
40 @o Vl[o 7→ Vp(o, t)]

41 proc @o restore(t ∈ T, o ∈ O) ,
42 if C(o, t) 6= 0 ∧ Vr(o, t) < Vc(o) then
43 @o revert o← Os(o, t)
44 @o Vc[o 7→ Vr(o, t)]
45 @o Os(o, t)← null
46 @o Vlt[o 7→ Vp(o, t)]

Figure 2: SVA with rollback.

commits, which means it releases its objects—other trans-
actions can start using them and this transaction no longer
will. Alternatively, the transaction can roll back (abort).
This reverts the state of all shared objects as if the transac-
tion never modified them and finally releases them.

SVA supports an early release mechanism. That is, a
transaction can release any objects after it used them for the
last time (even before committing). This is possible because
every transaction knows the upper bounds on the number of
accesses to each object. (For our purposes this information
comes from an oracle, but in practice, it may be extracted
through static analysis [14] or typing [17].) However, while
this development significantly improves the number of trans-
actions executing simultaneously, it leads to a more complex
rollback mechanism. A transaction must defer commit un-
til the preceding transaction finishes, in case the current
transaction uses objects that were released early and the
preceding transaction rolls back. This is detailed below.

SVA Structures Before discussing the algorithm we
describe the structures it uses. They are defined in Fig. 1.
SVA works on sets of shared objects O and transactions T .



Since SVA works in a distributed system, objects are located
and transactions spawn at arbitrary locations (or sites).

The basic premise of versioning algorithms is that coun-
ters are associated with transactions and used to allow or
deny access by these transactions to shared objects (rather
than only for recovery). SVA uses several version counters.
Private version counters Vp uniquely define the version of a
transaction with respect to an object. Global version coun-
ters show which transaction last started on a given object
(this is used to initialize Vp). Local version counters Vl show
which transaction can use a given object. Local terminal ver-
sion counters Vlt show which transaction can commit or roll
back a specific object. Current version counters Vc and re-
covery version counters Vr are used as a pair to detect if a
preceding transaction rolled back an object that the current
transaction is already using and to determine which trans-
action is responsible for reverting the object’s state.

In order to detect the last use of an object, SVA requires
that suprema (or infinity ω) on accesses S be given for each
object used by a transaction. Then, call counter C is used
to track actual accesses and to release objects early. In order
be able to revert the state of objects SVA also uses a stored
object map Os, where transactions store copies of objects
before modifying them. Also, SVA uses a map of locks L,
one lock for each object during transaction start. These
locks must always be used in order ≺L to prevent deadlocks.

The version counters and other structures are distributed
among shared objects. Specifically, for any object o, values
of Vp, Vl, Vlt, Vg, Vc, Vl, L, and Os associated with o are
located at o. Initially, all the locks are unlocked, all counters
are set to zero, and the stored object map is empty.

SVA Transactions The life cycle of every SVA transac-
tion begins with procedure start (we also refer to this part
as initialization). Following that, a transaction may execute
one or more accesses (calls) to a shared object. After any
call or right after start a transaction may then either proceed
to commit or rollback, which ends a transaction’s life cycle.
All procedures are shown in Fig. 2 and described below.

Note that accesses to shared objects can be interleaved
with accesses to non-shared, transaction-local objects. How-
ever, those objects are only visible to the transaction they
are local to, so they do not influence other transaction. So,
we omit them for clarity. We also assume that transactions
are executed in a single fresh dedicated thread. We also do
not allow nested transactions and recurrency.

The pseudocode in Fig. 2 indicates where particular pro-
cedures and operations are located in the distributed system.
If an operation is run on the host where object o is located,
we mark it as @o. By analogy, @t means the operation is
executed at the client running t. This gives a picture of net-
work communication that transactions need to engage in.

The initialization of a transaction is shown in start at
line 1. When a transaction starts it uses Vg to assign itself a
unique version for each object it will access (Vp). This must
be done atomically and in isolation, so these operations are
guarded by locks—one lock lo for each object used.

Objects are accessed via procedure call at line 9. Before
accessing an object, the transaction waits for the preceding
transaction to release it (line 10). When this happens, the
transaction makes a backup copy to Os using checkpoint
(line 31)—a backup copy is made only before the first ac-
cess to the object. If meanwhile no transaction modified the

object by rolling back, it is accessed. Otherwise, the trans-
action also rolls back, because it would access inconsistent
state. After accessing an object, transaction checks whether
this was the last access using C. If so, the object is released
early—i.e, Vl is set to the version of the transaction Vp.

A transaction can attempt to commit using the procedure
at line 23. A commit first releases all objects used by the
transaction (procedure dismiss at line 35). To do this, the
transaction waits for the previous transaction to commit the
object. Then, Vc and Vl are set to indicate the object is re-
leased and who is responsible for reverting it. This may
not be necessary if the object was not used or was released
early. Second, the transaction checks whether any transac-
tion rolled back and modified its objects. If so, it is forced
to roll back. Otherwise the transaction erases backup copies
from Os and completes the commit by setting Vlt.

If the programmer decides to roll back a transaction, or
if a rollback is forced in an aforementioned situation, pro-
cedure rollback (line 19) is used. In that case, objects are
released using dismiss (as described above). Afterwards, the
transaction restores its objects using restore (line 41). If an
object was accessed at least once, this procedure reverts it
to a copy from Os and sets Vc to show that this transac-
tion is now responsible for rolling the object back (e.g., so a
simultaneously aborting younger transaction won’t override
the copy). Finally, the transaction cleans up Os and finishes
rolling back by setting Vlt.

4. PROPERTIES AND CORRECTNESS
In this section, we show that SVA guarantees safety (opac-

ity) and liveness (strong progressiveness). The property of
opacity is defined as follows (after [6]):

Definition 1. A finite TM history H is final-state opaque
if there exists a sequential TM history S equivalent to any
completion of H, such that (1) S preserves the real-time or-
der of H, (2) every transaction t ∈ T in S is legal in S.

Definition 2. A TM object o is opaque if, and only if,
every finite history of o is final-state opaque.

Before defining strong progressiveness, it is necessary to
define sets CTrans(H), CObjH(ti), and CObjH(Q).
CTrans(H) is a set of all subsets Q of all transactions in a
history H, such that Q is not empty and no transaction in
Q conflicts with any transaction not in Q. CObjH(ti) is a
set of shared objects, such that object o is included in the
set if there exists a transaction tj (i 6= j) in history H that
conflicts with transaction ti on shared object o. Given a set
of transactions Q, CObjH(Q) is a union

⋃
tk∈Q CObjH(tk).

Given this, strong progressiveness is defined as follows:

Definition 3. A TM history H is strongly progressive if,
for every set Q ∈ CTrans(H) such that |CObjH(Q)| ≤ 1,
at least one transaction in Q is not forcibly aborted in H.

Definition 4. A TM object o is strongly progressive if
every history of o is strongly progressive.

4.1 Opacity

Theorem 1. A finite SVA history is final-state opaque.

Proof. Since all SVA transactions access each object o
only when the guard condition Vp(o, t) − 1 = Vl(o) (line 10



in Fig. 2) they have exclusive access to o and they do so
according to total order ≺T ′ .

An SVA transaction t can access o when a previous trans-
action t′ releases o early. In that case the upper bound on
its use by t′ was reached, so the state of o is the same as if
t′ committed. Also, t will wait on condition Vp(o, t) − 1 =
Vlt(o) (line 36 in Fig. 2) until t′ finishes and if t′ aborts, t
will also abort. So no SVA transaction sees an inconsistent
state of the system, nor does any committing transaction
see changes from an aborting transaction.

Let H ′ be a completion of any SVA history H such that
every live or commit-pending transaction in H is aborted.
Since accesses to each o are totally ordered, this imposes
a partial order �H′ on H ′. Given this, we can construct
a sequential witness history S equivalent to completion H ′

(H ′|t = S|t for every t), where there is a total order ≺S on
S, such that �H′⊆≺S . Thus, we can construct an equivalent
sequential history S that preserves the real-time order of H ′.

Since committing transactions do no see the effects of
aborted transactions and have exclusive access to objects
they use for the duration of their execution, and since live
transactions do not see an inconsistent state of the system,
then for any H ′, transactions will behave as if they were ex-
ecuted sequentially, so transactions in the sequential history
S will conform to a sequential specification of the shared
objects. Therefore, every transaction will be legal in S.

Since there exists a sequential history S equivalent to H
that preserves the real time order of H and every transaction
t in S is legal in S. Therefore H is final-state opaque.

Theorem 2. SVA is opaque.

Proof. By Definition 1 and Definition 2 any transac-
tional object o is opaque if, and only if, every finite history
of o is final-state opaque. Since the latter follows from The-
orem 1, then it is true that SVA objects are opaque, and
therefore SVA is opaque.

4.2 Strong progressiveness
Theorem 3. Every SVA history is strongly progressive.

Proof. Note also that an SVA transaction t may only
be forcibly aborted if for some object o, Vr(o, t) 6= Vc(o) or
Vr(o, t) > Vc(o) (line 13 and line 27 in Fig. 2). This happens
if there is another transaction t′ that also accesses object o,
t′ accesses o prior to t and releases it early so that t can
access it, and finally t′ aborts.

If there is a set of transactions Q ∈ CTrans(H) such
that |CObjH(Q)| = 0 then no two transactions in Q at-
tempt to access the same object. Therefore no transaction
can force another to abort. If there is a set of transactions
Q ∈ CTrans(H) such that |CObjH(Q)| = 1 then all trans-
actions in Q share exactly one remote object o. Since all
transactions in Q are ordered using a total order ≺Q it then
follows that there is some transaction t ∈ Q such that t is
not preceded by any transaction, and therefore no transac-
tion can cause it to abort. Therefore, there exists in Q a
transaction that cannot be forcibly aborted.

Since transactions in Q ∈ CTrans(H) such that |CObjH(Q)| =
0 cannot be forcibly aborted and since there exists at least
one transaction t in Q ∈ CTrans(H) where |CObjH(Q)| = 1
such that t cannot be aborted, then it is true that for any set
Q where |CObjH(Q)| ≤ 1 some transaction is not forcibly
aborted in H. Therefore every SVA history H is strongly
progressive in accordance with Definition 3.

Theorem 4. SVA is strongly progressive.

Proof. Since Theorem 3 shows that every SVA history
is strongly progressive, it follows from Definition 4 that SVA
objects are strongly progressive.
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