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Abstract. To be able to compose and decompose software components
at run time, some form of dynamic rebinding between components (or
objects) is needed. In this paper, we identify basic properties of dynamic
object (re)binding, and propose a class-based object calculus that gives
precise meaning to these properties. We also define two example semantic
properties that are characteristic for many concurrent programs with
low-level bind/unbind operations. Our calculus has a built-in construct
atomic that can be used to implement one of the semantic properties.
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1 Introduction

What do we mean by dynamic object rebinding? Consider a construct bind X a
that binds a name X to an object a. The effect of binding name X to a is that
we can refer to a via name X, e.g. a method m of object a can be invoked either
via a.m or X.m. The crucial point here is that the object a can be later unbound
from X (using a construct unbind X) and another object b can be rebound to
X at runtime. By the alias change, any concurrent object c that knows name X,
has been therefore unbound from a and bound to b.

We must ensure that types of objects a and b that are dynamically bound
to X, match the corresponding field accesses and method calls via name X. For
this, X is not a pure name but it is a signature that declares types of fields
and methods of objects that are bindable to X. Objects are defined by classes,
which define fields and methods with their types. Checking the match between
signatures and classes is mostly standard; for clarity, we leave therefore our
calculus untyped, focusing on the operational semantics. Note that an object c
invoking a method X.m may not even know the object on which method m is
invoked. This simple mechanism can be used to implement software components
(or objects with a predefined interface) that can be composed dynamically.

In our previous work, we developed SAMOA [RWS06a,WRS04] – a software
framework for implementing network protocols from reusable components, that
provide services (a service corresponds to signatures presented in this paper,
extended with requirement declarations). The programmers can easily encode



dynamic replacement of components, using high-level abstractions that are built
on top of the dynamic binding feature described in this paper. A software frame-
work, such as SAMOA, can be used for implementing dynamically composable
systems. For instance, we have used our framework to design and implement an
Adaptive Group Communication (AGC) middleware [RWS06b], in which net-
work protocols can be replaced on-the-fly. For this, we have designed various
algorithms for Dynamic Protocol Update (DPU), i.e. a synchronous replacement
of protocols in a distributed system [WR05].

In [RWS06a], we described the high-level architecture of a software frame-
work for building dynamically composable systems, such as ours. In this paper,
we take a more fundamental view, and investigate a small set of low-level lan-
guage constructs that can be used to reason formally about dynamic object
rebinding. In particular, we have used our language to give precise meaning to
basic properties of dynamic object rebinding. We also define two example se-
mantic properties that are characteristic for many concurrent programs with
low-level bind/unbind operations. Our calculus has a built-in construct atomic

that can be used to implement one of the semantic properties.
The paper is organized as follows. Section 2 introduces basic notions and

defines the syntax of our calculus. Section 3 presents a set of language properties
of dynamic object rebinding, and example semantic properties of programs that
use the dynamic rebinding feature. To illustrate one property, Section 4 shows an
example erroneous program and its fix-up. Section 5 formalizes the operational
semantics of our language, thus giving precise meaning to the properties defined
earlier. Section 6 presents related work. Finally, we conclude and discuss future
work in Section 7.

2 The Class-Based Object Calculus

We define our language as the call-by-value λ-calculus, extended with signatures,
objects, object binding/unbinding, exceptions, threads and atomic tasks. The
abstract syntax of the language is in Figure 1. The main syntactic categories
are signatures, classes, values and expressions. For convenience, we differenti-
ate names: X, Y range over signature names; A, B range over class names; f
ranges over object field names, and m ranges over method names. We write x
as shorthand for a possibly empty sequence of variables x1, ..., xn (and similarly
for t, v, and e). We abbreviate operations on pairs of sequences in the obvi-
ous way, writing e.g. x : t as shorthand for x1 : t1, ..., xn : tn (and similarly
for f = v). Sequences of parameter names in functions and class methods are
assumed to contain no duplicate names. We write M as shorthand for a (non-
empty) sequence of methods M1, ... ,Mn in a class. Methods of the same class
must contain no duplicate names; similarly, field names are unique per class.

Types Types include the base type Unit of unit expressions, which abstracts
away from concrete ground types for basic constants (integers, Booleans, etc.),
the type Sig of object signatures, the type Obj of objects, and the type t → t′

of functions and class methods.



Variables x, y, a, b ∈ Var

Signature names X, Y ∈ Sig

Class names A, B ∈ Lab

Field names f

Method names m

Interface names n ∈ Sel ::= f | m

Types t ::= Unit | Sig | Obj | t → t′

Signatures s ::= sig X {f1 : t1, ... , fk : tk,

m1 : t1 → t′1, ... , mn : tn → t′n}

Fun. abstractions F ::= x : t = {e}

Methods M ::= t m F

Classes C ∈ Class ::= class A {f1 = v1, ... , fk = vk, M1, ... , Mn}

Values v, w ∈ Val ::= () | X | new A | F

Expressions e ∈ Exp ::= x | v | e.n | e e | let x = e in e | e := e

| bind e e | unbind e | try e catch e | escape

| fork e | atomic e

We work up to alpha-conversion of expressions throughout, with x binding in e in an
expression x : t = {e}, and x in e′ in an expression let x = e in e′. Names do not
bind, and so are not subject to alpha-conversion.

Fig. 1. A concurrent language of dynamic object (re)binding

Signatures A signature describes an object interface, i.e. a declaration of
object fields and methods that can be accessed or called upon an object via
the signature. Syntactically, a signature is a keyword sig, followed by the name
of the signature, and a sequence of field and method names, accompanied with
their types.

Methods A method of the form t m F has declarations of a type t of the values
that it returns, its name m, and its body F . Access control is not modelled (all
fields and methods are public). Objects can refer to their own methods with
self.m, where self is a variable. A method’s body is a function abstraction of the
form x : t = {e} (we adopted the C++ or Java notation, instead of the usual
λx : t.e from the λ-calculus).

Classes A class has declarations of its name (e.g. class A) and the class body
{f = v,M}, where f = v is a sequence of fields (data containers) accessible via
names f and instantiated to values v, and M is a sequence of object methods.
Classes do not explicitly declare their superclass with extends since we do not
model class inheritance. Class inheritance and object constructor methods can
be easily added to the calculus definition, in the style of Featherweight Java (FJ)
[IPW99]. We assume that every class implicitly extends a special class Object,
like in FJ. The class Object does not define any fields nor methods.



Values A value is either an empty value () of type Unit, a signature name, e.g.
X, an object instance, e.g. new A, or function abstraction x : t = {e}. Values
are first-class, they can be passed as arguments to functions and methods, and
returned as results or extruded outside objects. (Typing could be used to forbid
extruding functions that contain object self references).

Basic expressions Basic expressions e are mostly standard and include vari-
ables, values, field/method selectors, function/method applications, let binders,
and field assignment e := e. The let-binder is a construct of ML-like languages,
that can be used to define functions, and to bind object and immutable data to
variables. For instance, let x = new A in e creates a new object of class A that
is bound to a variable x (where x binds in e). Then, we can write e.g. x.f := v
to overwrite a field f of object x with a value v, or we can write e.g. x.m v to
call a method m of object x. We use syntactic sugar e1; e2 (sequential execution)
for let x = e1 in e2 (for some x, where x is fresh).

Dynamic binders and exceptions Execution of bind X a binds a signature
X to an object a; any previous binding of signature X disappears. Execution
of unbind X unbinds a signature X from any object bound to X, or raises an
exception if no object is bound to X.

To catch exceptions, we have an expression try e catch e′, which is similar to
the one found in ML-like languages. If there was an exception thrown in e then
the execution of e terminates and e′ commences. Execution of try e catch e′

returns either the result of e, if no exception occurred, or the result of e′, if there
was an exception thrown in e and no exception in e′. Exceptions can be thrown
explicitly using escape, or implicitly (as in unbind). If there is no expression to
catch an exception, the execution of escape blocks its thread of execution.

Threads and atomic tasks The language allows multithreaded programs by
including an expression fork e, which spawns a new thread for the evaluation
of expression e. This evaluation is performed only for its effect; the result of e is
never used.

Execution of atomic e creates a new concurrent thread to evaluate an ex-
pression e atomically ; we call such expressions tasks. Concurrent execution of
atomic tasks can be interleaved but the following property holds.

Property 1 (Isolation Property). Consider all atomic tasks in a program P , and
a set N of all signatures that the tasks may refer to. A non-terminating execution
of P satisfies the isolation property, if given any signature name X in N , the
order of accessing fields or calling methods via X by the atomic tasks is the same
as in an ideal execution of P in which the tasks would be executed sequentially.

An atomic task in our language can itself be multithreaded since its execution
can spawn new threads using fork. The operational semantics of tasks and the
atomic construct ensuring isolation will be given in Section 5.

In our previous work [Woj05], we have presented an example implementation
of tasks, but for a different, more restrictive definition of isolation that considers
modifications of data stores. The implementation is based on static typing and



runtime versioning. In [WRS04], we have proposed several optimizations of the
concurrency control algorithm implementing versioning.

Programs A program is a pair (ct, e) of a class table ct and a main expression
e, where the class table ct is a mapping from class names to class declarations. To
lighten the notation, we always assume a fixed class table ct. To avoid uncaught
exceptions we syntactically restrict the program’s main expression e to have the
form try e′ catch v, where v is a value. We assume that a class table satisfies
some sanity conditions: (1) ct(A) = class A ... ; (2) Object /∈ ct; and (3)
for every class name A (except Object) appearing anywhere in ct, we have
A ∈ dom(ct). Given these conditions, a class table can be easily identified with
a sequence of class declarations.

3 Properties of Dynamic (Re)binding

Below we present basic properties of language constructs for binding/unbind
objects in our calculus, together with some discussion of higher-level rebinding
constructs that could be built on top of our calculus.

Then, we give two example semantic properties of programs, in which objects
can be rebound dynamically. The untyped calculus presented in this paper does
not have language support to declare and verify if such semantic properties hold.
We leave this for future work.

3.1 Language Properties

Below are runtime properties of the language constructs. After each property,
we provide a short justification of our design choice.

Property 2 (Binding Uniqueness). At run time, a signature X has two possible
states: it either binds to some object or not.

This is due to the fact that we decided to have two language constructs: bind X v
that binds a signature X to an object v, and unbind X that unbinds the sig-
nature. Our intention was to model these two operations. At the higher-level of
abstraction, however, the programmers may want to have a single construct that
e.g. replaces software components in one atomic step.

Property 3 (Binding Restriction). At most one object can be bound to a signa-
ture X at a time.

If more than one object could be bound to a signature X, then a method call
X.m would not know which object to call; similarly, a field access X.f would not
know which object to select. (In our language, the same field or method names
can appear in different classes.) At the higher-level of abstraction, however, over-
writing bindings of X could be encoded; the higher-level unbind construct could
then remove the current binding and deactivate any previous binding if it exists.



Property 4 (Object Aliasing). An object can be bound to many signatures.

We allow this for expressiveness at the operational semantics. Note that X.m and
Y.m mean something different in programs with atomic tasks, event if X and Y
may bind the same object; to understand why, see the definition of the isolation
property. We think that object aliasing could be useful for programmers. If any
restriction is required, then it should be declared by programmers, and enforced
via a type system.

Property 5 (Failures). If no object is bound to X, then unbind X fails, field
access X.f fails for any f , and method call X.m fails for any m.

The above property with an exception mechanism built into the calculus allows
for more expressiveness. We can express alternative actions on failure at the
higher level of abstraction, e.g. “wait till some object is bound”.

Property 6 (Concurrency). The operations of binding/unbinding a signature X,
and the object field accesses or method calls via X can be concurrent.

Dynamic re-binding of objects in a sequential program seems to be a rarely
needed feature (e.g. dynamic class loading usually occurs only on object construc-
tion). On the other hand, new emerging applications that depend on dynamic
object rebinding, such as dynamic protocol updating and adaptive systems are
often concurrent. Concurrency in these applications stems from various reasons:
the old and updated protocol components may need to coexist for some time
[WR05], the protocol components are themselves concurrent with the protocol
updater [RWS06a] that dynamically rebinds the components, etc.

3.2 Semantic Properties

Below are two example properties that may be required by programs with object
rebinding.

Property 7 (Reference Consistency). A set of object references R = {Xi.nj :
i = 1..k, j = 1..l} is consistent in an expression e, if exists object a such that
any method call or field access Xi.nj in R, as part of evaluation of e, refers to a.

In Section 4, we present an example program that requires this property. In the
program, e.g. if a method call X.put has been executed upon some object, then
another reference to X (a field access X.getn) in the same round of the protocol
should also be executed upon the same object.

Property 8 (Signature Linearity). A signature X is linear in a program, if it is
either unbound, or it binds the same object v during whole program execution;
object v that was bound to X cannot be rebound to other signature.

If a linear signature X has been bound to some object, then it cannot be rebound
to another object, and vice versa. This property could be useful in programs in
which dynamic object rebinding is not a feature to mask implementations of
a given signature, but to authenticate an object via a signature. If objects are
communicated between machines (as part of some protocol), it may be useful to
use for this an abstract signature of an object, rather than its concrete name.



4 Example of the Reference Consistency Requirement

In this section, we give a small example program to explain the need for the
Reference Consistency (Property 7 in Section 3), and the use of the atomic

construct (with the isolation property) to ensure reference consistency. The pro-
gram implements a simple protocol involving the exchange of messages between
a client and an anonymous server, accessible via a signature X.

The protocol uses public key cryptography, which can be explained as fol-
lows. The client encrypts a message m using server’s public key to produce an
encrypted message; only the server can decrypt this message, so this ensures
secrecy. The server can sign a message m by encrypting it with its secret key
(which is the inverse of the public key); any client in possession of server’s public
key can then decrypt this message. Public key cryptography is used, e.g. in an
authentication protocol [Low96]).

A client obtains server’s public key from a trusted key store keyStore, using a
method keyStore.publicKey; the method accepts as its argument the server’s
name X.getn (see in the end of the program). The key store (omitted here)
returns a public key that corresponds to this name. To send a message (a value
100) encrypted using the public key, the client invokes server’s method X.put.
Execution of X.put (see class A or class B) decrypts the message using server’s
secret key, which is stored in the object field secretKey.

sig X

{
getn : Obj

put : Int -> Int

}
class A

{
getn = self (* an object name *)

secretKey = 1 (* a secret key of A *)

Int put (v : Int) = { decrypt (v, self.secretKey) }
}
class B

{
getn = self (* an object name *)

secretKey = 2 (* a secret key of B *)

Int put (v : Int) = { decrypt (v, self.secretKey) }
}

class Updater

{
Unit update (x : Sig, o : Obj) =

{
unbind x; (* unbind signature x from any object *)

bind x o; (* bind signature x to object o *)

}
}



let a = new A in (* create object a *)

bind X a; (* and binds sig X to a *)

let b = new B in (* create object b *)

fork (new Updater).update(X, b); (* rebind X to b *)

try

X.put (encrypt(100, keyStore.publicKey(X.getn))) (* The client *)

catch

0

Exchange of an encrypted message between server X and the client occurs
in parallel with dynamic replacement of the actual object implementing X. For
this, we have an updater object Updater, with a single method update that
implements a simple handover protocol: it takes as arguments a signature and
an object, unbinds anything bound to the signature and binds the object. (For
simplicity, we require that X is initially bound.)

In the main expression, a concurrent thread (created with fork) calls a
method update that unbinds a server object a (bound to X) and binds server
object b to X. The client does not know if it calls a or b; it is not aware of
the hot-swapping done by the updater. The program is however problematic in
twofold ways. Firstly, the client may call a server using a signature X that has
been unbound by the update method and not rebound yet, thus leading to an
exception error. Secondly, the following property is not true:

Property 9 (Safety). A message encrypted with a public key of object x is also
received by x (for any x).

We would like this property to hold during program execution. Otherwise, the
client may encrypt and send a message to the server using a public key of another
server, which is like an attack on a protocol using public key cryptography.

To fix up our program, we can use the atomic construct to encode the mes-
sage exchange protocol (initiated by the client) and the update protocol (in the
update method) as two parallel atomic tasks. Below is an example code:

class Updater

{
Unit update (x : Sig, o : Obj) =

{
atomic

(unbind x; (* unbind signature x from any object *)

bind x o;) (* and bind signature x to object o atomically *)

}
}
let a = new A in (* create object a *)

bind X a; (* and binds sig X to a *)

let b = new B in (* create object b *)

fork (new Updater).update(X, b); (* rebind X to b *)

try

atomic X.put (encrypt(100, keyStore.publicKey(X.getn))) (* The client *)

catch

0



The advantage of atomic with respect to coarse-grain locking is that the
client-server protocol and server updating can be executed concurrently. More-
over possible deadlocks are avoided, which simplifies programming. However,
isolation ensured by atomic is actually a stronger property than reference con-
sistency – atomic tasks that do not do object rebinding may also be mutually
isolated, even if they cannot themselves invalidate reference consistency.

The use of atomic in protocols depends on its implementation. Protocols have
various side effects (I/O actions, network communication, etc.); these side-effects
are not always revocable. The implementations of atomic (we give examples in
Section 6) usually restrict I/O actions in atomic blocks, e.g. due to rollback sup-
port. This restriction should not be a problem if atomic is used to protect only
short code fragments, as in our example program. Alternatively, we proposed in
[Woj05] an implementation of atomic that does not depend on rollback-recovery
of tasks. (We do not have an explicit rollback construct in our language.)

5 Operational Semantics

We specify the operational semantics of our language using the abstract machine
defined in Figures 2 and 3. The machine evaluates a program by stepping through
a sequence of states. A state S consists of four components: an object store ∆,
a counter α of fresh atomic blocks, a bind store β, and execution threads T ,
organized as a sequence T0, ..., Tn.

The object store ∆ is a finite map from object field selectors to values stored
in the fields, where a field selector, denoted oA.f , is an object location oA indexed
by a field name f .

The bind store β is a set of pairs (X, oA) of a signature name X and an
object location oA bound to the signature. The set difference β \ β′ is the set
of elements found in β but not found in β′; the union of sets β ∪ β′ is the set
consisting of the elements of both sets, with no duplicate elements.

The expressions g in a sequence of threads T are written in the calculus
presented in Section 2, extended with a new construct task i N T . The construct
is not part of the language to be used by programmers; its meaning will be
explained below.

We define a small-step evaluation relation ∆,α, β | g −→ ∆′, α′, β′ | g′, read
“expression g reduces to expression g′ in one step, with ∆,α, β being transformed
to ∆′, α′, β′”. We also use −→∗ for a sequence of small-step reductions. By
concurrent execution, we mean a sequence of small-step reductions in which the
reduction steps can be taken by different threads with possible interleaving.

Reductions are defined using evaluation context E for expressions e and g.
The evaluation context ensures that the left-outermost reduction is the only
applicable reduction for each individual thread in the entire program. Context
application is denoted by [], as in E [ e ]. Structural congruence rules allow us to
simplify reduction rules by removing the context whenever possible.

Evaluation of a program (ct, e), where ct is constant, starts in an initial state
with empty stores ∅, a null counter 0, and with a single thread that evaluates



State Space:

S ∈ State = ObjStore × TaskId × BindStore × ThreadSeq

∆ ∈ ObjStore = ObjLoc.Sel → Val

α ∈ TaskId = Nat

β ∈ BindStore = Sig × ObjLoc

oA ∈ ObjLoc ⊂ Var

T ∈ ThreadSeq ::= g | T, T

g ∈ Expext ::= x | v | e.n | e e | let x = e in e | e := e | bind e e | unbind e

| try e catch e | escape | fork e | atomic e | task i N T

Evaluation Contexts:

E = [ ] | E .n | E e | v E | let x = E in e | E := e | oA.f := E | bind E e | bind X E

| try E catch e | task i N E | E , T | T, E

Structural Congruence

T, T ′ ≡ T ′, T T, () ≡ T

∆, α, β | g −→ ∆′, α′, β′ | g′

∆, α, β | E [ g ] −→ ∆′, α′, β′ | E [ g′ ]

g −→ g′

∆, α, β | g −→ ∆, α, β | g′

Transition Relation

eval ⊆ ((Lab → Class) × Exp) × Val

eval((ct, e), v0) ⇔ ∅, 0, ∅ | e −→∗ ∆, α, β | v0, (),· · · , ()

Method Body Lookup:

ct(A) = class A {f = v, M}

t m F ∈ M

mbody(m, A) = F

Fig. 2. Reduction semantics - Part I

the expression e. Evaluation then takes place according to the machine’s rules
in Figure 3. The evaluation terminates once all threads have been reduced to
values, in which case the value v0 of the initial, first thread T0 is returned as the
program’s result. Subscripts in values reduced from threads denote the sequence
number of the thread, i.e. vi is reduced from i’s thread, denoted Ti (i = 0, 1, ..).
The execution of threads can be arbitrarily interleaved.

5.1 Reduction rules

Below we describe reduction rules in Figure 3. The first two evaluation rules
are the standard rules of a call-by-value λ-calculus [Plo75]. We write e{v/x} to
denote the capture-free substitution of vi for xi in the expression e (i = 1, .., n).
Function application x : t = {e} v in (R-App) reduces to the function’s body e in



x : t = {e} v −→ e{v/x} (R-App)

let x = v in e −→ e{v/x} (R-Let)

oA /∈ dom(∆)

ct(A) = class A {f1 = v1, ..., fk = vk, M}

∆′ = (∆, oA.f1 7→ v1, ..., o
A.fk 7→ vk)

∆, α, β | new A −→ ∆′, α, β | oA
(R-New)

∆, α, β | oA.f := v −→ ∆[oA.f 7→ v], α, β | () (R-Assign)

∆, α, β | oA.f −→ ∆, α, β | v{oA/self} if ∆(oA.f) = v (R-Field)

mbody(m, A) = F

oA.m v −→ F{oA/self} v
(R-Invk)

try v catch e −→ v (R-Try)

try..catch /∈ E ′

try E ′[ escape ] catch e −→ e
(R-Esc)

∆, α, β | bind X oA −→ ∆, α, (β \ {(X, ·)}) ∪ {(X, oA)} | () (R-Bind)

∆, α, β | unbind X −→ ∆, α, β \ {(X, oA)} | () if (X, oA) ∈ β (R-Unbind1)

∆, α, β | unbind X −→ escape if (X, ·) /∈ β (R-Unbind2)

∆, α, β | X.n −→ ∆, α, β | oA.n if (X, oA) ∈ β (R-Lookup1)

∆, α, β | X.n −→ ∆, α, β | escape if (X, ·) /∈ β (R-Lookup2)

N = {X ∈ Sig : X ∈ e}

∆, α, β | E [ atomic e ] −→ ∆, α + 1, β | E [ () ], task α + 1 N e
(R-Atomic)

E [ fork e ] −→ E [ () ], e (R-Fork1)

task i N E [ fork e ] −→ task i N (E [ () ], e) (R-Fork2)

task i N e ∈ E i < j

X ∈ N ∩ M X /∈ e (X, oA) ∈ β

∆, α, β | E [ task j M E ′[ X.n ] ] −→ ∆, α, β | E [ task j M E ′[ oA.n ] ]
(R-Task1)

task i N v −→ () (R-Task2)

vi, v
′

j −→ vi if i < j (R-Thread)

Fig. 3. Reduction semantics - Part II



which formal arguments x are replaced with the actual arguments v. Execution
of let x = v in e in (R-Let) reduces the whole expression to the expression e in
which variable x is replaced by value v.

Execution of new A creates a new object of class A. The object is identified
by a fresh object location oA, and represented by a new record of object fields
f1, ..., fk in the object store ∆; see the (R-New) rule. The notation (∆, oA.f 7→ v)

means “the store that maps oA.f to v and maps all other selectors to the same
thing as ∆”. The object fields f1, .., fk are accessible via the object location oA,
e.g. oA.fi (i = 1..k) refers to a field fi of object oA. The object fields in the
object record are initialized with field values v1, .., vk defined by class A.

Rules (R-Assign) and (R-Field) correspondingly, assign a new value v to the
field f of an object oA, and read the current value stored in an object field oA.f .
For instance, let us look at the rule (R-Assign). We use the notation ∆[oA.f 7→ v]
to denote update of map ∆ at oA.f to v. Note that the term resulting from this
evaluation step is just (); the interesting result is the updated store. The (R-

Assign) rule must be applied first, if not possible then we try (R-Field).
Similarly to FJ, the invocation oA.m v of a method m of an object oA applies

the beta-reduction rule from the call-by-value λ-calculus; see the (R-Invk) rule.
The rule first looks up in the class table ct a method body F of the form
x : t = {e} (using a function mbody(m,A) defined in the bottom of Figure 2);
then, it reduces to the method body in which self is replaced by the receiver
oA. Then, the application rule (R-App) (described earlier) can be used, which
applies the arguments v to the method m.

Exceptions are defined using two rules. The (R-Try) rule defines the case when
no exception was thrown; it simply reduces the whole expression try ... catch
with the body reduced to a value v to the value v; the catch clause is discarded.
To throw an exception, the escape construct is used. If escape is in the redex
position of the expression e′ in the body of the innermost try e′ catch e, the
(R-Esc) rule reduces try e′ catch e to the exception handler e.

Dynamic binder bind X oA in rule (R-Bind) removes from store β any pre-
vious binding (X, ·) of a signature X, and extends β with a new element of X
paired with an object location oA. The whole expression reduces to the empty
value (). Dynamic unbinder unbind X in rules (R-Unbind1) and (R-Unbind2) re-
spectively, removes the binding (X, ·) from store β and reduces to the empty
value (), or throwns an exception with escape if no binding of X exists.

Dynamic resolver X.n in rules (R-Lookup1) and (R-Lookup2) respectively,
returns the field/method selector oA.n, where oA is the object location currently
bound to a signature X, or throwns an exception if no binding of X exists.

5.2 Concurrent and atomic evaluations

Execution of an expression atomic e creates a new thread for evaluation of a task
e with the isolation property, defined in Section 2. The task has the syntactic
form task i N e, where i is the sequence number of the task, and N is a set of
all signatures X that may be referred to by expression e. The (R-Atomic) rule



reduces an expression E [ atomic e ] to the context E with the empty value () in
the redex position, and a new thread evaluating a task task α + 1 N e; the rule
also increments the task counter α.

Execution of an expression fork e in (R-Fork1) creates a new thread which
evaluates e; the result of evaluating expression e will be discarded by rule
(R-Thread); threads may however have side-effects, e.g. modification of object
fields. Tasks can spawn their own threads using fork; see rule (R-Fork2).

The (R-Task1) rule specifies evaluation of concurrent tasks that satisfies the
isolation property. Consider evaluation of some task task j M e′ in the context
E , where the redex position of expression e′ is a field or method access via a
signature X, i.e. e′ = E ′[ X.n ] for some context E ′ and an interface name n. If
context E is such that there is some older concurrent task task i N e (i.e. i < j)
that evaluates some expression e and may refer to X (since X is declared in set
N), then the rule (R-Task1) applies. It reduces the expression task j M e′ by
replacing X by a concrete object location oA if two conditions hold: (1) e cannot
refer to X anymore (i.e. X /∈ e), and (2) there is actually some binding of X in
bind store β. If X is in e then the rule does not apply, and the other task may
be evaluated. If no binding of X exists, the rule (R-Lookup2) applies.

Once evaluation of an expression e of task task i N e yields a value, the rule
(R-Task2) returns the empty value as the result of the whole thread. The results
of evaluating threads (except of the initial thread) are discarded by (R-Thread).

6 Related Work

Object calculi There have been many proposals of various object calculi; we
sketch some of the most known examples below.

Abadi and Cardelli [AC95] have developed an imperative calculus of objects,
equipped with an operational semantics and typing (and subtyping); with ad-
dition of polymorphism, the calculus can express classes and inheritance. The
object calculus of Gordon and Hankin [GH98] extends Abadi and Cardelli’s im-
perative object calculus with operators for concurrency from the π-calculus and
operators for synchronization based on mutexes. Our calculus also has a synchro-
nization abstraction built-in (the atomic construct), albeit semantically richer
than mutexes; we discuss the related work on atomicity below.

Igarashi, Pierce and Wadler [IPW99] have proposed a small calculus, Feath-
erweight Java (FJ), that provides classes, methods, fields, inheritance, and dy-
namic typecasts, with semantics closely following Java’s. The design of our cal-
culus has been inspired by FJ, e.g. we have the same rule for method calls, which
uses the call-by-value principle of the λ-calculus. However, their calculus omits
interfaces and even assignment, while we have assignment and also signatures
(which are similar to Java interfaces). On the other hand, we do not model typing
and class inheritance in this paper since our focus is on the reduction semantics.

The above calculi have been developed mainly to reason about the imple-
mentation of objects, object encodings, typing, class inheritance, etc. We are
not aware of concurrent object calculi that would have constructs for dynamic



object rebinding similar to ours. We discuss some examples of (non-object) cal-
culi with dynamic binding in the next paragraph.

Dynamic rebinding A lot of work on dynamic rebinding appeared in the
context of functional languages (see, e.g., work of Moreau [Mor98]), focusing ei-
ther on dynamic scoping, in which variable occurrences are resolved with respect
to their dynamic environment, or static scoping with explicit rebinding, where
variables are resolved with respect to their static environment, but additional
primitives can be used to explicitly modify these environments.

Dynamic scoping exists in most modern dialects of Lisp, e.g. MIT Scheme’s
fluid-let [MIT] construct performs dynamically-scoped rebinding of local and
global variables; once the construct’s expression has been evaluated, the values
of the variables are restored. The quasi-static scoping Scheme extension of Lee
and Friedman [LF93] has a class of variables, which are initially unresolved. The
programmer can use a rebinding primitive to specify new bindings for individual
variables. The above work is different from ours; we bind whole objects to typed
signatures, while the above work is on dynamic binding of variables in functional
languages, with a correspondingly different semantics of rebinding.

Dynamic linking of objects in object languages such as Java, refers to resolv-
ing object components at runtime. However, once bound the code usually cannot
be rebound, which is different from our approach, which aims at studying object
re-binding. Different dynamic linking models have been described in [DLE03].

There are different applications of dynamic rebinding. For instance, Bier-
man et al. [BHS+03] proposed abstraction-safe marshalling and unmarshalling
(or rebinding) values between separate programs in the λ-calculus; see also the
Acute programming language [LPSW03]. An extension of Smalltalk with dy-
namic method redefinition in the scope of classboxes is described in [BDW03];
the dynamic rebinding feature is used here to support software evolution.

We are not aware of much discussion of concurrency issues in the context of
dynamic rebinding. The existing implementations are often not satisfactory, e.g.
the runtime support of type-safe dynamic Java classes in [MPG+00] aborts a
thread if a class update is attempted while the thread is executing a method of
that class. Our solution to this problem is to execute rebindable code fragments
and code fragments that do rebinding, as concurrent (possibly multithreaded)
atomic tasks, using the atomic construct. The semantics of the construct given
in this paper eliminates the need to abort threads while doing an update.

Atomicity Below we sketch some work on formalizing the isolation property
(also known as atomicity in the programming language research community),
with the semantics as in transactional systems; such semantics is slightly different
than the one presented in this paper. We are not aware of any formal work on
using isolation (or atomicity) in the context of dynamic binding.

Vitek et al. [VJWH04] have recently proposed a calculi-based model of stan-
dard database transactions. They have formalized the optimistic and two-phase
locking concurrency control strategies. Their approach to formalization of the



isolation property is similar to ours, in the sense that both specifications refer
to order (or scheduling) of concurrent actions.

There have recently been a lot of interest in developing language support for
atomicity. For example, Flanagan and Qadeer [FQ03] presented a type system for
specifying and verifying atomicity of (single threaded) methods in multithreaded
Java programs. The type system is a synthesis of Lipton’s theory of left and right
movers (for proving properties of parallel programs) and type systems for race
detection.

Harris and Fraser [HF03] have been investigating an extension of Java with
(again, sequential only) atomic code blocks that implement conditional critical
regions (CCRs). The programmer can guard a conditional region by an arbitrary
boolean condition, with calling threads blocking until the guard is satisfied. It is
also possible to terminate an execution of an atomic block and rollback, if some
condition is not satisfied.

In [Woj05], we have discussed the above implementation work in more detail,
including comparison with our approach to atomicity.

7 Conclusion

In this paper, we proposed a class-based object calculus with constructs for
dynamic rebinding of objects to signatures; signatures describe types of object
fields and methods, and can be used to call the objects. We have also discussed
properties of the bind/unbind constructs.

Dynamic object binding enables developing novel applications, such as dy-
namic service update (as in our example). However, it also makes programming
more difficult, since additional semantic properties may be required by programs.
We have discussed an example semantic property, called reference consistency,
and showed how it can be encoded using the atomic construct of our calculus
that ensures isolation.

In the future work, we would like to develop tools for automatic verification
of certain properties of dynamic binding/unbinding, based on the typed variant
of the calculus presented in this paper.
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