
Scalable Message Routing for Mobile

Software Assistants

Pawe l T. Wojciechowski
Poznań University of Technology

60-965 Poznań, Poland
ptw@cs.put.poznan.pl

May 16, 2006

Technical Report RA-010/06

Abstract

In this paper we define an algorithm for location-independent com-
munication of mobile software Personal Assistants (PAs). The algorithm
extends the Query Server with Caching algorithm that we proposed ear-
lier, with support of message routing in the wide-area networks. Our
algorithm is suitable for two kinds of PAs collaboration: (1) within a
local group of mobile individuals, who can communicate frequently us-
ing different computers connected to a local-area network (possibly via
a wireless medium), and (2) some individuals may also communicate via
the global network and move to other groups. The algorithm has been
specified formally as an executable encoding in Nomadic Pict. The formal
specification is concise but gives enough details to be directly translated
by application programmers using their language of choice.

Key-words: mobile agents, distributed computing, protocols, middleware, P2P

1

Contents

1 Introduction 3

2 The Personal Assistant Application 4

3 Design of Appropriate Infrastructure 5

3.1 The Central Server and Query Server with Caching 5
3.2 The Federated Query Server with Caching 6

4 Formal Specification 7

4.1 The Nomadic Pict Language . 7
4.2 The FQSC Algorithm . 10

5 Further Extensions 18

6 Related Work 18

7 Conclusion 20

List of Figures

1 The QSC and FQSC algorithms – message delivery 5
2 The FQSC algorithm – message delivery in the wrong-guess case 6
3 The Nomadic Pict main primitives 9
4 The FQSC algorithm – the Query Server 11
5 The FQSC algorithm – the Daemon Daemon 12
6 Compositional translation . 13
7 The delivery of location-independent message in the no-guess and

good-guess cases . 16
8 The delivery of location-independent message in the worst scenarios 17

2

1 Introduction

The ongoing growth of wide-area networks has brought up considerable interest
in mobile agents [CHK97, MDW99, KGR02, Car99]; mobile agents are units of
executing code that can migrate between machines and perform tasks locally.
It has been widely argued [Car99, KGR02, TAK01] that mobile computation
provides a useful enabling technology for wide-area applications, such as web
services, scientific computation, and collaborative work.

To ease application writing one would like to be able to use high-level lo-
cation independent communication facilities, allowing the parts of an applica-
tion to interact without explicitly tracking each other’s movements. To pro-
vide these above standard network technologies (which directly support only
location-dependent communication) requires some distributed infrastructure.
Sewell, Wojciechowski, and Pierce [SWP99] argued that the choice or design
of an infrastructure must be somewhat application-specific – any given infras-
tructure algorithm will only have satisfactory performance for some range of
migration and communication behaviour; the algorithms must be matched to
the expected properties of applications and the communication network.

In [WS00], we described the Personal Assistant (PA) – an application that
uses mobile agents to support collaborative work of mobile individuals. The PA
application uses the Query Server with Caching (QSC) infrastructure algorithm
for location-independent communication. We have prototyped our application
using Nomadic Pict [SWP99, WS00] – a statically-typed, distributed program-
ming language, which is based on the π-calculus [MPW92] extended with dis-
tribution and agent mobility. The QSC algorithm however does not scale to
wide-area networks, nor to many groups of PA agents, which would be required
in the full-scale, practical implementation of the PA application.

In this paper, we therefore extend the QSC algorithm to support wide-area
collaboration. We have done so with the following model of collaboration in
mind: (1) mobile individuals within a local working group can communicate
frequently using different computers connected to a local-area network (possibly
via a wireless medium), and (2) some individuals may also communicate via the
global network and move to other groups. This model of collaboration covers
many real-world scenarios, e.g. think of people working closely on the same
project or task within a local (indoor or outdoor) area, who may occasionally
contact a distant expert or manager, or migrate to other working group.

We propose a Federated Query Server with Caching (FQSC) algorithm that
fits well into the above model of collaboration. The algorithm uses a federation
of servers. Each federated server is responsible for managing communication
within a local group of PAs, and maintaining a dynamic forwarding pointers
chain used for communication between groups. The FQSC algorithm behaves as
well as the optimal-within-LAN QSC algorithm proposed in [WS00]. However, it
avoids a single point of failure. Furthermore, cache information and compaction
techniques are used so that also the communication between LANs requires only
one network message in the common case.

3

Our paper is aimed at developers of mobile agent applications, and re-
searchers interested in distributed (or peer-to-peer) algorithms. To avoid any
ambiguities in the description of our algorithm, we present it formally using No-
madic Pict. The formal specification is concise but gives enough details to be
directly translated by application programmers using their language of choice.

The paper is organized as follows. Section 2 presents the PA application.
Section 3 describes FQSC informally. Section 4 shows the Nomadic Pict notation
and presents a formal specification of the FQSC algorithm as a Nomadic Pict
encoding. Section 5 proposes several extensions. Section 6 discusses related
work, and Section 7 concludes.

2 The Personal Assistant Application

We consider the support of collaborations within (say) a large computer science
department, spread over several buildings. Most individuals will be involved in
a few collaborations, each of 2–10 people. Individuals move frequently between
offices, labs and public spaces; impromptu working meetings may develop any-
where. Individuals would therefore like to be able to summon their working state
(which may be complex, consisting of editors, file browsers, tests-in-progress
etc.) to any machine. These summonings should preserve any communications
that they are engaged in, for example audio/video links with other members
of the project. To achieve this, the user’s working state can be encapsulated
in a mobile agent, an electronic personal assistant (PA), that can migrate on
demand.

We also consider the support of remote collaborations. Individuals can either
visit other institutions and summon their personal assistants there, or the PAs
can be temporarily delegated to other groups. For example, a personal assistant
agent encapsulating a buggy program (which may include source files, make-
files, and test data) can be delegated to language experts, who can analyse the
program while interacting remotely with the program developer who launched
the PA agent, then modify code, check the modified code using the original test
data, and finally send the PA (with corrected program) back to the developer.

A usable infrastructure for location-independent communication of PA
agents can only be designed in the context of detailed assumptions, both about
the system properties and about the expected behaviour of the PA agents. We
assume that the application is running over a collection of large LANs, which are
connected to a wide-area network, or intranet. In each LAN reliable messaging
can be provided by lower-level protocols and all machines are at roughly the
same communication cost distance from each other. Machines are also basically
reliable, although from time to time it is necessary to reboot or turn off.

We suppose that the number of PA agents is of the same order as the num-
ber of people in the labs. Each PA will migrate infrequently, with minutes or
hours between migrations. The path of migrations is unpredictable – it may
range over the whole LAN, some PAs may occasionally migrate between LANs.
The migrations of different PAs are essentially uncorrelated in time. It is com-

4

FQSC only

2.

D DR

Q

SQ

RS

ba

"update"

No guess

"update"

3.

DR

Q

SQ

R

b

D
S

a

U
DU

Wrong guess

"update"
"update"

1.

D DR
RS

ba
Good guess

a

D

S Sites

Mobile agents

Daemon agents

Message flow

Figure 1: The QSC and FQSC algorithms – the delivery of a message from
agent a to b

mon for people to work for extended periods at machines out of their offices.
PAs communicate between each other frequently, with significant bandwidth –
e.g. audio/video messages or streams, and other data (that must be delivered
reliably).

3 Design of Appropriate Infrastructure

We develop our infrastructure in several steps, beginning with two simple, cen-
tralized algorithms. Then we present our distributed algorithm.

3.1 The Central Server and Query Server with Caching

The Central Server algorithm has a single server that records the current site
of every agent. Agents synchronize with the server before and after migrations.
The location-independent, application messages are sent via the server. The
central server is however a bottleneck for all inter-PA communication. Further-

5

1

D
S

a

U
DU DR

R

b

"update"...

Wrong guess

Forward message

"update" Q

SQ

Q

SQ n1

n

Figure 2: The FQSC algorithm – the delivery of a message in the wrong-guess
case

more, all application messages must make two hops (and these messages make
up the main source of network load).

Adapting the Central Server so as to reduce the number of application-
message hops required, we have the Query Server with Caching algorithm, de-
scribed in [WS00]. As before, it has a server Q that records the current site of
every agent, and agents synchronize with it on migrations. In addition, each
site has a daemon that maintains a cache of location data.

Consider the delivery of an application message from agent a to agent b.
The message (see Fig. 1-1) is first sent to a daemon D on the current site S,
which then forwards the message to the daemon DR on the target site R, which
delivers the message to b. When a daemon D does not know the agent b (see
Fig. 1-2), or when a daemon DU receives a mis-delivered message, for an agent
b that has left its site U (see Fig. 1-3), the message is forwarded to server Q.
The server both forwards the message on to the agent’s current site R and
sends a cache-update message to the originating daemon. In the common case
application messages will here take only one hop (the “good guess” case in Fig.
1-1).

3.2 The Federated Query Server with Caching

The QSC algorithm however does not scale to a large number of PAs and a
global network. Consider PA migration to a remote working group. The obvious
defect in this case is the need to send control messages between the daemon
and the server over the Internet, even if migrations and communications of the
PA would be local within a LAN of the new group. Furthermore, the QSC
algorithm has single point of failure. To overcome these drawbacks, we may
have many servers, each one dealing with agents of a single user or collaborative
group. Mobile computation introduces however an interesting problem: how
to synchronize migrations and communications on these servers, so that the
number of messages between servers and daemons is optimized ?

In this paper, we therefore propose the Federated Query Server with Caching
(FQSC) algorithm, which removes the bottleneck. It employs a collection of

6

query servers Q1, ..., Qn for the specific migration and communication pattern
of PA agents. Each server maintains locations of agents that are present in a
local domain, where a domain can range from a single computer to a LAN.

For each agent there is at least one server, which records the current site
of the agent; a local server in agent’s current domain is an example of such a
server. Agents synchronize with the local server before and after migrations.
When an agent migrates away to a new domain, it must register at the query
server in this new domain, which now becomes the agent’s new local server.

As before, each site has a daemon that maintains a cache of location data.
Application messages are sent via the daemons, much like in the QSC algorithm
(see Fig. 1, 1-3). When a message cannot be delivered using cache information,
the message is forwarded by query servers, using forwarding pointer chains that
are collapsed when possible upon receipt of an “update” message (see Fig. 2).
By compaction of the pointer chains, in the common case application messages
are delivered in only one hop, as in the case of QSC.

If a server has no pointer for the destination agent b, then it will forward the
message to b’s home server, which has the pointer. An agent’s home server is
the query server on which the agent was originally registered upon its creation.
The address of this server is recorded as part of the agent’s high-level ID.

This may seem well-suited to the PA application, but the textual descrip-
tion omits many critical points – it does not unambiguously identify a single
algorithm. For example, it is difficult to explain in prose the following details:

• How are the migrations and communications synchronized (if at all) ?

• What data about agents are actually locked and for how long ?

• How to collapse the pointer chain on servers without loosing messages ?

To explain the details of the FQSC algorithm and to develop reasonable con-
fidence in its correctness, a more precise description is required, ideally in an
executable form. Below we give such a description using Nomadic Pict.

4 Formal Specification

4.1 The Nomadic Pict Language

In this section we introduce enough of the Nomadic Pict language for the ex-
ample infrastructure following. We begin with an example. Below is a program
showing how an applet server can be expressed. It can receive (on the channel
named getApplet) requests for an applet; the requests contain a pair (bound
to a and s) consisting of the name of the requesting agent and the name of its
site.

getApplet ?* [a s] =

agentagentagent b =

migratemigratemigrate tototo s (<a@s’>ack!b | P)

ininin ()

7

When a request is received the server creates an applet agent with a new name
bound to b. This agent immediately migrates to site s. It then sends an
acknowledgment to the requesting agent a (which is assumed to be on site s’)
containing its name. In parallel, the body P of the applet commences execution.

The example illustrates the main entities of the language: sites, agents and
channels. Sites should be thought of as physical machines or, more accurately,
as instantiations of the Nomadic Pict runtime system on machines; each site
has a unique name. Agents are units of executing code; an agent has a unique
name and a body consisting of some Nomadic Pict process; at any moment it
is located at a particular site. Channels support communication within agents,
and also provide targets for inter-agent communication–an inter-agent message
will be sent to a particular channel within the destination agent. Channels also
have unique names. The language is built above asynchronous messaging, both
within and between sites; in the current implementation inter-site messages are
sent on TCP connections, created on demand, but our algorithms do not depend
on the message ordering that could be provided by TCP.

The inter-agent message <a@s>ack!b is characteristic of the low-level lan-
guage. It is location-dependent–if agent a is in fact on site s then the message b

will be delivered, to channel ack in a; otherwise the message will be discarded.
In the implementation at most one inter-site message is sent.

Names As in the π-calculus [MPW92], names play a key rôle; sites, agents and
channels are all named (they are distinguished by the type system). New names
of agents and channels can be created dynamically. These names are pure; no
information about their creation is visible within the language (in our current
implementation they do contain site IDs, but could equally well be implemented
by choosing large random numbers).

Types The language inherits a rich, static type system from the Pict language
[PT00], on which it has been built. Nomadic Pict adds new base types Site

and Agent of site and agent names, and a type Dynamic for implementing name
service. In this paper we make most use of Site, Agent, the base type Bool

of booleans, the type ^T of channel names that can carry values of type T,
tuples [T1 .. Tn], and existential polymorphic types such as [#X T1 .. Tn]

in which the type variable X may occur in the field types T1 .. Tn. We also
use variants and a type operator Map from the libraries, taking two types and
giving the type of maps, or lookup tables, from one to the other.

Values Channels allow the communication of first-order values, such as:
names, boolean values, strings, tuples [v1 .. vn] of the n values v1 .. vn,
packages of existential types [T v1 .. vn], and elements of variant types
{Label> v}. The language does not support communication of processes (ex-
cept for the migration of whole agents). Patterns p are of the same shapes as
values.

The main syntactic category is that of processes (we confuse processes and
declarations for brevity). We will introduce the main low-level primitives in
groups; see Figure 3 for the whole set.

8

agentagentagent a=P ininin Q agent creation

migratemigratemigrate tototo s P agent migration

P | Q parallel composition

() nil

newnewnew c:ˆT P new channel name creation

c!v output v on channel c in the current agent

c?p = P input from channel c

c?*p = P replicated input from channel c

iflocaliflocaliflocal <a>c!v thenthenthen P elseelseelse Q test-and-send to agent a on this site

<a@s>c!v send to agent a on site s

<a@?>c!v location-independent output to agent a

Figure 3: The Nomadic Pict main primitives

Agent creation The execution of the construct agentagentagent a=P ininin Q spawns a
new agent on the current site, with body P. After the creation, Q commences
execution, in parallel with the rest of the body of the spawning agent. The new
agent has a unique name which may be referred to both in its body and in the
spawning agent (i.e. a is binding in P and Q).

Agent migration Agents can migrate to sites – the execution of migratemigratemigrate tototo

s P as part of an agent results in the whole agent migrating to site s. After
the migration, P commences execution in parallel with the rest of the body of
the agent. The body of an agent may consist of many process terms in parallel,
i.e. essentially of many lightweight threads. They will interact only by message
passing.

Pi-calculus To express computation within an agent, while keeping a
lightweight implementation and semantics, the language includes π-calculus-
style interaction primitives. Execution of newnewnew c:^T P creates a new unique
channel name for carrying values of type T; c is binding in P. An asynchronous
output c!v (of value v on channel c) and an input c?p=P in the same agent
may synchronize, resulting in P with the appropriate parts of the value v bound
to the formal parameters in the pattern p. A replicated input c?*p=P behaves
similarly except that it persists after the synchronization, and so may receive
another value. In both c?p=P and c?*p=P the names in p are binding in P.

Agent interaction Finally, the low-level language includes primitives for
interaction between agents. The execution of iflocaliflocaliflocal <a>c!v thenthenthen P elseelseelse

Q in the body of an agent b has two possible outcomes. If agent a is on the same
site as b, then the message c!v will be delivered to a (where it may later interact
with an input) and P will commence execution in parallel with the rest of the
body of b; otherwise the message will be discarded, and Q will execute as part
of b. The construct is analogous to test-and-set operations in shared memory

9

systems – delivering the message and starting P, or discarding it and starting Q,
atomically. It can greatly simplify algorithms that involve communication with
agents that may migrate away at any time, yet is still implementable locally, by
the runtime system on each site.

Another useful construct can be expressed in the language introduced so far:
<a@s>c!v attempts to deliver c!v to agent a on site s. It fails silently if a is
not where expected and so is usually used only where a is predictable.

High-level language The high-level language is obtained by extending the
low-level with location-independent communication primitives. The intended
semantics of an output <a@?>c!v is that its execution will reliably deliver the
message c!v to agent a, irrespective of the current site of a and of any migra-
tions. The low-level communication primitives are also available, for interacting
with application agents whose locations are predictable.

The construct for expressing encodings {P}=Q allows the infrastructure al-
gorithm to be expressed as the translation from the high-level program P to the
low-level program Q (that does not use the <a@?>c!v primitive).

Locks, methods and objects The language inherits a common idiom for
expressing concurrent objects from Pict [PT94]. The process

newnewnew lock:^StateType

...

(lock!initialState

| method1?*arg = (lock?state = ... lock!state’ ...)

...

| methodn?*arg = (lock?state = ... lock!state’’ ...))

is analogous to an object with methods method1. . .methodn and a state of type
StateType. Mutual exclusion between the bodies of the methods is enforced by
keeping the state as an output on a lock channel; the lock is free if there is an
output and taken otherwise.

4.2 The FQSC Algorithm

We now describe the FQSC algorithm formally as a Nomadic Pict encoding,
thereby making all the details of concurrency and synchronization precise.

The encoding involves three main classes of agents: the query servers Q (dis-
tributed on sites, so that there is at least one server in each LAN), the daemons
D (one on each site), and the translations of high-level application agents (which
may migrate). The query server code is given in Figure 4, and the code which
launches daemons is in Figure 5; the interesting clauses of the compositional
translation {P} of high-level constructs P (all those involving agents or com-
munication), are in Figure 6. The top-level translation (omitted here) launches
all the query servers and daemons before executing the application program.

Each class of agents maintains some explicit state as an output on a lock
channel, named lock or currentlock. For each mobile agent name there is
at least one server that has the site and daemon where the agent is currently

10

serverserver?*SQ:Site = (* launch a query server Q on site SQ *)

agentagentagent Q =

migratemigratemigrate tototo SQ

newnewnew lock : ^(Map AgentTy SiteTy)

(<toplevel@firstSite>nq![Q SQ]

| lock!(map.make ==) (* initialise lock *)

| register?*[a [S DS]] =

lock?m = (lock!(map.add m a [S DS])

| (val [A _ _] = a <A@S>ack![]))

| migrating?*a = (* lock during a migration *)

lock?m = switchswitchswitch (map.lookup m a) ofofof

{Found> [S : Site DS : Agent]} ->

(val [A _ _] = a

(<A@S>ack![]

| migrated?[S’ DS’ DR’ R’] =

(lock!(map.add m a [R’ DR’])

| <A@S’>ack![])))

{NotFound> _} -> ()

| message?*[#X DU U a:AgentTy c:^X v:X _] =

(* deal with a lost message *)

lock?m = switchswitchswitch (map.lookup m a) ofofof

{Found> [R : Site DR : Agent]} ->

(<DR @ R>message![Q SQ a c v true]

| update?[_ [S’ DS’]] =

(<DU @ U>update![a [S’ DS’]]

| lock!(map.add m a [S’ DS’])))

{NotFound> _} ->

(val [A Q’ SQ’] = a

(<Q’@ SQ’>message![Q SQ a c v true]

| update?[_ [S’ DS’]] =

(<DU @ U>update![a [S’ DS’]]

| lock!(map.add m a [S’ DS’])))))

Figure 4: Parts of the Top Level in the FQSC algorithm – the Query Server

11

daemondaemon?*[S:Site [Q:Agent SQ:Site]] =

(* launch a daemon D on site S *)

(* Q is a local Query Server at site SQ *)

agentagentagent D = (* the daemon body *)

migratemigratemigrate tototo S

newnewnew lock : ^(Map AgentTy SiteTy)

(<toplevel@firstSite>nd![S D Q SQ]

| lock!(map.make ==)

| try_message?*[#X a:AgentTy c:^X v:X] =

lock?m= switchswitchswitch (map.lookup m a) ofofof

{Found> [R : Site DR : Agent]} ->

(<DR @ R>message![D S a c v false]

| lock!m)

{NotFound> _} ->

(<Q @ SQ>message![D S a c v true]

| lock!m)

| message?*[#X DU:Agent U:Site a:AgentTy

c:^X v:X ackme:Bool] =

(valvalval [A _ _] = a

iflocaliflocaliflocal <A>c!v thenthenthen

ififif ackme thenthenthen <DU @ U>update![a [S D]] elseelseelse ()

elseelseelse <Q@SQ>message![DU U a c v true])

| update?*[a s] = lock?m = lock!(map.add m a s))

Figure 5: Parts of the Top Level in the FQSC algorithm – the Daemon Daemon

located; servers store these data in a map m. Each daemon maintains its own
map m from agent names to the site and daemon where they guess the agent is
located. This is updated only when a message delivery fails. The encoding of
each high-level agent records its current site and daemon, and the name and site
of the local server. This is kept accurate when agents are created or migrate.

The messages sent between agents fall into three groups, implementing the
location-independent messages, the high-level agent creation, and agent migra-
tion. Typical executions are illustrated in Figures 7, 8 and below. Correspond-
ingly, only these cases of the compositional translation are non-trivial.

Location-independent communication To send a location-independent
message the translation of a high-level agent simply asks the local daemon to
send it. The compositional translation of <b@?>c!v, ‘send v to channel c in
agent b’ is in Fig. 6-1. It first reads from the agent’s lock currentloc: the
name S of the current site, the name DS of the local daemon, the name Q of the
local query server, and the name SQ of the server’s site, then sends a message [b

12

1. {<b @ ?>c ! v}a =
currentloc?[S DS Q SQ]=

iflocaliflocaliflocal <DS>try_message![b c v] thenthenthen

currentloc![S DS Q SQ]

elseelseelse ()

2. { agentagentagent b = P ininin P’ }a =

currentloc?[S DS Q SQ] =

(valvalval [A _ _] = a

agentagentagent B =

valvalval b = [B Q SQ]

(<Q @ SQ>register![b [S DS]]

| ack?_= iflocaliflocaliflocal <A>ack![] thenthenthen

(currentloc![S DS Q SQ]

| {P}b)

elseelseelse ())

ininin

valvalval b = [B Q SQ]

ack?_= (currentloc![S DS Q SQ]

| {P’}a))

3. { migratemigratemigrate tototo u P }a =
currentloc?[S DS Q SQ] =

valvalval [A _ _] = a

valvalval [U DU Q’ SQ’] = u

(<Q @ SQ>migrating!a

| ack?_=

(migratemigratemigrate tototo U

ififif (== [Q’ SQ’] [Q SQ]) thenthenthen

(* migration within a domain *)

(<Q @ SQ>migrated![U DU DU U]

| ack?_ = (currentloc![U DU Q SQ]

| {P}a))

elseelseelse (* a cross-domain hop! *)

(<Q’ @ SQ’>register![a [U DU]]

| ack?_=(<Q@SQ>migrated![U DU Q’SQ’]

| ack?_ =

(currentloc![U DU Q’ SQ’]

| {P}a)))))

Figure 6: Compositional translation

13

c v] on the channel try message to DS, replacing the lock after the message is
sent. The translation is parametric on the name a of the agent containing this
phrase – for this phrase, a is however not used. We return later to the process
of delivery of the message.

Agent creation A high-level agent a synchronizes with the query server while
creating a new agent b, with messages on register and ack (see Fig. 6-2). The
current site/daemon/server data for the new agent must be initialised to [S DS

Q SQ]; the creating agent is prevented from migrating away until the registration
has taken place by keeping its currentloc lock until an ack is received from b.

Note that the name b of the new agent in the high-level program is actually
encoded by a triple of an agent name B and the names of its home server Q and
the home server’s site SQ, i.e. b = [B Q SQ]; there is a translation of a type
{Agent} = AgentTy = [Agent Agent Site].
A sample execution is below.

a@S b@S Q@SQ

create

s
X

X
X

X
X

X
X

XXz

register![b [S DS]]

�
�

�
�

�
�

�
��9

ack!

�

ack!

Agent migration To migrate while keeping the local query server’s map
accurate, the translation of a migratemigratemigrate in a high-level agent (see Fig. 6-3) must
synchronize with the local query server before and after actually migrating, with
migrating, migrated, and ack messages. A sample execution of a migration in
a local domain is below.

a@S Q@SQ

X
X

X
X

X
X

X
XXz

migrating!a

�
�

�
�

�
�

�
��9

ack!

migratemigratemigrate tototo U

X
X

X
X

X
X

X
XXz

migrated![U DU DU U]

�
�

�
�

�
�

�
��9

ack!

If the target site U is in the domain managed by a different query server Q’ (see
an elseelseelse clause in Fig. 6-3) then the agent registers at Q’ (which is now the

14

agent’s new local server) and sends a migrated message to Q (which updates its
cache with the new server’s name/site). A sample execution of a cross-domain
migration with registration at Q’ is following.

a@S Q@SQ Q’@SQ’

X
X

X
X

X
X

X
XXz

migrating!a

�
�

�
�

�
�

�
��9

ack!

migratemigratemigrate tototo U

X
X

X
X

X
X

X
XX

X
X

X
X

X
X

X
XXz

register![a [U DU]]

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��9

ack!

X
X

X
X

X
X

X
XXz

migrated![U DU Q’ SQ’]

�
�

�
�

�
�

�
��9

ack!

The query server’s lock is kept during the migration. The agent’s own record
of its current site and daemon and its local server must also be updated with the
new data U DU Q’ SQ’ when the agent’s lock is released. Note that in the body
of the encoding the name DU of the daemon on the target site and the names Q’
and SQ’ of the server and its site of the target domain must be available. This
is achieved by encoding site names in the high-level program by quadruples of
a site name and the associated daemon name and a query server name/site for
that site; there is a translation of a type {Site} = SiteTy = [Site Agent

Agent Site].

Message delivery Returning to the process of message delivery, there are
three cases. Consider the implementation of <b@?>c!v in agent a on site S,
where the daemon is D. Suppose b is on site R, where the daemon is DR. Either
D has the correct site/daemon of b cached, or D has no cache data for b, or it
has incorrect cache data.

In the first case (see at the top of Fig. 7) D sends a message message to
DR which delivers the message to b using iflocaliflocaliflocal. For the PA application
this should be the common case, including the cross-domain communication; it
requires only one network message.

In the cache-miss case (see at the bottom of Figure 7) daemon D sends a
message message to the local query server Q, which forwards the message to
a daemon DR at site R, which then delivers successfully and sends an update

message back to D via Q (both D and Q update their cache). The query server’s

15

The best scenario: good guess in the D cache. This should be the common case.

a@S D@S DR@R b@R

-

try message![b c v]
X

X
X

X
X

X
X

XXz

message![D S b c v false]

-

c!v

No guess in the D cache.

a@S D@S Q@SQ DR@R b@R

-

try message![b c v]
X

X
X

X
X

X
X

XXz

message![D S b c v true]

X
X

X
X

X
X

X
XXz

message![Q SQ b c v true]

�
�

�
�

�
�

�
��9

update![b [R DR]]
-

c!v

�
�

�
�

�
�

�
��9

update![b [R DR]]

Horizontal arrows are synchronized communications within a single machine
(using iflocaliflocaliflocal); slanted arrows are asynchronous messages.

Figure 7: The delivery of location-independent message <b@?>c!v from a to b

in the no-guess and good-guess cases

lock is kept until the message is delivered, thus preventing b from migrating
until then. Two other variants are possible. If the forwarding pointer for the
agent b is not found, Q forwards the message to b’s home server (the server’s
name/site are encoded as part of the name b). Similarly, if b has moved between
domains and there has been no communication to b since then (and so no cache
updates), Q will contain a pointer to the query server in the domain visited by
b. In this case, the message message is forwarded between query servers until
it eventually reaches DR (see the chain of forwarding servers at the bottom of
Figure 8). Note that the forwarding pointer chain is collapsed by sending the
update messages which update caches with b’s current location.

Finally, the incorrect-cache-hit case (see Figure 8). Suppose D has a mistaken
pointer to DU@U. It will send a message message to DU which will be unable to
deliver the message. DU will then send a message to the query server, much as
before (except that the cache update message still goes to D, not to DU).

16

The 1st worst scenario: wrong guess in the D cache.

D@S DU@U Q@SQ DR@R b@R

X
X

X
X

X
X

X
XXz

message![D S b c v false]

X
X

X
X

X
X

X
XXz

message![D S b c v true]

X
X

X
X

X
X

X
XXz

message![Q SQ b c v true]

�
�

�
�

�
�

�
��9

update![b [R DR]]
-

c!v

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��9

update![b [R DR]]

The 2nd worst scenario: not-updated (or no) guess in the query server’s cache.

Q@SQ Q’@SQ’

X
X

X
X

X
X

X
XXz

message![Q SQ b c v true]

q q q

�
�

�
�

�
�

�
��9

update![b [R DR]]

Figure 8: The delivery of location-independent message <b@?>c!v from a to b

in the worst scenarios

17

5 Further Extensions

The FQSC algorithm avoids sending too many cache updates over the Internet.
As long as agent migrations are local, a cache-update message to other query
servers is sent only in the case of incorrect-cache-hits from these servers. Con-
sequently, the cost of forwarding a message to agents in other domains is paid
only for the first message. Then, the forwarding pointer chain is collapsed and
any subsequent messages (from the same location) are sent directly.

The above design choice reflects the expected behaviour of the PA agents:
communications are more frequent than migrations, and the inter-domain mi-
grations, which correspond to delegation or a physical movement of individuals,
are less frequent than migrations within a local domain. If PA behaviour would
be different, it may be worth to collapse the forwarding pointer chains more
often. For example, upon each cross-domain migration, the cache of several
daemons and servers could be updated, not just those last visited.

One can also analyse the application further. In fact, migrations of the
PA agents may usually be within a small group of machines, e.g. those of a
project group. More sophisticated infrastructures might use some heuristics to
take advantage of this. For a critical application a quantitative analysis may be
required. An exhaustive discussion is beyond the scope of this paper.

This paper does not explicitly address questions of security, fault-tolerance,
or administrative domains. These should be addressed in the full-size imple-
mentation of the PA infrastructure. In order to tolerate machine crashes, the
(logical) query servers can be replicated on several machines (e.g. using the
group communication middleware [MSW03]).

6 Related Work

Many authors present strategies for locating mobile objects and devices (see,
e.g., surveys [WL00, PS01]). Similar to locating objects are mechanisms for
resource discovery, e.g. Dimakopoulos and Pitoura [DP03] describe cached-
based distributed flooding approaches to locate a peer that provides a particular
resource, with cache updates propagated either upon resource lookup or change.

Our work builds on the above, but is focused on the location-independent
message delivery, which provides stronger properties than a pair of unsynchro-
nized agent lookup and message sending actions. For instance, the FQSC al-
gorithm guarantees that messages are not lost irrespective of agent migrations,
and the upper bound on the number of hops required to deliver a message in
case of local (within domain) migrations is known.

A number of agent systems provide a form of location independence; we
briefly review some of them below. Comparisons are difficult, in part because of
the lack of clear levels of abstraction and descriptions of algorithms – without
these, it is hard to understand the performance and robustness properties of the
infrastructures. Some mobile agent infrastructure algorithms are for locating
agents only, which – as we explained above – provides weaker guarantees.

18

For instance, Mobile Objects and Agents (MOA) [MLC98] supports four
schemes for locating agents; these are used as required to deliver location-
independent messages. Stream communication between agents is also described,
with communicating channel managers informing each other on migration.

The MASIF proposal [MBB+98] also involves four locating schemes, but ap-
pears to build communication facilities on top. This excludes a number of rea-
sonable infrastructures; it contrasts with our approach here, in which location-
independent message delivery is taken as primary (some infrastructures do not
support a location service).

The infrastructure work of Aridor and Oshima [AO98] provides three main
forms of message delivery: location-independent using either forwarding pointers
or location servers, and location dependent (they also provide other mechanisms
for locating an agent).

Roth and Peters [RP01] propose a scalable global service for locating mobile
agents, with encryption and decryption capabilities to prevent security attacks
through agent impersonating.

The Join Language [FGL+96] provides location-independent messages using
a built-in infrastructure, based on forwarding pointer chains that are collapsed
when possible.

The Mobile Object Workbench [BHDH98] provides location independent
interaction, using a hierarchical directory service for locating clusters of objects
that have moved. There is a single infrastructure, although it is stated that the
architecture is flexible enough to allow others.

Moreau [Mor01] describes formally an algorithm for routing messages to mi-
grating agents, which is based on distributed location directory service, with
forwarding pointer chains that are collapsed when possible. In [Mor02], he de-
scribes the directory extended with pointer redundancy to tolerate node crashes;
the algorithm has been verified using the proof assistant Coq.

Our model assumes direct message routing, while other approaches are also
possible, e.g. Murphy and Picco [MP99] present a distributed-snapshot-based
algorithm. It attempts to deliver a message to every agent in the system using
broadcast, and only the agents whose IDs match the message target actually
accept the message. Cao et al. [CZYD04, CZFD03] propose to separate agents
and movable mailboxes, i.e. receivers of location-independent messages, with
push and pull techniques that can be used by agents to obtain messages from
their mailbox. They also discuss schemes to make the communication tolerant
to mailbox crashes [CZYD04], and path compression for better performance
[CZFD03].

The use of home servers in our FQSC algorithm resembles the Internet Mo-
bile Host Protocol (IMHP) proposed by Perkins et al. [PMJ94] for transparent
routing of IP packets to mobile hosts. By enabling sites to also cache bindings
for mobile hosts (or mobile agents in FQSC) both protocols provide mecha-
nisms for better routing which bypasses the default reliance on routes through
the home server, and so they eliminate the likelihood that the home server would
be a bottleneck. However, cache updates are performed differently, with FQSC
optimizing the specific migration and communication pattern of PA agents. The

19

FQSC protocol normally delivers messages to mobile agents in one-hop, while
IMHP must route messages to mobile hosts via care-of address (which corre-
sponds to the current local server of the target mobile agent in FQSC).

7 Conclusion

In this paper we have proposed a distributed algorithm for scalable location-
independent message delivery to mobile agents, that is suitable for the Personal
Assistants application. The algorithm reflects the expected behaviour of the
Personal Assistant agents: communications are more frequent than migrations,
and the inter-domain migrations, which correspond to delegation or a physi-
cal movement of individuals, are less frequent than migrations within a local
domain.

Our algorithm has been presented formally, as an executable specification in
the Nomadic Pict language. In our experience with designing such algorithms
we have found that the language provides a good level of abstraction at which
potential problems (such as deadlocks and lost messages) can be seen rather
clearly. The uniform treatment of concurrency and asynchronous messages both
within agents and between machines is a significant gain.

Acknowledgments. We would like to thank Peter Sewell and Asis Un-
yapoth for many useful discussions.

References

[AO98] Yariv Aridor and Mitsuru Oshima. Infrastructure for mobile agents:
Requirements and design. In Proc. 2nd Int. Workshop on Mobile
Agents, LNCS 1477, September 1998.

[BHDH98] Michael Bursell, Richard Hayton, Douglas Donaldson, and Andrew
Herbert. A Mobile Object Workbench. In Proc. the 2nd Int. Work-
shop on Mobile Agents, LNCS 1477, September 1998.

[Car99] Luca Cardelli. Abstractions for mobile computation. In Secure In-
ternet Programming: Security Issues for Mobile and Distributed Ob-
jects, LNCS 1603, pages 51–94. Springer, 1999.

[CHK97] D. Chess, C. Harrison, and A. Kershenbaum. Mobile agents: Are
they a good idea? In Mobile Object Systems – Towards the Pro-
grammable Internet, LNCS 1222, pages 25–48. Springer, 1997.

[CZFD03] Jiannong Cao, Liang Zhang, Xinyu Feng, and Sajal K. Das. Path
compression in forwarding-based reliable mobile agent communica-
tions. In Proc. ICPP ’03: the 32nd Int. Conference on Parallel
Processing, October 2003.

20

[CZYD04] Jiannong Cao, Liang Zhang, Jin Yang, and Sajal K. Das. A reliable
mobile agent communication protocol. In Proc. ICDCS ’04: the 24th
Int. Conference on Distributed Computing Systems, March 2004.

[DP03] Vassilios V. Dimakopoulos and Evaggelia Pitoura. A peer-to-peer
approach to resource discovery in multi-agent systems. In Proc. CIA
’03: the 7th Workshop on Cooperative Information Agents, LNCS
2782, August 2003.

[FGL+96] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc
Maranget, and Didier Rémy. A calculus of mobile agents. In Proc.
CONCUR ’96: the 7th Int. Conference on Concurrency Theory,
LNCS 1119, August 1996.

[KGR02] David Kotz, Robert Gray, and Daniela Rus. Future directions for
mobile agent research. IEEE Distributed Systems Online, 3(8), Au-
gust 2002.

[MBB+98] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Fried-
man, K. Kosaka, D. Lange, K. Ono, M. Oshima, C. Tham, S. Vird-
hagriswaran, and J. White. MASIF: The OMG Mobile Agent Sys-
tem Interoperability Facility. In Proc. 2nd Int. Workshop on Mobile
Agents, LNCS 1477, September 1998.

[MDW99] Dejan Milojičić, Frederick Douglis, and Richard Wheeler, editors.
Mobility: Processes, Computers, and Agents. Addison-Wesley, 1999.

[MLC98] Dejan S. Milojičić, William LaForge, and Deepika Chauhan. Mo-
bile Objects and Agents (MOA). In Proc. COOTS ’98: the 4th
USENIX Conference on Object-Oriented Technologies and Systems,
April 1998.

[Mor01] Luc Moreau. Distributed directory service and message router for
mobile agents. Science of Computer Programming, 39(2–3):249–272,
2001.

[Mor02] Luc Moreau. A fault-tolerant directory service for mobile agents
based on forwarding pointers. In Proc. SAC ’02: the 17th Symp.
on Applied Computing: Track on Agents, Interactions, Mobility and
Systems, March 2002.

[MP99] Amy L. Murphy and Gian Pietro Picco. Reliable communication for
highly mobile agents. In Proc. ASA/MA ’99: 1st Int. Symposium
on Agent Systems and Applications / 3rd Int. Symposium on Mobile
Agents, October 1999.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,
Parts I and II. Information and Computation, 100(1):1–77, 1992.

21

[MSW03] Sergio Mena, André Schiper, and Pawe l T. Wojciechowski. A step
towards a new generation of group communication systems. In Proc.
Middleware ’03, LNCS 2672, June 2003.

[PMJ94] Charles Perkins, Andrew Myles, and David B. Johnson. IMHP: a
mobile host protocol for the Internet. Computer Networks and ISDN
Systems, 27(3):479–491, December 1994.

[PS01] Evaggelia Pitoura and George Samaras. Locating objects in mobile
computing. IEEE Transactions on Knowledge and Data Engineer-
ing, 13(4):571 – 592, July/August 2001.

[PT94] Benjamin C. Pierce and David N. Turner. Concurrent objects in a
process calculus. In Proc. TPPP ’94: Int. Workshop on Theory and
Practice of Parallel Programming, LNCS 907, November 1994.

[PT00] B. C. Pierce and D. N. Turner. Pict: A programming language based
on the pi-calculus. In Proof, Language and Interaction: Essays in
Honour of Robin Milner. MIT Press, 2000.

[RP01] Volker Roth and Jan Peters. A scalable and secure global tracking
service for mobile agents. In Proc. of the 5th Int. Workshop on
Mobile Agents, LNCS 2240, pages 169–181, December 2001.

[SWP99] Peter Sewell, Pawe l T. Wojciechowski, and Benjamin C. Pierce.
Location-independent communication for mobile agents: A two-
level architecture. In Internet Programming Languages, LNCS 1686,
pages 1–31. Springer, 1999.

[TAK01] Anand Tripathi, Tanvir Ahmed, and Neeran M. Karnik. Experiences
and future challenges in mobile agent programming. Microprocessors
and Microsystems, 25(2):121–129, April 2001.

[WL00] Vincent Wong and Victor Leung. Location management for next
generation personal communication networks. IEEE Network,
14(5):8–14, Sept./Oct. 2000.

[WS00] Pawe l T. Wojciechowski and Peter Sewell. Nomadic Pict: Language
and infrastructure design for mobile agents. IEEE Concurrency,
8(2):42–52, April-June 2000.

22

