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Abstract
In this paper we introduce Jiffy, the first lock-free, lineariz-
able, ordered key-value index that offers both (1) batch up-
dates, i.e., put and remove operations that are executed atom-
ically, and (2) consistent snapshots used by, e.g., range scan
operations. Jiffy is built as a multiversioned lock-free skip list
and relies on system-provided timestamps (e.g., on x86_64
obtained through the Time Stamp Counter register) to gen-
erate version numbers at minimal cost. For faster skip list
traversals and better utilization of CPU caches, key-value
entries are grouped into immutable objects called revisions.
By (automatically) controlling the size of new revisions, our
index can adapt to varying contention levels (e.g., smaller
revisions are more suited for write-heavy workloads). Struc-
ture modifications to the index, which result in changing the
size of revisions, happen through (lock-free) skip list node
split and merge operations that are carefully coordinated
with the update operations. Despite rich semantics, Jiffy of-
fers highly scalable performance across varied workloads.
Compared to Jiffy’s lock-based rivals that support batch up-
dates, our index can execute large batch updates up to 7.4
times more efficiently. Moreover, Jiffy often outperforms
the state-of-the-art lock-free ordered indices that feature
linearizable range scan operations but lack batch updates.

CCS Concepts • Theory of computation → Concurrent
algorithms; Data structures design and analysis.

Keywords ordered index, lock-free skip list, batch update,
snapshot, linearizability
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1 Introduction
Concurrent programming is notoriously difficult. Hence, to
develop applications and complex systems, such as data-
base engines, which are optimized for modern multicore
hardware, programmers often rely on concurrent data struc-
tures. These structures expose a well defined interface and
can be safely used in a multithreaded environment with-
out additional synchronization (see, e.g., [26]). Under the
hood, concurrent data structures feature sophisticated, of-
ten non-blocking synchronization algorithms optimized for
performance. With the proliferation of multicore hardware
in recent years, many new concurrent data structures have
been proposed, e.g., concurrent lists [35, 59], sets [18, 31, 38,
47, 54, 56], (ordered) key-value indices (or maps, dictionaries)
[15, 16, 19–21, 32, 33, 46, 49, 52, 53, 55, 57, 58, 60], etc., each
time improving the performance over the existing solutions
and introducing new features, e.g., the support for consistent
range scan operations or snapshots that provide a read-only,
static and consistent view over the state of the entire dataset.

In this paper, we introduce Jiffy, the first linearizable [37],
lock-free ordered index (sorted key-value map) that besides
offering consistent snapshots used, e.g., by range scans, pro-
vides support for batch updates, i.e., put and remove opera-
tions that are executed atomically. The latter feature is often
demanded by programmers: batch updates are part of API
of Google’s LevelDB [7] and Facebook’s RocksDB [11], and
are extensively used in large open-source projects (see, e.g.,
Apache Hadoop [1], Apache Spark [2] or Bitcoin [3]). How-
ever, providing batch updates in an in-memory index, which
must be much faster than its SSD-backed counterparts, poses
new challenges related to concurrent synchronization. We
propose several innovations to make our in-memory index
highly scalable, despite the rich semantics it offers. The nov-
elty of our approach is characterized below and in Section 2.

The design of our index is based on a multiversioned [17]
skip list [50]. Unlike existing multiversioned concurrent in-
dices which rely on a single atomic counter to generate ver-
sion numbers [16, 41, 42], Jiffy’s concurrency control mech-
anism is designed to use system-provided timestamps as
version numbers. For example, on the x86_64 platform, times-
tamps can be obtained through CPU’s Time Stamp Counter
(TSC) register [39, 51], a cycle-level resolution clock, whose
value can be read without performing a system call. In turn,
the versioning mechanism in Jiffy does not feature a single
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point of contention and offers scalable performance for read
and update operations on modern 40+ core CPUs.

Our unique versioning mechanism allows Jiffy to provide
programmers with more robust snapshots compared to the
existing lock-free indices. For example, in KiWi [16] or LFCA
tree [60], snapshots are created and managed only by range
scans. Consequently, with these indices a programmer cannot
explicitly acquire a snapshot and freely read any keys or
perform repeated range scans (as one could do using a read-
only transaction in DBMS). Moreover, in LFCA tree the cost
of creating a snapshot (for a range scan) is 𝑂 (𝑛), where 𝑛 is
the number of entries returned by the range scan.

In Jiffy, all range scans are performed on consistent snap-
shots. However, one can also explicitly acquire a snapshot
of the current state of the dataset and perform on it any
combination of read-only operations: lookups (gets), ascend-
ing/descending range scans, relational operations (higherKey,
lowerKey), acquire submaps, etc. A snapshot acquired explic-
itly can be easily refreshed to reflect a more recent state of
the index, and eventually has to be disposed of (closed). The
cost of acquiring/refreshing any snapshot is 𝑂 (1).

Key-value entries are grouped in Jiffy into immutable ob-
jects, called revisions, which are tagged with a version num-
ber. This way the index can be smaller and thus quicker to
traverse. Moreover, accesses to individual key-value entries
can be performed more efficiently through the use of a light-
weight hash index inside each revision, whereas range scans
can benefit from keys and values being stored in sorted ar-
rays within the revision. Crucially, however, by growing or
shrinking the skip list and thus modifying the sizes of revi-
sions, we can optimize the synchronization granularity in
Jiffy, which allows it to adapt to changing workloads. Smaller
revisions are more suited for write-heavyworkloads whereas
large revisions benefit read-dominated workloads, especially
when they feature many range scan operations. Automatic
adaptation to the workload is accomplished on per-revision
basis by monitoring the time threads spend executing up-
dates and reads, not by counting the number of operations
performed or monitoring the contention on shared refer-
ences, as in other existing approaches, e.g., [52, 53, 60].

The core contribution of our paper is, however, the novel
lock-free algorithm that enables updates, reads, and index
structure modifications, which drive the changes in revision
sizes. Structure modifications in Jiffy are very different com-
pared to a classic skip list, as they involve splits and merges
of nodes on the lowest level of the skip list. Node splits and
merges are solely based on the atomic compare-and-swap
(CAS) operations and are streamlined with updates (includ-
ing batch updates) for minimal overhead.

The test results show that Jiffy (which we implemented in
Java, see also [5]) exhibits scalable behaviour under varied
workloads. Compared to its lock-based rivals that offer both
batch updates and linearizable range scans [60], Jiffy can ex-
ecute large batch updates much more efficiently thanks to its

lock-free architecture, with speedup in throughput ranging
from 1.1× to 7.4×. Moreover, despite more costly updates
(due to the support of batch updates), Jiffy often outperforms
the state-of-the-art lock-free ordered indices that lack sup-
port for batch updates [19–21, 53]. Jiffy is roughly 2× faster
than the ubiquitous ConcurrentSkipListMap [27], which
does not support batch updates nor linearizable range scans.

To test and debug Jiffy, we developed a test harness for con-
current data structures. During our test, concurrent threads
log traces of performed operations (the traces also include
system-provided timestamps). Traces are then transformed
into a graph that reflects various relationships between the
logged events, e.g., write-read/write-write dependencies, pro-
gram and timestamp order, batch update and snapshot-based
constraints, etc. We iteratively refine the graph by inferring
new relationships between events and check whether the
graph is still acyclic. The test harness, which is part of Jiffy’s
codebase, gives us real confidence in our implementation,
despite its complexity.

1.1 Paper structure
The paper has the following structure. In Section 2we discuss
work closely related to ours. Then, in Section 3, we describe
the design of our system, including the system architecture,
the way we implemented all operations (put, remove, batch
update, lookup, and range scans), additional internal opera-
tions (structure modifications), the internal data structures,
and the used autoscaling policy. Then, we discussed the cor-
rectness of our system. In Section 4, we present the results
of experimental evaluation. We conclude in Section 5.

2 Related work
A template for non-blocking concurrent data structures based
on CAS was originally proposed in [36]. Implementations
based on this approach suffer from low parallelism and high
overhead due to excessive copying and reliance on a single
global pointer accessed through CAS by all threads. Much
better performing ordered indices rely on purposefully de-
signed (non-blocking) algorithms (discussed below and sum-
marized in Table 1).
Skip lists were first introduced by Pugh [50]. Valois [59]

was the first to sketch a lock-free algorithm for a skip list,
although the first complete algorithm was proposed by Sun-
dell and Tsigas [58], as an extension of their prior work on
concurrent priority queues [57]. Frasier [33] gave an alter-
native implementation of a lock-free skip list, which relies
on Harris’ CAS-based approach for implementing lock-free
linked lists [35]. Fomitchev and Ruppert’s implementation
of a lock-free skip list [32] combines the techniques of Valois
and Harris. The ubiquitous ConcurrentSkipListMap [27],
which is part of java.util.concurrent library, draws from
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Table 1. Summary of properties of selected ordered indices.

Basic Concurrency Batch Linearizable Linearizable
architecture scheme updates range scans snapshots

Java CSLM [26] skip list lock-free
SnapTree [19] AVL tree locks ✓ ✓
CTrie [49] hash trie lock-free ✓ ✓
Minuet [55] dist. MVCC B-tree locks ✓ ✓ ✓
k-ary tree [20, 21] k-ST lock-free ✓
LeapList [15] skip list locks + STM ✓
CA-imm [52] BST locks ✓
Nitro [41] MVCC skip-list lock-free ✓ ✓∗

KiWi [16] MVCC skip list lock-free ✓
LFCA tree [60] BST lock-free ✓
CA-AVL [53] BST locks ✓ ✓
CA-SL [53] BST locks ✓ ✓
Jiffy MVCC skip list lock-free ✓ ✓ ✓

* In Nitro, snapshot creation is not a thread-safe operation.

Freiser’s, Fomitchev’s and Sundell’s work. All algorithms dis-
cussed above are linearizable [37] except for range scans, and,
unlike Jiffy, they do not support batch updates or snapshots.

LeapList [15] and KiWi [16] are skip list-based indices that
provide linearizable range scans (but no fully linearizable
snapshots that can be acquired on demand by a programmer,
as in Jiffy). LeapList relies on fine-grained locks and Software
Transactional Memory for concurrency control. On the other
hand, KiWi features a multiversioned architecture and CAS-
based operations to provide lock-freedom (range scans are
wait-free). In KiWi, not every update creates a new version:
without concurrent range scans, an update operation simply
overwrites the old value in the index. Version numbers are
managed using an atomic counter, which can be a bottleneck
(in Jiffy we rely on system-provided timestamps instead).
Each of the base nodes in LeapList and KiWi holds 𝑘 key-
value entries for cache-friendliness, but 𝑘 is fixed (unlike in
Jiffy).

Nitro [41], a skip list-based index used in Couchbase [4],
uses multiversioning to provide snapshots, but the creation
of a new snapshot is not a thread-safe operation (it cannot
be executed concurrently with put/remove operations).

Now we discuss tree-based ordered index data structures.
SnapTree by Bronson et al. [19] is a lock-based relaxed bal-
ance AVL tree. SnapTree uses a linearizable clone operation
for atomic snapshots and range scans, which can severely
slow down concurrent update operations. In Jiffy, creating
a snapshot, which is also used for a range scan, is an O(1)
operation that does not impact concurrent operations in any
way. Brown et al. proposes k-ary search trees [20, 21], which
are a generalization of lock-free binary search trees by Ellen
et al. [31]. Range scans undergo a validation phase for en-
suring linearizability and are restarted when a concurrent

update is detected. In Jiffy, a range scan may help completing
some concurrent update operations, and is never restarted.
CTrie [49] is a lock-free concurrent hash trie based on CAS.
Atomic snapshots are provided through a lazy copy-on-write
operation, which slows down concurrent update operations.
In CTrie no partial snapshots can be obtained. Minuet [55] is
a distributed, in-memory B-tree index with linearizable snap-
shots. To create snapshots, Minuet also relies on a relatively
expensive copy-on-write method, but allows snapshots to
be shared across multiple range scans.

Sagonas et al. [52, 53, 60] proposed a number of contention-
adapting (CA) tree-based data structures with linearizable
range scans. The data structures feature a lock-based [52, 53]
or a lock-free binary search tree [60] with variable-sized
containers as leaves, implemented as AVL trees, skip lists
or immutable data structures that hold multiple key-value
entries (similar to revisions in Jiffy). The size of the con-
tainer is adjusted to the observed contention level (see also
Section 3.7). Linearizable range scans are achieved through
locking, optimistic scan and validation, or replacing the leaf
data structures using CAS with special objects used by con-
current threads to help with completing the range scan (and
to block update operations in the meantime). From all of
the data structures we discussed so far, only the lock-based
variants of the CA trees support batch update operations.

We are aware of several other works on data structures
that dynamically adapt to changing contention levels, e.g.,
[12, 24]. Unlike CA trees, none of the proposed algorithms
support linearizable range scans or batch updates.
Some researchers have investigated general techniques

for adding linearizable range scans (but not batch updates)
to existing concurrent data structures, e.g. [13, 22, 44, 45, 48].
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The concurrency control mechanism implemented in Jiffy
shares some similarities with the multiversioned transac-
tional engine in [42], which relies on CAS and structures akin
to our batch descriptors to make updates atomic. However,
unlike this engine, Jiffy is lock-free and no update operation,
including batch updates, ever aborts. Crucially, instead of
using a shared atomic counter to generate version numbers,
Jiffy relies on a system-provided timestamps (CPU’s Time
Stamp Counter register [39] on x86_64), which greatly re-
duces contention between concurrent threads on modern
40+ core CPUs. TSC has been used for a similar purpose
also in the context of transactional memory [34, 40, 51], a
concurrent stack implementation [30], and a serializable (but
not linearizable) database engine [43].

3 Design of Jiffy
3.1 The architecture overview
Jiffy is a multiversioned [17] skip list [50], where each node
(an object on the lowest-level linked list of the skip list) man-
ages a continuous range of keys (see Figure 1). More precisely,
each node stores (1) a node key, i.e., a key that represents the
lower end of the managed key range (the exclusive upper
end is defined by the node key of the successor node)1, and
(2) a reference to the head of a revision list. The revision list
consists of revisions, immutable objects, each storing 1-65k
(25-300 on average, see Section 4) key-value entries that fit in
the node’s range (we discuss the layout of data in a revision
in Section 3.6). Each revision is tagged with a version number,
which is used for all key-value entries stored in the revision.
Update operations, such as put, remove or batch update use a
copy-on-write technique and the compare-and-swap (CAS)2
operation to add a new revision as the head of the revision
list. The new revision is therefore a modified copy of the
previous head of the revision list, such that they differ only
on keys modified by the update operation (e.g., for put(𝑘, 𝑣),
the new revision features a new entry for key 𝑘 or 𝑣 replaces
the old value for 𝑘). We simply say that a new revision that
reflects the update has been added to the node. Before each
update operation completes, the internal garbage collector is
invoked to check if the revision list can be cut short in case
certain revisions will not be needed any more.
In Jiffy, structure modifications, i.e., changes to the index,

are more involved compared to a typical lock-free skip list,
such as [27], where nodes are added or removed upon insert-
ing new keys or removing the existing ones. In our approach,
the index grows by splitting a node into two and shrinks
by merging two nodes into one (see details in Section 3.5).
The index starts with a single base node (with key ⊥) and an

1Unlike in a classic skip list, the first node, called the base node, is not just
a sentinel but also manages a range of entries (its key is ⊥, and thus in
Figure 1 its key range is (−∞, 𝑐)).
2CAS(v, oldV , newV ) atomically replaces v with newV only if v = oldV ,
and returns a boolean value that indicates if the operation was successful.

empty revision on its revision list (only the base node can
have an empty revision). During a split of a node with key
𝑛 (referred to as node 𝑛), a new node 𝑛′ (𝑛′ > 𝑛), is added
directly after node 𝑛 (or node ⊥ if the base node undergoes
a split). Node 𝑛′ inherits the upper half of the key range
originally assigned to node 𝑛 (the key of node 𝑛 does not
change). Conversely, during a merge operation of node 𝑛, it
is merged with the node directly preceding it in the index
(i.e., with a node with a strictly lower key; the base node can-
not undergo a merge operation and is never removed). The
index nodes (i.e., the nodes on all but the lowest-level linked
lists, which facilitate fast traversals of the data structure) are
inserted to the higher-level linked lists probabilistically (in
our implementation, the probability of inserting index nodes
up to a certain level is the same as in [27]). Operations on
higher-level linked lists also rely on CAS and are lock-free.

A node split or a merge can occur only upon some update
operation, i.e., put, remove or batch update (see details in
Sections 3.2-3.3). When an update operation of some key 𝑘
is performed and the appropriate node is found (i.e., node
𝑛, where 𝑘 ≥ 𝑛 and there does not exist a node 𝑛′ where
𝑘 ≥ 𝑛′), an autoscaling policy decides how the update is
to be performed (see details in Section 3.7). In majority of
cases (99.99% of updates in our tests), a regular update is
performed. A regular update involves copying the head of
the revision list at node 𝑛 and applying the update on the
copied revision (Figure 1b), adding it to the revision list using
CAS (Figure 1c), and garbage collecting obsolete revisions,
i.e., revisions that will never be read again, including in any
snapshot (Figure 1d). Otherwise, a node split or a merge is
performed. In the former case, the update to 𝑘 is reflected in
one of the two new split revisions (left split revision inserted
as the head of the revision list on node 𝑛 and right split
revision as the head of the revision list on the new node; each
node maintains half of the range of the original node). In
case of a merge, the newmerge revision (on the node directly
preceding node 𝑛 in the index) includes the update to 𝑘 and
the entries for all other keys previously stored within the two
nodes (and thus has a left and a right successor). Through
split and merge revisions, revision lists are not just simple
linked lists, but they branch and join.
Jiffy is a lock-free data structure, which means that it

guarantees system-wide progress. To facilitate lock-freedom
operations occasionally help completing some concurrent
update operations. This happens, e.g., when a thread is pre-
empted in the midst of performing an update 𝑢 on some
node 𝑛 and some other thread either wants to perform an
update on node 𝑛 or read the revision created by the not yet
completed operation 𝑢.

Since performing an update operation involves a number
of steps (especially in case of batch updates or updates that
result in node splits or merges), we need to ensure orderly
execution of all update operations. Hence we define the
following rules:
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Figure 1. Left: the multiversioned architecture of Jiffy. Each node of the lowest-level list of the skip list manages a range of
keys, e.g., (−∞, 𝑐), [𝑐, 𝑓 ), [𝑓 , 𝑖), etc. Key-value entries are kept in immutable revisions (triangles), each in a concrete version,
with newest at the top. The skip list grows and shrinks by splitting or merging nodes and through split (green) and merge (red)
revisions. Right: regular update operation: (a) initial state, (b) create a new revision, (c) add the new revision to the node (CAS),
(d) garbage collect obsolete revisions.

1. any operation (so also a lookup or a range scan) that
during its execution encounters a node split or a merge,
always helps completing the operation that invoked
the split or merge,

2. an update operation can add a new revision 𝑟 to the
revision list at some node 𝑛 only if there is no pending
operation at node 𝑛 (before adding 𝑟 to node 𝑛, the
update operation helps completing all the pending
operations at node 𝑛),

3. a batch update (comprising of a set of put and remove
operations) starts by updating the highest key in the
batch and always continues towards lower keys.

Rule (1) means that our index returns to a stable state (i.e.,
without ongoing structure changes) as soon as possible, so
that subsequent operations (including lookups and range
scans) can be performed efficiently. Rules (2) and (3) enforce
a consistent order of performing updates (also across batch
updates), thus allowing Jiffy to guarantee linearizability. For
concurrent operations that update multiple nodes (batch
updates and updates that result in node splits or merges)
and which access overlapping sets of nodes, rules (2) and
(3) give priority to operations that happen on nodes with
lower keys. This way we prevent live-locks, which could oth-
erwise happen, when, e.g., there were two threads operating
on neighboring nodes, with one constantly attempting to
perform a node split and the other a node merge.
The lock-free nature of Jiffy inevitably means that un-

der some highly unfavorable (unlikely) workloads, helping
concurrent operations will have a convoying effect which
results in all threads attempting to complete the same up-
dates/splits/merges thus wasting resources. This, however,
is unavoidable if we are to guarantee system-wide progress.

We include all pseudocodes in the Supplemental Material.

3.2 The put and remove operations
We already briefly stated that Jiffy is a multiversioned data
structure. To provide linearizable behavior [37] (intuitively,
all operations appear as if they were executed sequentially
on a single CPU), threads in a multiversion system typically

synchronize on a shared (atomic) counter, which is used
to generate version numbers (see, e.g., [16]). This, however,
introduces a point of contention that quickly becomes a
bottleneck.3 In Jiffy we avoid such a bottleneck by relying
on system-provided timestamps (or timestamps in short) to
generate version numbers. In practice, such timestamps can
be acquired extremely efficiently using a high-resolution
clock supported by CPU. For example, on the x86_64 archi-
tecture, timestamps can be obtained by reading the Time
Stamp Counter (TSC), a 64-bit register, which functions as a
single CPU-cycle-level resolution wall-clock for the entire
multi-CPU machine [25, 39, 51]. TSC is reset to 0 upon ma-
chine restart and then advances with constant rate.4 Reading
the TSC register (e.g., using the RDTSCP instruction) is an
extremely fast operation as it does not involve a system call
(in our tests, RDTSCP takes about 10 ns to complete).

Since Jiffy is implemented in Java, we do not access TSC
directly. Instead, we use the System.nanoTime() method
[29], which on the popular Java Virtual Machines (JVMs) for
the x86_64 platforms, e.g., [9, 10], internally relies on TSC.5
By specification, System.nanoTime() is a thread-safe oper-
ation that for all invocations of this method in an instance
of JVM returns a monotonically increasing 8B integer.6

Weuse system-provided timestamps (denoted currentTS())
in the following way. Each update operation (put, remove or
batch update) and each revision created by such an opera-
tion (and added using CAS to some revision list) is associated
with two version numbers: initially a temporary one, called
an optimistic version number and, eventually, a final version
number, which is set using CAS, and which never changes

3Reading the atomic counter is also necessary to create snapshots of the
dataset. Our preliminary implementation that used an atomic counter to
generate version numbers did not scale past 4-8 threads.
4TSC registers across CPU sockets must be synchronized using a synchro-
nous RESET signal, which is commonly the case on modern hardware [8, 25].
5On other platforms, System.nanoTime() is also well optimized. E.g.,
System.nanoTime() from OpenJDK [9] on the new ARM-based Apple
Silicon is as fast as on x86_64.
6Upon start we record 𝑠 = System.nanoTime() and for each subsequent
invocation of System.nanoTime() we return System.nanoTime() − 𝑠 , so
that we can assume that TSC always returns a positive value.
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again (see Table 2 for the summary of CAS-related costs of
all update operations in Jiffy). An optimistic version number
is negative, which signals a concurrent thread that encoun-
ters a revision with such a version number about a pending
update operation (which the thread might now have to com-
plete). Moreover, there is a special relationship between the
optimistic and the final version numbers, which allows us to
better handle lookups and range scans performed on snap-
shots (see Section 3.4).

More precisely, an update commences with an optimistic
version number 𝑣 = −(𝑡 + 1), where 𝑡 = currentTS(). The
name optimistic version number comes from the fact that |𝑣 |
corresponds to the lowest possible final version number with
which the update operation can complete. Hence we define
an invariant 𝑣 ′ ≥ |𝑣 |, where 𝑣 ′ is the final version number
assigned to the revision. For correctness, revisions in each
revision list (i.e., revisions linked to the same node) must
have unique version numbers. Since system-provided times-
tamps are guaranteed to be monotonically but not strictly
monotonically increasing, we add 1 to 𝑡 and before we as-
sign the final version number to the revision, we ensure that
the current system-provided timestamp is greater or equal
𝑣 ′ (we do so through an active wait, albeit in practice it is
never used due to TSC’s cycle-level resolution). However,
any two concurrent updates that modify independent keys
(add revisions to different nodes) can be assigned the same
final version number, thus enabling unrestricted scalability
for such operations.
Note that when we want to remove a key which is not

present in the index, no new revision needs to be created.
Before each update, the autoscaler is queried to determine
whether a node split or merge should be performed. If so,
the update is reflected in one of the split revisions or in the
merge revision (see details in Section 3.5).

3.3 The batch update operation
A batch update comprises of a number of put and remove op-
erations that are to be performed atomically. The batchUpdate
operation in Jiffy relies on the same logic as put and remove,
except for a few differences:

1. All put and remove operations to be executed by a
batch update are stored in a batch descriptor, an addi-
tional data structure created for each batch update and
referenced by each revision created by the batch up-
date. A batch descriptor also stores a version number
(initially an optimistic version number and, eventually,
a final version number which is set by CAS). Reading
the version number for a revision created by a batch
update happens indirectly through the batch descrip-
tor.7 Therefore the version number is shared by all
revisions created by the same batch update.

7For performance, once the final version 𝑣 is set to a batch descriptor, 𝑣 is
copied to all appropriate revisions.

2. Each revision created by a batch update and added to
some node includes all changes from the batch update
that pertain to the node’s range. We do so to minimize
the number of revisions a batch update creates.

3. Execution of a batch update can result in both node
splits and nodemerges, as determined by the autoscaler.
E.g., when a batch update adds multiple key-value en-
tries to some node, as a result the node might undergo
a split operation.

4. In order to complete a batch update, a thread must
add all necessary revisions to appropriate nodes (in
descending order of keys) and only then try to assign
the final version number to the batch descriptor (us-
ing CAS). The same steps apply when a thread helps
completing a concurrent batch update.

5. Suppose that a batch update includes the remove(𝑘)
operation, and the newest revision 𝑟 in the appropriate
node does not hold a value for key 𝑘 . Unlike in case of
a simple remove(𝑘) operation, where we can return
early without modifying the revision list, we need to
clone 𝑟 and add it to the node.

The order of updates performed by a batch update naturally
follows from our design assumption for the node merge
operation to proceed towards lower keys. Assume that a
batch update proceeds in the opposite order (from lower to
higher keys). Then it is possible that a batch update adds a
revision to some node 𝑛, and then proceeds to node 𝑛′ that
directly follows 𝑛 in the index and decides to perform a node
merge operation on 𝑛′. Consequently, an additional revision
would have to be created on 𝑛, which is suboptimal.

Because a batch update proceeds from the higher keys to-
wards lower keys, multiple index traversals might be needed
to complete the operation. However, the cost of multiple
traversals is negligible compared to the cost of creating and
adding revisions to the appropriate nodes.

To explain why cloning a revision is necessary in scenario
(5) consider otherwise. Let us assume a concurrent batch
update adds a new revision with an update of key 𝑘 at the
same node and finishes with a lower final version number
than the batch update from (5). Then a lookup on a snapshot
that includes both batch updates would incorrectly return a
value for 𝑘 instead of ⊥.

The cost of a batch update in terms of the number of
CAS operations needed to be performed ranges from 2 (one
CAS for adding a single revision that reflects all put/remove
operations from the batch update and one CAS for setting the
final version number to the batch descriptor) to 𝑛 + 1 (when
each put/remove from the batch update requires creating a
separate revision), see also Table 2.

3.4 Lookup operations and range scans
On the level of individual nodes, Jiffy uses the same mecha-
nism to facilitate all read operations:
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Table 2. Cost of performing Jiffy’s update operations (node
splits/merges may require additional CAS operations to
add/remove index nodes to/from the higher-level, sparse
linked lists, as in a typical skip-list).

Jiffy operation CAS operations

put(k,v)∗ 2
remove(k), k present∗ 2
remove(k), k not found∗ -
batch update, n keys∗ min 2, max n+1
one node split/merge during an update +2
∗ without node splits or merges

• lookup (get) operations that return the most recent
version of the queried key or that operate on a snap-
shot,

• ascending/descending range scans that are eitherweakly
consistent as in [27] or operate on a snapshot to guar-
antee linearizability (we focus on the latter ones in the
rest of the paper). Range scans are available through
Java’s standard Iterator interface, which means that
they return entries one-by-one, not in bulk.

All read operations use the version numbers stored in revi-
sions to retrieve the correct revision (as explained below)
and, from it, the value for the searched key. Identifying re-
visions that belong to a concrete snapshot is possible by
associating each snapshot with a snapshot version 𝑠 , which is
a system-provided timestamp obtained upon acquiring the
snapshot (see also below). A snapshot with snapshot version
𝑠 corresponds to the state of the dataset at time 𝑠 .

Let us assume we have traversed the skip list (as in the
standard skip list [27, 50]), found the appropriate node and
now we evaluate the revisions in its revision list. The most
recent value for some key 𝑘 , as returned by regular get(𝑘),
can be found in the most recently completed revision, i.e., the
revision with the greatest positive version number. On the
other hand, for reads performed on a snapshot with snapshot
version 𝑠 (get(𝑘, 𝑠) or issued by a range scan), when evaluat-
ing revision 𝑟 with version number 𝑣 , we do the following:

• if |𝑣 | > 𝑠 , skip reading 𝑟 ,
• if 𝑣 > 0 ∧ 𝑣 ≤ 𝑠 , and the revision list contains no
revision with version number 𝑣 ′, s.t. 𝑣 < 𝑣 ′ ≤ 𝑠 , then
retrieve 𝑟 , or

• if 𝑣 < 0 ∧ −𝑣 ≤ 𝑠 , help completing the pending up-
date operation that created 𝑟 , resolve the final version
number for 𝑟 , and act accordingly.

Note that lookups or range scans never restart. Read opera-
tions performed on a snapshot occasionally help completing
concurrent updates and then carry on.
Recall that the revision list can branch and join through

split and merge revisions, respectively. Hence, when travers-
ing the revision list to find an entry for key 𝑘 in a certain

version, when encountering a merge revision, we use 𝑘 to
decide whether to proceed to the left or to the right succes-
sor of the merge revision. However, a range scan typically
intends to retrieve all key-value entries from the appropriate
revisions. Hence, if a range scan encounters a merge revision
when evaluating a revision list at some node, it retrieves a
bulk revision that is constructed by recursively traversing all
successors of all the encountered merge revisions. In prac-
tice, bulk revisions are created extremely rarely. In our tests
(see Section 4), revision lists contain at most 3-4 revisions at
a time, and usually only 2. Moreover, node merges are rare,
so there are few merge revisions that would necessitate in
creating bulk revisions.
Upon acquiring a snapshot, it is registered in a special

lock-free linked list, so that the inner garbage collector does
not dispose off revisions that are still relevant. More pre-
cisely, each entry of the list stores a snapshot version 𝑠 of
some snapshot. Jiffy’s inner garbage collector periodically
scans the list to obtain the lowest such 𝑠 , so it knows which
entries can be safely disposed of. Removing unnecessary
revisions happens upon every update operation by cutting
the revision list short (recall that revisions appear in the
revision list in descending order of their version numbers). A
thread can easily refresh the snapshot by querying obtaining
a timestamp and writing the new value in the snapshot’s
entry on the list (no CAS is required, as 8B writes are atomic
on x86_64). Note that if a thread wants to use several snap-
shots at the same time, it suffices that the value 𝑠 stored in
the thread’s entry in the snapshot list represents the smallest
snapshot version of all thread’s snapshots. Hence, the size
of the list never exceeds the number of concurrent threads.

3.5 Structure modifications
For simplicity we abstract away from the fact that in Jiffy all
structure modifications are streamlined with updates.

Consider the example in Figure 2, which shows how node
𝑘 that manages a range of keys [𝑘, 𝑟 ) is split in half so a new
node 𝑜 (whose range is [𝑜, 𝑟 )) is inserted between node 𝑘 and
node 𝑟 . To this endwe first create two special revisions, called
left (lsr) and right split revisions (rsr), which reference each
other. Each split revision contains half of the entries from the
revision that was the head of the revision list at node 𝑘 in the
beginning. We use CAS to add lsr to the revision list at node
𝑘 (Figure 2b). Next we create a temporary split node with key
𝑜 , whose next pointer is set to 𝑟 (Figure 2c). We use CAS to
swing the next pointer from node 𝑘 to the temporary split
node and thus add it into the index (Figure 2d). Thus, e.g.,
concurrent lookups searching for keys in range [𝑜, 𝑟 ) will be
able to find it and help completing the pending split operation
(information necessary to complete the split operation is
accessible through split revisions and the temporary split
node). Next, we create node 𝑜 with rsr as the sole revision
on its revision list. The next pointer of node 𝑜 is set to node
𝑟 (Figure 2e). Finally, we use CAS to swing the next pointer
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Figure 2. Split operation of node 𝑘 : (a) initial state, (b) create split revisions (lsr , rsr), add left split revision lsr to node 𝑘 (CAS),
(c) create temporary split node 𝑜 , (d) add temporary split node 𝑜 to the index (CAS), (e) create node 𝑜 with right split revision
rsr , (f) add node 𝑜 to the index (CAS) and GC temporary split node 𝑜 .

k o r k o r

mt

k o r

mr
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(a) (b) (c) (d) (e)
Figure 3. Merge operation of node 𝑜 : (a) initial state, (b) add merge terminator mt to node 𝑜 (CAS), (c) add merge revision mr
to node 𝑘 (CAS), (d) unlink node 𝑜 from the index (CAS), (e) GC node 𝑜 and merge terminator mt.

of node 𝑘 from the temporary split node to node 𝑜 , garbage
collect the temporary split node and write the final version
number, first to lsr and then to rsr (Figure 2f).
We cannot simply insert node 𝑜 in-between nodes 𝑘 and

𝑟 using a single CAS operation, as in [35], because the split
operation involves adding a revision to node 𝑘 and creating
node 𝑜 . Without a temporary split node an ABA problem
is possible. Imagine two threads, 𝑇1 and 𝑇2. 𝑇1 acquires the
reference to node 𝑟 , adds lsr to the revision list at node 𝑘 ,
and is preempted. Then, 𝑇2 that tries to add a revision at
node 𝑘 , observes a pending split operation and adds node 𝑜
with rsr . Suppose that subsequently node 𝑜 is merged back
to node 𝑘 , so the next pointer at node 𝑘 again points to
node 𝑟 . When 𝑇1 resumes its execution, it incorrectly adds
node 𝑜 in-between nodes 𝑘 and 𝑟 , which may corrupt lookup
and range scan operations. In our scheme the ABA problem
on the temporary split node is still possible, but we can
recover from it without corrupting concurrent operations.
If 𝑇1 observes that some other thread already set the final
version number in lsr (which is the last operation of a node
split), it means that node 𝑜 must have already been created
and merged into node 𝑘 . In such case the temporary split
node can be safely removed.

Now let us consider the node merge operation. In the ex-
ample in Figure 3b a special (empty) revision called merge
terminator (mt) is added to the revision list at node 𝑜 , thus
initiating the merge operation. No other revision can now
be added to the revision list at node 𝑜 , hence also a split
operation cannot be invoked on node 𝑜 . Then we find the
node directly preceding node 𝑜 and, if necessary, complete
all pending operations at this node (in some cases we need
to perform the search for the preceding node again). Once
we find node 𝑘 , we create a merge revision (mr) that en-
compasses the entries from mt’s successor revision in the
revision list as well as the head of the revision list at node
𝑘 (Figure 3c). Note that mr joins the revision lists at node 𝑘
and at node 𝑜 (excluding mt), and so has two successors: left
(default, same as in a revision added by a regular update) and

right. Next we use CAS to swing the next pointer at node 𝑘
to node 𝑟 , thus unlinking node 𝑜 from the index (Figure 3d).
Finally, we mark node 𝑜 as terminated (so it can be garbage
collected together with the merge terminator) and write the
final version number to mr (Figure 3e).

In our implementation, structure changes to the index are
driven by updates. E.g., a put operation may cause a node
split. In such case, one of the split revisions reflects the put
operation that caused the node split, so no revisions are
created unnecessarily. A remove may cause a node merge.
In total, each node split/merge adds 2 CAS operations to the
CAS-related cost of performing an update (see Table 2).

3.6 Revision layout
A revision holds two arrays, keys and values, both sorted
according to the keys, so that we can perform lookup opera-
tions in a cache-friendly manner. Transforming one revision
into a new one, as required by update operations, involves
copying the arrays and updating/removing the appropriate
keys/values. Since all keys and values are kept in a contigu-
ous range of memory, such copy operations are fast.

To speed-up key lookups within a revision, each revision
maintains a lightweight hash index that, for each hash value,
can store indices to at most two keys from the keys array.
Upon lookup of key𝑘 , we calculate a 2B hash of𝑘 and consult
the hash index. For each returned key, we check if it matches
𝑘 and if so, return the value for 𝑘 . If neither returned key
matches 𝑘 , we fall back to a binary search on the keys array
(𝑘 may be in the array but not in the hash index). We return
⊥ early, when the hash index has no entry for key 𝑘 or the
key referenced by the only entry for key 𝑘 does not match 𝑘 .
To speed up populating the hash index in new revisions, we
cache 2B hashes of keys in each revision. In total, our hash
index requires additional 6B for each key-value entry, which
is relatively small compared to the typical sizes of key-value
entries (see [14, 23] and Section 4.3.2). The parameters of the
hash index have been empirically established to be optimal.
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3.7 Autoscaling policy
Our preliminary tests showed that, depending on the work-
load, the revisions should contain between 25 and 300 entries,
with larger revisions benefiting read-dominated workloads.8
Hence we introduce the following autoscaling policy to dy-
namically adjust the sizes of (new) revisions.
Each revision maintains two exponential moving aver-

ages pReads and pUpdates that roughly correspond to the
amount of time spent by threads performing reads and up-
dates in the revisions in any given node. The times are cal-
culated through differences in system-provided timestamps
upon each update and every 100th read (to avoid contention
in writing to pReads). For a batch update that created 𝑛 revi-
sions, we adjust pUpdates on each revision by 1/𝑛-th of the
measured time. The decision to split a node or merge two
nodes into one comes from first calculating the writers ratio
wr = pUpdates/(pUpdates + pReads). Then, we calculate
optSize = max(50,−200wr+150). If the size of the node after
a regular update would fall below or exceed the optSize by
a factor of 2, we perform the merge or split, respectively.
Thus, we effectively limit the size of the node to the range
of approximately [25, 300]. We use the factor of 2 to avoid
repeated splits-and-merges.

Our auto scaling policy keeps balance between readers and
writers. On the other hand, the contention-based solutions
[52, 53, 60] cater only to writers. In turn, contention-based
policies may lead to an uncontrolled growth of the revision
sizes in the absence of contention.

3.8 Correctness
Now we argue that Jiffy ensures linearizability [37]. For sim-
plicity, we abstract from node splits and merges. It is easy to
see that put, remove (of a key present in the index), and batch
update operations (on the same keys) are serialized because:
(1) no revision can be added to the revision list if there are
pending operations at this node, (2) when encountering a
pending operation at some node, a thread helps completing
the operation before proceeding with its own update. The
final version numbers of revisions in the revision list of each
node monotonically decrease when iterating from the head
of the revision list (recall that an optimistic version number
equals −𝑣 , where 𝑣 = currentTS() + 1, so it represents a mo-
ment in the future, and the final version number 𝑣 ′, which is
also a system-provided timestamp, is such that 𝑣 ′ ≥ 𝑣). All
batch update operations update keys in the descending order
of keys. Moreover, for concurrent operations that update
multiple nodes and which access overlapping sets of nodes,

8Jiffy is a generic Java data structure, which means that the arrays in
revisions store references to key/value objects, and not the keys/values
themselves. Hence, the size of a revision does not depend on the types of
keys/values, as could be the case if Jiffy were implemented in, e.g., C++.

operations that happen on nodes with lower keys have pri-
ority. Thus, no two batch updates with intersecting key sets
update revision lists of two nodes in different orders.

The entries created by every update operation can be read
by other threads once the final version number is established.
The final (positive) version number is written to the revi-
sion or to the batch descriptor, using an atomic operation
(CAS). The assignment of the final version number is the
linearization point for updates that created any revision.
Entries created by the same batch update appear as added
atomically because they share the version number (through
the same batch descriptor). For a remove operation of a key
not present in the index, the linearization point occurs when
the appropriate revision is accessed and the key is not found.

For a lookup for some key𝑘 (get(𝑘)) we observe as follows:

1. Entries (within revisions) for any key 𝑘 are arranged
in the revision list of the node responsible for a key
range that includes 𝑘 , according to their (final) version
numbers in descending order (as argued above), and
any lookup always evaluates the entries in that order.

2. For each key 𝑘 , at any moment there can be only a sin-
gle pending update that modifies 𝑘 (a revision without
the final version number set), which precedes in the
revision list all other revisions that might include 𝑘 .

According to the linearizable semantics, get(𝑘) must re-
turn the newest value written for key 𝑘 and it may or may
not observe the effects of the concurrent operations (oper-
ations that have not completed before get(𝑘) started). The
inclusion or exclusion of a concurrent update depends on
whether its linearization point lies before or after the one
for get(𝑘). Hence, get(𝑘) can safely skip reading an entry in
a revision whose final version number is not yet determined,
and thus return the value from the entry (for key 𝑘) from
the first revision whose final version number is positive.

Consider now a get(𝑘, 𝑠) operation, where 𝑠 is a snapshot
version. Then the linearization point of the snapshot acqui-
sition or update determines the value returned by get(𝑘, 𝑠).
Value 𝑠 is obtained from TSC upon registering or updating
the snapshot. Entries written by updates that finished prior
to the acquisition of 𝑠 have the final version number 𝑣 ≤ 𝑠

(recall the wait of updates until TSC indicates 𝑡 ≥ 𝑣). On the
other hand, entries written by operations executed concur-
rently with the snapshot creation/update may (but not nec-
essarily must) have final version numbers 𝑣 ′ > 𝑠 . We choose
the linearization point for the snapshot creation/update so
that it precedes all such concurrent operations.

The get(𝑘, 𝑠) operation chooses the entry for key 𝑘 from a
revision with the greatest final version number 𝑣 ≤ 𝑠 . Recall
observation (1). For a revision 𝑟 with version number 𝑣 , such
that |𝑣 | > 𝑠 , we can skip reading 𝑟 , because if 𝑣 < 0, due to
our invariant (see Section 3.2), the final version number for 𝑟
will be at least |𝑣 |, so also greater than 𝑠 . If 𝑣 < 0 and −𝑣 ≤ 𝑠 ,
get(𝑘, 𝑠) helps completing the update, i.e., get(𝑘, 𝑠) will be
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able to determine the final version number for this revision.
For the first revision with a final (positive) version number
𝑣 ≤ 𝑠 , get(𝑘, 𝑠) extracts the value for key 𝑘 and returns it.

4 Evaluation
4.1 Implementation
Jiffy [5] is implemented in pure Java as a generic concurrent
data structure, so it can store key-values of arbitrary types.
Jiffy extends Java’s NavigableMap interface [28], whichmeans
that update operations return the overwritten/removed val-
ues. This way not only we provide rich interface to the pro-
grammer but this additional information also allows us to
better check correctness of our implementation (see below).

4.2 Correctness tests
The test harness that we developed to evaluate correctness
of Jiffy (and possibly other linearizable concurrent data struc-
tures) uses the index operations’ return values and times-
tamps periodically obtained from TSC to construct a graph
of dependencies between the operations invoked during a
concurrent execution. The keys and values used in the test
are specially constructed, so the observed value (returned
by an operation) can be traced to the thread that created it
and the (logical) moment in the thread’s execution when it
happened. The edges in the graph correspond to the write-
read/write-write dependencies between operations, program
and timestamp order, batch update and snapshot-based con-
straints, etc. We iteratively refine the graph by inferring new
relationships between events. If the graph contains a cycle,
then the tested implementation definitely is not linearizable.
We tested Jiffy using various mixes of all operations (in-

cluding batch updates, range scans and lookups on snap-
shots) with 8-48 concurrent threads and a small keyset (20-
200 unique keys) to induce high contention levels. Our tool
helped us eliminate several extremely subtle bugs from our
implementation. We leave the detailed description of our test
harness for future.

4.3 Performance evaluation
Providing rich semantics and scalable performance on mod-
ern 40+ core CPUs is notoriously difficult. Therefore the goal
of our performance evaluation is assessing the multithreaded
performance of Jiffy (and its competitors) under varied levels
of contention.

4.3.1 Tested indices
We experimentally compared Jiffy with the following state-
of-the-art, linearizable ordered indices: SnapTree [19], k-ary
tree [20, 21], CA-imm (lock-based contention-adapting tree
with immutable containers) [52], CA-AVL and CA-SL (lock-
based CA trees with mutable containers based on AVL trees
or skip lists) [53] and LFCA tree (lock-free CA tree with
immutable containers) [60] (see also Section 2). All indices

feature linearizable range scans but only CA-AVL and CA-SL
also support linearizable batch updates. For reference, we
included ConcurrentSkipListMap (Java CSLM) [26], which
lacks linearizable range scans and batch updates. In some
tests we also included KiWi [16], whose available codebase
[6] supports only 4B integer keys.

4.3.2 Benchmark and test environment
We opted for a custom microbenchmark, as there are no
off-the-shelf benchmarks that provide extensive support for
batch updates. Each microbenchmark thread issues only one
type of operations, i.e., either updates (puts/removes/batch
updates), lookups (gets) or range scans, so that certain opera-
tions, e.g., long-running scans do not stifle the execution of
operations of other types. We vary the percentage of threads
that perform each kind of operations to uncover the charac-
teristics of all tested indices.
The dataset has the average size of 10M entries (20M

unique keys). Jiffy is multiversioned, so it typically maintains
more entries at any given moment. The key/value sizes are
set to 16/100B and 4/4B, typical for such tests [14, 23]. We
examine the systems when keys are randomly chosen with
a uniform and a Zipfian distribution (𝑠 = 0.99, as in [23]).
The results are reported in (millions of) basic operations per
second, i.e., updates or lookups on a single key (a scan over
100 key-value entries counts as 100 get operations).

To assess the performance of updates in Jiffy, we test it
in five variants. In the default variant, Jiffy performs all up-
dates as single put or remove operations. Other variants
correspond to results obtained when Jiffy executes all up-
date operations in 10-operation batch updates or large, 100-
operation batch updates. To demonstrate the performance of
batch updates in the extreme cases, they are either sequential
(update consecutive key-value entries) or random (update
randomly chosen key-value entries). In a similar way we test
CA-AVL and CA-SL, which also support batch updates.
We conducted tests on a server equipped with two Intel

Xeon Gold 6252N CPUs, 192 GB of DRAM and running Open-
SUSE Tumbleweed with kernel 5.8. Each CPU has 24 cores
(48 hyperthreads), is clocked at 2.3 GHz and features 36 MB
of L3 cache. We ran our tests on OpenJDK 14.0.2.

4.3.3 Results
We start by discussing the results of tests in which key/value
sizes were set to 16/100B and keys were chosen with uni-
form distribution (see Figure 4). In all tested scenarios, Jiffy
exhibits scalable behaviour. Single put/remove operations in
Jiffy are slightly more expensive than in SnapTree, CA-imm,
LFCA tree or CA-AVL (Figure 4a, top row) because of the
multiversioned architecture of our index. In Jiffy each update
requires at least two CAS operations: one to add a revision
to the revision list at some node and another to set the fi-
nal version number on the revision itself. In other lock-free
indices (that lack support for batch updates) only one CAS
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(a) 100% threads: put/remove (b) 25% threads: put/rem. 25% threads: put/rem., 50% threads: get, 25% threads: scan (e) 100% threads: get
75% threads: get (c) Short scans (100 ops) (d) Long scans (10000 ops)
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Figure 4. Throughput scalability (16B keys, 100B values, keys chosen with uniform distribution).

is necessary to perform update in-place (e.g., Java CSLM)
or to replace an old key-value entry container with a new
one (e.g., LFCA tree). In Jiffy there is also small overhead
resulting from managing the lightweight hash indices inside
revisions. As the hash indices speed-up lookups, the perfor-
mance differences between Jiffy and the mentioned systems
is smaller when lookups are introduced to the workload (see
Figure 4b,e). Our autoscaling policy set the revision sizes to
∼35 entries in the write-only scenario versus ∼130 entries in
the update-lookup scenarios. The revision size adjustment
time was about 10 second (and 1 second on a 1M entries
dataset).

Jiffy executes range scans muchmore efficiently than its ri-
vals (see Figure 4c-d). LFCA tree and CA-imm are 10% slower
than Jiffy’s, whereas the only other indices that, similarly to
Jiffy, support batch updates, i.e., CA-AVL and CA-SL, at best
achieve only half of the total throughput of Jiffy.
Now let us consider the performance of batch updates

in Jiffy. When batch updates are small (each includes 10
put/remove operations, Figure 4, middle row), batch updates
in Jiffy are slightly slower compared to CA-AVL’s and CA-
SL’s, due to the same reasons, which we discussed earlier
when explaining the performance of put/remove operations
in Jiffy. Notice that with random batch updates the perfor-
mance of lock-based CA-AVL and CA-SL starts to diminish
towards the higher number of concurrent threads, whereas
Jiffy continues to scale thanks to its lock-free architecture.
The differences between the lock-based and the lock-free

approach start to become apparent when all updates are ex-
ecuted as large batch updates (each includes 100 put/remove
operations, bottom row of Figure 4). When batch updates are
sequential, the performance of Jiffy is about 15% better than
the performance of either CA-AVL or CA-SL (in the write-
only scenario). However, with random batch updates, Jiffy’s
maximal throughput is even 4.9× and 6.1× of the maximal
throughput of CA-AVL and CA-SL, respectively.
Notice the surprising way in which small batch updates

impact Jiffy’s performance in the mixed scenario with small
range scans (Figure 4c, middle row). Using random batch
updates results in a slightly better overall performance, com-
pared to sequential batch updates, which are on average
much cheaper to execute (with 𝑛 puts/removes in a batch
update, the former creates 𝑛 revisions on average versus 1−2
for the latter). This phenomenon can be explained by exam-
ining the throughput of updates (for additional plots see the
Supplemental Material): with small sequential batch updates,
Jiffy executes 4× as many updates compared to the same test
with random batch updates. In turn, in the former test, Jiffy
has to manage many more revisions, which translates into
slightly worse performance of lookups and scans.

With 4B key/value sizes and uniform key distribution (see
Figure 5), in the scenarios (a) and (b) KiWi (whose implemen-
tation is optimized for 4B integer keys and does not support
other key/value types) only narrowly beats other indices.
Overall, the relative differences between the performance of
the tested indices stay largely the same, except for two small
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(a) 100% threads: put/remove (b) 25% threads: put/rem. 25% threads: put/rem., 50% threads: get, 25% threads: scan (e) 100% threads: get
75% threads: get (c) Short scans (100 ops) (d) Long scans (10000 ops)
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Figure 5. Throughput scalability (4B keys, 4B values, keys chosen with uniform distribution).

differences. Firstly, with smaller key/value sizes, the perfor-
mance of lock-based CA-AVL and CA-SL starts to diminish
with a smaller number of concurrent threads. Secondly, we
observe a much more substantial advantage of Jiffy in work-
loads that feature range scans. In the mixed scenario with
long range scans, Jiffy beats the second-best performing in-
dices CA-imm and LFCA tree by 30%. Moreover, with large
batch updates, Jiffy’s advantage over CA-AVL and CA-SL is
even more pronounced (the speedup over rivals increases to
1.5× for sequential batches and from 4.9×/6.1× (for 8 threads)
to 5.7×/7.4× (for 96 threads) for random batch updates, for
CA-AVL and CA-SL, respectively).
Below we summarize the results of tests conducted with

skewed workloads (see the Supplemental Material for de-
tails). A skewed workload results in much higher contention,
which is further amplified when batch updates are used, each
creating many new revisions (containers in CA-AVL and CA-
SL, see Figure 7 and Figure 9 in the Supplemental Material).
Such workloads were almost equally bad for Jiffy and its lock-
based competitors. In the write-only scenario, the observed
throughput for Jiffy, CA-AVL and CA-SL was about 1.5-2
Mops/s for small random batch updates and 0.3-0.5 Mops/s
for large random batch updates.

4.3.4 Summary
Compared to its rivals, Jiffy achieves remarkable perfor-
mance and scalability across different workloads. It is so
even though update operations in Jiffy are more expensive

than in other systems (typically each update operation in
Jiffy requires two CAS operations whereas the other tested
indices require only one CAS operation per update). This in-
creased cost of update operation cannot be avoided if Jiffy is
to provide atomic batch updates. However, the fully-fledged
multiversioning concurrency control mechanism allows Jiffy
to provide a robust snapshot mechanism that is much more
flexible than in its competitors.
The impressive scalability of Jiffy could not be achieved

without relying on system-provided timestamps to generate
version numbers, as we discussed in Section 3.2. The pre-
liminary version of Jiffy that kept all key-value entries in
separate nodes (instead of multi-entry revisions) suffered
from the same bottleneck as ConcurrentSkipListMap [27]
(Java CSLM in our tests), mainly a relatively large index
which is time-consuming to traverse. Adding hash indices
to revisions slightly increased the cost of updates due to
additional arrays that need to be copied during creation of
new revisions, but significantly sped up reads and also made
Jiffy’s performance more consistent across workloads. In
none of our tests, Java’s GC was a bottleneck.

5 Conclusions
Jiffy is the first lock-free, linearizable ordered key-value index
with batch updates and snapshots (source code is available
[5]). Despite its rich functionality, Jiffy offers scalable per-
formance and, e.g., with mixed workloads (updates, lookups
and range scans) it outperforms the state-of-the-art indices
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with less flexible semantics. Crucially, Jiffy’s novel lock-free,
multiversioned algorithm allows it to execute batch updates
more efficiently compared to its lock-based, less scalable ri-
vals, with speedup in throughput reaching 7.4×, making it
an extremely versatile concurrent data structure.
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A Artifact Appendix
A.1 Abstract
We provide the source code of Jiffy and our test harness
for evaluating correctness of linearizable concurrent data
structures. We also describe how the experiments discussed
in the paper can be rerun and the obtained results compared
to the ones presented in Section 4.

A.2 Artifact check-list (meta-information)
• Algorithm: Jiffy lock-free ordered key-value index.
• Compilation: Java 11+, Gradle 6.5+, Python 3with matplot-
lib, LATEX.

• Data set: Randomly generated workloads.
• Hardware: A single multi-core machine (originally tested
on a two-socket Intel machine, each socket consisting of 24
hyperthreaded cores, see Section 4.3.2).

• Metrics: Indices’ throughput in the function of the number
of concurrent threads.

• Output: Data files and figures.
• Experiments: Scripts and instructions to fully reproduce
the paper’s results are provided in the artifact README files.

• How much time is needed to complete experiments
(approximately)?:
– Correctness tests–a single test with default configuration
parameters completes in up to 30 minutes (on a 16+ core
machine; a machine with fewer cores will complete the
test in a shorter time, because with restricted concurrency,
there is less data to be processed).

– Performance tests–5h to obtain results for Jiffy, as pre-
sented in the main paper, 4 days to obtain results for all
indices, as required to reproduce all figures in the main
paper and the supplemental material.

• Publicly available?: Yes [5] (see also Appendix A.3.1).
• Code licenses (if publicly available)?: MIT.

A.3 Description
A.3.1 How to access
For Jiffy’s source code see the main Jiffy repository [5] (also avail-
able as a Zenodo archive: https://doi.org/10.5281/zenodo.5733227).
Due to legal issues (the lack of licenses for some systems we tested
Jiffy against), currently the repository does not include the perfor-
mance evaluation framework (which has been made available to the
reviewers and which can be provided by the authors on request).

A.3.2 Hardware dependencies
Jiffy is a Java-based library, which means it can be used on any JVM-
supported machine. Since the focus of the performance evaluation
has been the scalability of Jiffy, a multi-socket, multi-core (40+)
server, with adequate (40+ GB) DRAM setup is desired. See our
hardware setup in Section 4.3.2.

A.3.3 Software dependencies
Jiffy is written in pure Java (compatible Java 11+) and relies on
Gradle 6.5+ scripts for compilation. Performance tests are available
through Bash and Python scripts. The generated output files are
converted through Python scripts to plots. Finally, we use LATEX to
arrange the plots into figures, as found in the paper.

A.3.4 Data sets
We use randomly generated workloads of predefined characteristics
(see Sections 4.2 and 4.3.2).

A.4 Installation
Detailed instructions on using and running the code, and obtaining
the plots are included in the artifact’s README file. We also discuss
how the performance tests can be expedited when one has multiple
machines available.

A.5 Experiment workflow
A.5.1 Correctness tests
The test harness that we developed to evaluate correctness of Jiffy
is provided as part of the Jiffy library. Instructions on how to run
the test (possibly with other configuration parameters) is given in
the README file.

Each correctness test comprises of a few seconds long warmup
followed by a short run on a randomized concurrent workload that
includes a mix of all operations supported by Jiffy (so put/remove/
batch updates, lookups, ascending and descending range scans
that are performed on snapshots, etc.). The logs of the performed
operations are then iteratively processed and checked against a set
of conditions that should be respected if the tested data structure
is indeed linearizable.

A.5.2 Performance tests
The benchmark scripts allow one to run randomized workloads of
predefined characteristics on Jiffy and its competitors. The output
files for a given index and test scenario include, for each test round,
the measured throughput (as well as numerous other statistics, such
as detailed update/lookup/range scan operations count) in the func-
tion of the number of concurrent threads. The performance tests
can be easily partitioned to run on multiple machines concurrently.

After test runs complete, a single script can be used to generate
plots from the raw data files. This task includes using LATEXto pro-
duce figures that can be directly compared to the ones included in
the paper.

A.6 Evaluation and expected results
A.6.1 Correctness tests
All assertions included in the test harness should pass. Below we
outline some of the checked conditions:

• no two read-only operations on the same key performed on
the same snapshot return two different values,

• program order of operation execution is satisfied,
• there exists a total-order of update operations on each key,
• given the inferred time-based constraints, real-time order of
operation execution is satisfied,

• the graph of operations (with nodes corresponding to the
performed operations and periodically taken timestamps and
edges corresponding to the write-read/write-write depen-
dencies between operations and time-based relationships
inferred between operations) is acyclic.

Naturally, a single successfully completed test does not prove that
the tested index is correct. Prior paper submissions, we have run
the correctness tests in a loop for days at a time to discover bugs in
our code.
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A.6.2 Performance tests
Provided similar hardware (see our hardware setup in Section 4.3.2),
users are expected to reproduce the results presented in this paper.

Note that the performance of concurrent data structures is highly
sensitive to the hardware used, such as the CPU architecture and
instruction set (x86_64 vs ARM and, in consequence, e.g., the used
cache coherence protocols), the CPU configuration (single-socket
vs multi-socket), the speed and sizes of CPU caches.

Naturally the use of a concrete JVM also can impact the perfor-
mance of the tested indices. However, our experience shows that
with the popular JVMs [9, 10], the observed differences are not
significant. Much more pronounced effects may have changes to
the JVM configuration, such as adjustments of the heap size (not

always a larger heap is better), or the choice of the garbage collector
algorithm.

A.7 Experiment customization
A detailed discussion on altering the benchmark parameters can be
found in the artifact’s README file.

A.8 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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