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ABSTRACT
In this paper we compare two approaches to the design of
protocol frameworks – tools for implementing modular net-
work protocols. The most common approach uses events as
the main abstraction for a local interaction between proto-
col modules. We argue that an alternative approach, that
is based on service abstraction, is more suitable for express-
ing modular protocols. It also facilitates advanced features
in the design of protocols, such as dynamic update of dis-
tributed protocols. We then describe an experimental im-
plementation of a service-based protocol framework in Java.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-
tributed Applications

Keywords
protocol frameworks, modularity, dynamic protocol replace-
ment

1. INTRODUCTION
Protocol frameworks, such Cactus [5, 2], Appia [1, 16],

Ensemble [12, 17], Eva [3], SDL [8] and Neko[6, 20], are pro-
gramming tools for developing modular network protocols.
They allow complex protocols to be implemented by de-
composing them into several modules cooperating together.
This approach facilitates code reuse and customization of
distributed protocols in order to fit the needs of different
applications. Moreover, protocol modules can be plugged
in to the system dynamically. All these features of protocol
frameworks make them an interesting enabling technology
for implementing adaptable systems [14] - an important class
of applications.
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Most protocol frameworks are based on events (all frame-
works cited above are based on this abstraction). Events
are used for asynchronous communication between different
modules on the same machine. However, the use of events
raises some problems [4, 13]. For instance, the composition
of modules may require connectors to route events, which
introduces burden for a protocol composer [4]. Protocol
frameworks such as Appia and Eva extend the event-based
approach with channels. However, in our opinion, this solu-
tion is not satisfactory since composition of complex proto-
col stacks becomes more difficult.

In this paper, we propose a new approach for build-
ing modular protocols, that is based on a service abstrac-
tion. We compare this new approach with the common,
event-based approach. We show that protocol frameworks
based on services have several advantages, e.g. allow for
a fairly straightforward protocol composition, clear imple-
mentation, and better support of dynamic replacement of
distributed protocols. To validate our claims, we have im-
plemented SAMOA – an experimental protocol framework
that is purely based on the service-based approach to module
composition and implementation. The framework allowed
us to compare the service- and event-based implementations
of an adaptive group communication middleware.

The paper is organized as follows. Section 2 defines gen-
eral notions. Section 3 presents the main characteristics
of event-based frameworks, and features that are distinct
for each framework. Section 4 describes our new approach,
which is based on service abstraction. Section 5 discusses the
advantages of a service-based protocol framework compared
to an event-based protocol framework. The description of
our experimental implementation is presented in Section 6.
Finally, we conclude in Section 7.

2. PROTOCOL FRAMEWORKS
In this section, we describe notions that are common to

all protocol frameworks.

Protocols and Protocol Modules. A protocol is a dis-
tributed algorithm that solves a specific problem in a dis-
tributed system, e.g. a TCP protocol solves the reliable
channel problem. A protocol is implemented as a set of
identical protocol modules located on different machines.

Protocol Stacks. A stack is a set of protocol modules (of
different protocols) that are located on the same machine.
Note that, despite its name, a stack is not strictly layered,



i.e. a protocol module can interact with all other proto-
col modules in the same stack, not only with the protocol
modules directly above and below. In the remainder of this
paper, we use the terms machine and stack interchangeably.
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Figure 1: Example of a protocol stack.

In Figure 1, we show an example protocol stack. We rep-
resent protocol modules by capital letters indexed with a
natural number, e.g. P1, Q1, R1 and S1. We write Pi to
denote the protocol module of a protocol P in stack i. We
use this notation throughout the paper. Modules are rep-
resented as white boxes. Arrows show module interactions.
For instance, protocol module P1 interacts with the protocol
module Q1 and conversely (See Fig. 1).

Protocol Module Interactions. Below, we define the dif-
ferent kinds of interaction between protocol modules.

• Requests are issued by protocol modules. A request
by a protocol module Pi is an asynchronous call by Pi

of another protocol module.

• Replies are the results of a request. A single request
can generate several replies. Only protocol modules
belonging to the same protocol as the module that has
issued the request are concerned by the corresponding
replies. For example, a request by Pi generates replies
that concern only protocol modules Pj .

• Notifications can be used by a protocol module to
inform (possibly many) protocol modules in the same
stack about the occurrence of a specific event. Notifi-
cations may also be the results of a request.

3. EVENT-BASED PROTOCOL FRAME-
WORK DESIGN

Most existing protocol frameworks are event-based. Ex-
amples are Cactus [5, 2], Appia [1, 16] and Ensemble [12,
17]. In this section, we define the notion of an event in pro-
tocol frameworks. We also explain how protocol modules
are structured in event-based frameworks.

Events. An event is a special object for indirect communi-
cation between protocol modules in the same stack. Events
may transport some information, e.g. a network message or
some other data. With events, the communication is indi-
rect, i.e. a protocol module that triggers an event is not
aware of the module(s) that handle the event. Events en-
able one-to-many communication within a protocol stack.
Triggering an event can be done either synchronously or
asynchronously. In the former case, the thread that triggers
an event e is blocked until all protocol modules that handle

e have terminated handling of event e. In the latter case,
the thread that triggers the event is not blocked.

Protocol Modules. In event-based protocol frameworks, a
protocol module consists of a set of handlers. Each handler
is dedicated to handling of a specific event. Handlers of the
same protocol module may share data. Handlers can be dy-
namically bound to events. Handlers can also be unbound
dynamically. Upon triggering some event e, all handlers
bound to e are executed. If no handler is bound, the behav-
ior is usually unspecified.
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Figure 2: Example of an event-based protocol stack.

In Figure 2, we show an example of an event-based stack.
Events are represented by small letters, e.g. e, f, ... The fact
that a protocol module can trigger an event is represented by
an arrow starting from the module. A white trapezoid inside
a module box represents a handler defined by the protocol
module. To mark that some handler is bound to event e, we
use an arrow pointing to the handler (the label on the arrow
represents the event e). For example, the protocol module
P1 triggers event e and handles event f (see Fig. 2). Note
that the network is represented as a special protocol module
that handles the send event (to send a message to another
machine) and triggers the deliver event (upon receipt of a
message from another machine).

Specific Features. Some protocol frameworks have unique
features. Below, we present the features that influence com-
position and implementation of protocol modules.

In Cactus [5, 2], the programmer can give a priority num-
ber to a handler upon binding it to an event. When an event
is triggered, all handlers are executed following the order of
priority. A handler h is also able to cancel the execution of
an event trigger: all handlers that should be executed after
h according to the priority are not executed.

Appia [1, 16] and Eva [3] introduce the notion of channels.
Channels allow to build routes of events in protocol stacks.
Each protocol module has to subscribe to one or many chan-
nels. All events are triggered by specifying a channel they
belong to. When a protocol module triggers an event e spec-
ifying channel c, all handlers bound to e that are part of a
protocol that subscribes to c are executed (in the order pre-
scribed by the definition of channel c).

4. SERVICE-BASED PROTOCOL FRAME-
WORK

In this section, we describe our new approach for imple-
menting and composing protocols that is based on services.



We show in Section 5 the advantages of service-based pro-
tocol frameworks over event-based protocol frameworks.

Service Interface. In our service-based framework, proto-
col modules in the same stack communicate through objects
called service interfaces. Requests, replies and notifications
are all issued to service interfaces.

Protocol Modules. A protocol module is a set of executers,
listeners and interceptors.

Executers handle requests. An executer can be dynami-
cally bound to a service interface. It can be later unbound.
A request issued to a service interface si leads to the execu-
tion of the executer bound to si. If no executer is bound to
si, the request is delayed until some executer is bound to si.
Contrary to events, at most one executer at any time can
be bound to a service interface on every machine.

Listeners handle replies and notifications. A listener can
be dynamically bound and unbound to/from a service in-
terface si. A notification issued to a service interface si is
handled by all listeners bound to si in the local stack. A
reply issued to a service interface is handled by one single
listener. To ensure that one single listener handles a reply, a
module Pi has to identify each time it issues a request, the
listener to handle the possible reply. If the request and the
reply occur respectively, in stack i and in stack j, the service
interface si on i communicates to the service interface si′ on
j the listener that must handle the reply. If the listener that
must handle the reply does not exist, the reply is delayed
until the listener is created.
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Figure 3: Example of a service-based protocol stack.

In Figure 3, we show an example of a service-based stack.
We denote a service interface by a small letter (e.g. t, u
and nt) in a hexagonal box. The fact that a module Pi can
generate a request to a service interface si is represented
by a dashed black arrow going from Pi to si. Similarly, a
dashed white arrow going from module Pi to service inter-
face si represents the fact that Pi can generate a reply or a
notification to si. We represent executers with white boxes
inside protocol modules, listeners with white boxes with a
gray border. A connecting line between a service interface
si and an executer e (resp. a listener l) shows that e (resp.
l) is bound to si.

In Figure 3, module Q1 contains an executer bound to
service interface t and a listener bound to service interface u.
Module Q1 can generate replies and notifications to service
interface t and request to service interface u. Note that the

service interface nt allows to access the network.
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Figure 4: Execution of protocol interactions with
interceptors.

An interceptor plays a special rôle. Similarly to executers,
interceptors can be dynamically bound or unbound to a ser-
vice interface. They are activated each time a request, a
reply or a notification is issued to the service interface they
are bound to. This is illustrated in Figure 4. In the right
part of the figure, the interceptor of the protocol module T1

is represented by a rounded box. The interceptor is bound
to service interface t. The left part of the figure shows that
an interceptor can be seen as an executer plus a listener.
When P1 issues a request req to the service interface t, the
executer-interceptor of T1 is executed. Then, module T1

may forward a request req′ to the service interface t, where
we can have req 6= req′1. When module Q1 issues a reply
or a notification, a similar mechanism is used, except that
this time the listener-interceptor of T1 is executed. Note
that a protocol module Ti that has an interceptor bound
to a service interface is able to modify requests, replies and
notifications.

Upon requests, if several interceptors are bound to the
same service interface, they are executed in the order of
binding. Upon replies and notifications, the order is re-
versed.

5. ADVANTAGES OF SERVICE-BASED
PROTOCOL FRAMEWORK DESIGN

We show in this section the advantages of service-based
protocol frameworks over event-based protocol frameworks.
We structure our discussion in three parts. Firstly, we
present how protocol interactions are modeled in each of
the protocol frameworks. Then, we discuss the composition
of protocol modules in each of these frameworks. Finally, we
present the problem of dynamic protocol replacement and
the advantages of service interfaces in order to implement
it. The discussion is summarized in Table 1.

5.1 Protocol Module Interactions
A natural model of protocol interactions (as presented in

Section 2) facilitates the implementation of protocol mod-
ules. For each protocol interaction, we show how it is mod-
eled in both frameworks. We also explain that an inaccurate
model may lead to problems.

Requests. In service-based frameworks, a request is gen-
erated to a service interface. Each request is handled by
at most one executer, since we allow only one executer to
be bound to a service interface at any time. On the other
hand, in event-based frameworks, a protocol module emu-
lates a request by triggering an event. There is no guarantee

1The two service interfaces t in the left part of Figure 4
represent the same service interface t. The duplication is
only to make the figure readable.



that this event is bound to only one handler, which may lead
to programming errors.

Replies. When a protocol module generates a reply in a
service-based framework, only the correct listener (identi-
fied at the time the corresponding request was issued) is
executed. This ensures that a request issued by some proto-
col module Qi, leads to replies handled by protocol modules
Qj (i.e. protocol modules of the same protocol).

This is not the case in event-based frameworks, as we now
show. Consider protocol module Q1 in Figure 2 that trig-
gers event g to emulate a request. Module S1 handles the
request. When modules Si triggers event h to emulate a re-
ply (remember that a reply can occur in many stacks), both
modules Qi and Ri will handle the reply (they both contain
a handler bound to h). This behavior is not correct: only
protocol modules Qi should handle the reply. Moreover, as
modules Ri are not necessarily implemented to interact with
modules Qi, this behavior may lead to errors.

Solutions to solve this problem exist. However, they intro-
duce an unnecessary burden on the protocol programmers
and the stack composer. For instance, channels allow to
route events to ensure that modules handle only events con-
cerning them. However, the protocol programmer must take
channels into account when implementing protocols. More-
over, the composition of complex stacks becomes more dif-
ficult due to the fact that the composer has to create many
channels to ensure that modules handle events correctly. An
addition of special protocol modules (named connectors) for
routing events is also not satisfactory, since it requires ad-
ditional work from the composer and introduces overhead.

Notifications. Contrary to requests and replies, notifica-
tions are well modeled in event-based frameworks. The
reason is that notifications correspond to the one-to-many
communication scheme provided by events. In service-based
frameworks, notifications are also well modeled. When a
module generates a notification to a service interface si, all
listeners bound to s are executed. Note that in this case, ser-
vice interfaces provide the same pattern of communication
as events.

5.2 Protocol Module Composition
Replies (and sometimes notifications) are the results of

a request. Thus, there is a semantic link between them.
The composer of protocol modules must preserve this link
in order to compose correct stacks. We explain now that
service based frameworks provide a mechanism to preserve
this link, while in event-based frameworks, the lack of such
mechanism leads to error-prone composition.

In service-based frameworks, requests, replies and noti-
fications are issued to a service interface. Thus, a service
interface introduces a link between these interactions. To
compose a correct stack, the composer has to bound a lis-
tener to service interface si for each module that issues a
request to si. The same must be done for one executer that
is part of a module that issues replies or notifications. Ap-
plying this simple methodology ensures that every request
issued to a service interface si eventually results in several
replies or notifications issued to the same service interface
si.

In event-based frameworks, all protocol interactions are
issued through different events: there is no explicit link be-

tween an event triggered upon requests and an event trig-
gered upon the corresponding replies. Thus, the composer
of a protocol stack must know the meaning of each event in
order to preserve the semantic link between replies (and no-
tifications) and requests. Moreover, nothing prevents from
binding a handler that should handle a request to an event
used to issue a reply. Note that these problems can be par-
tially solved by typing events and handlers. However, it does
not prevent from errors if there are several instances of the
same event type.

Note that protocol composition is clearer in the proto-
col frameworks that are based on services, rather than on
events. The reason is that several events that are used to
model different protocol interactions can be modeled by a
single service interface.

5.3 Dynamic Replacement of Protocols
Dynamic replacement of protocols consists in switching

on-the-fly between protocols that solve the same problem.
Replacement of a protocol P by a new protocol newP means
that a protocol module Pi is replaced by newPi in every
stack i. This replacement is problematic since the local re-
placements (within stacks) must be synchronized in order to
guarantee protocol correctness [21, 18].
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Figure 5: Dynamic replacement of protocol P .

For the synchronization algorithms to work, module in-
teractions are intercepted in order to detect a time when Pi

should be replaced by newPi. (Other solutions, e.g. in [11],
are more complex.) In Fig. 5, we show how this interception
can be implemented in protocol frameworks that are based
on services (in the left part of the figure) and events (in the
right part of the figure). The two-sided arrows point to the
protocol modules P1 and newP1 that are switched.

It can be seen that the approach that uses the Service In-
terface mechanism has advantages. The intercepting mod-
ule Repl-P1 has an interceptor bound to service interface t
that intercepts every request handled by modules P1 and
all replies and notifications issued by P1. The code of the
module P1 can therefore remain unchanged.

In event-based frameworks, the solution is to add an inter-
mediate module Repl-P1 that intercepts the requests issued
to P1 and also the replies and notifications issued by P1. Al-
though this ad-hoc solution may seem similar to the service-
based approach, there is an important difference. The event-
based solution requires to modify the module P1 since in-
stead of handling event g and triggering event h, P1 must
now handle different events g’ and h’ (see Fig. 5).

6. IMPLEMENTATION
We have implemented an experimental service-based pro-

tocol framework (called SAMOA) [7]. Our implementation
is light-weight: it consists of approximately 1200 lines of
code in Java 1.5 (with generics).

In this section, we describe the main two classes of our im-
plementation: Service (encoding the Service Interface) and



service-based event-based
Protocol Interaction an adequate an inadequate

representation representation
Protocol Composition clear and safe complex

and error-prone
Dynamic Replacement an integrated ad-hoc solutions

mechanism

Table 1: Service-based vs. event-based

Protocol (encoding protocol modules). Finally, we present
an example protocol stack that we have implemented to val-
idate the service-based approach.

The Service Class. A Service object is characterized by
the arguments of requests and the arguments of responses.
A response is either a reply or a notification. A special ar-
gument, called message, determines the kind of interactions
modeled by the response. A message represents a piece of
information sent over the network. When a protocol module
issues a request, it can give a message as an argument. The
message can specify the listener that must handle the reply.
When a protocol module issues a response to a service inter-
face, a reply is issued if one of the arguments of the response
is a message specifying a listener. Otherwise, a notification
is issued.

Executers, listeners and interceptors are encoded as inner-
classes of the Service class. This allows to provide type-safe
protocol interactions. For instance, executers can only be
bound to the Service object, they belong to. Thus, the
parameters passed to requests (that are verified statically)
always correspond to the parameters accepted by the corre-
sponding executers.

The type of a Service object is determined by the type of
the arguments of requests and responses. A Service object
t is compatible with another Service object s if the type of
the arguments of requests (and responses) of t is a subtype of
the arguments of requests (and responses) of s. In practice,
e.g., if a protocol module Pi can issue a request to a protocol
UDP (compatible with TCP ), then it may also issue a re-
quest to TCP due to the subtyping relation on parameters
of communicating modules.

The Protocol Class. A Protocol object consists of three
sets of components, one set for each component type (a lis-
tener, an executer, and an interceptor). Protocol objects
are characterized by names to retrieve them easily. More-
over, we have added some features to bind and unbind all
executers or interceptors to/from the corresponding Service
objects. Protocol objects can be loaded to a stack dynami-
cally. All these features made it easy to implement dynamic
replacement of network protocols.

Protocol Stack Implementation. To validate our ideas, we
have developed an Adaptive Group Communication (AGC)
middleware, adopting both the service- and the event-based
approach. Fig. 6 shows the corresponding stacks of the AGC
middleware. Both stacks allow the Consensus and Atomic
Broadcast protocols to be dynamically updated. Two modes
of failure are supported: crash-stop and crash-recovery.

The architecture of our middleware, shown in Fig. 6,
builds on the group communication stack described in [15].
The UDP and RP2P modules provide respectively, unreli-
able and reliable point-to-point transport. The FD module
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Figure 6: Adaptive Group Communication Middle-
ware: service-based (left) vs. event-based (right).

implements a failure detector ; we assume that it ensures the
properties of the 3S failure detector [9]. The CT module
provides a distributed consensus service using the Chandra-
Toueg algorithm [10]. The ABc. module implements atomic
broadcast – a group communication primitive that delivers
messages to all processes in the same order. The GM mod-
ule provides a group membership service that maintains con-
sistent membership data among group members (see [19] for
details). The Repl ABc. and the Repl CT modules imple-
ment the replacement algorithms [18] for, respectively, the
ABc. and the CT protocol modules. Note that each arrow
in the event-based architecture represents an event. We do
not name events in the figure for readability.

The left stack in Figure 6 shows the implementation of
AGC with our service-based framework. The right stack
shows the same implementation with an event-based frame-
work.

Performance Evaluation. To evaluate the overhead of ser-
vice interfaces, we compared performance of the service-
and event-based implementations of the AGC middleware.
The latter implementation of AGC uses the Cactus protocol
framework [5, 2].

In our experiment, we have compared the average latency
of Atomic Broadcast (ABcast), which is defined as follows.
Consider a message m sent using ABcast. We denote by
ti(m) the time between the moment of sending m and the
moment of delivering m on a machine (stack) i. We de-
fine the average latency of m as the average of ti(m) for all
machines (stacks) i within a group of stacks.

Performance tests have been made using a cluster of PCs
running Red Hat Linux 7.2, where each PC has a Pentium
III 766 MHz processor and 128MB of RAM. All PCs are in-
terconnected by a 100 Base-TX duplex Ethernet hub. Our
experiment has involved 7 machines (stacks) that ABcast
messages of 4Mb under a constant load, where a load is a
number of messages per second. In Figure 7, we show the
results of our experiment for different loads. Latencies are
shown on the vertical axis, while message loads are shown
on the horizontal axis. The solid line shows the results ob-
tained with our service-based framework. The dashed line
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Figure 7: Comparison between our service-based
framework and Cactus.

shows the results obtained with the Cactus framework. The
overhead of the service-based framework is approximately
10%. This can be explained as follows. Firstly, the service-
based framework provides a higher level abstraction, which
has a small cost. Secondly, the AGC middleware was ini-
tially implemented and optimized for the event-based Cac-
tus framework. However, it is possible to optimize the AGC
middleware for the service-based framework.

7. CONCLUSION
In the paper, we have proposed a new approach to the

protocol composition that is based on the notion of Service
Interface, instead of events. We believe that the service-
based framework has several advantages over event-based
frameworks. It allows us to: (1) model accurately protocol
interactions, (2) reduce the risk of errors during the com-
position phase, and (3) simply implement dynamic protocol
updates. A prototype implementation allowed us to validate
our ideas.
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