
Isolation-only Transactions by Typing and Versioning

Paweł T. Wojciechowski
Ecole Polytechnique Fédérale de Lausanne (EPFL)

1015 Lausanne, Switzerland

Pawel.Wojciechowski@epfl.ch

ABSTRACT
In this paper we design a language and runtime support
for isolation-only, multithreaded transactions (called tasks).
Tasks allow isolation to be declared instead of having to
be encoded using the low-level synchronization constructs.
The key concept of our design is the use of a type system to
support rollback-free and safe runtime execution of tasks.

We present a first-order type system which can verify in-
formation for the concurrency controller. We use an opera-
tional semantics to formalize and prove the type soundness
result and an isolation property of tasks. The semantics uses
a specialized concurrency control algorithm, that is based on
access versioning.

Categories and Subject Descriptors: D.3.3 [Program-
ming Languages]: Language Constructs and Features—
Abstract data types, Concurrent programming structures

General Terms: Design, Languages, Reliability, Theory,
Verification.

Keywords: programming languages, concurrency, type
theory, transactions, isolation, declarative synchronization,
abstract types, singleton kinds, lambda calculus.

1. INTRODUCTION
Multithreading has become an essential part of modern

software systems. Although threads simplify the program’s
conceptual design and allow parallelism on multiple proces-
sors, they also increase programming complexity. Program-
mers must ensure that threads accessing shared data in-
teract correctly, which is notoriously a difficult task. It is
natural to ask whether transactions [32, 2] could be used;
they maintain the illusion of exclusive access to the whole
data set while permitting concurrent access at a fine level.

While there have been a variety of implementations of
transactions (see [7, 8, 33, 14, 22, 30] among others), com-
paratively little work has been done on rigorous, language-
based approaches to transactions. There are many open
questions and challenges: Which standard ACID (Atom-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’05,July 11–13, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-090-6/05/0007 ...$5.00.

icity, Consistency, Isolation, and Durability) properties of
transactions are actually useful for common concurrent pro-
gramming? How should the enforcement of these properties
be efficiently implemented? What new language features are
required, e.g. for performing input/output (I/O). How much
information can be verified statically in order to decrease the
runtime support necessary for running transactions?

We consider the above issues in the context of networked
applications, which are inherently concurrent. A distinct
feature of these applications is that they perform many I/O
operations such as sending and receiving network messages;
they also demand a high level of robustness and efficiency,
with possible timeliness constraints.

In the past, such systems were confined mostly to domains
like telecommunications switches, flight reservations and air
traffic control. However, today more and more systems have
similar requirements, including consumer electronics, and
mobile embedded systems. Transactions may greatly sim-
plify their development. Unfortunately, traditional transac-
tion techniques can seldom be transferred from the database
to time-critical domain without change; the performance
considerations are too different [29, 13, 3].

This paper describes a language and runtime support for
isolation-only, local transactions, called tasks. The isolation
property [32] (also known as serializability) ensures that the
concurrent execution of tasks is equivalent to an execution
in which the tasks are serialized. Tasks allow isolation to be
declared instead of having to be encoded using the low-level
synchronization means.

Contrary to similar constructs for declaring atomic blocks
that we describe in §6, our tasks can perform arbitrary op-
erations, including I/O, with the isolation guarantee. The
main idea is to avoid the need for rollback at runtime (due to
e.g., conflicts on task operations), by tightly controlling the
order of such operations and guaranteeing that once started
a task cannot run into conflicts. No explicit rollback by the
program is allowed.

The isolation guarantee in our language stems from three
sources:

• compile time enforcement that each shared data loca-
tion (or an I/O operation) is protected by a lock and
that threads acquire the corresponding lock before ac-
cessing the location (or performing the I/O operation);
this is based on previous work of Abadi and Flanagan
on types for safe locking [9],

• compile time enforcement that requires that all locks
to be acquired during a task are declared at the begin-
ning of the task,

• a runtime locking strategy that assigns versions to
threads that allow them to acquire locks so that isola-
tion is preserved.

Our approach allows multiple threads within an isolated
task. These threads share memory and are not isolated from
each other. We describe an implementation of an example
networked application that uses multithreaded tasks in §5.

1.1 Design Choices
We can identify several requirements of time-critical ap-

plications that also apply to networked applications (based
on survey papers [29, 13, 3]):

1. Recoverable executions are not necessary. For critical
applications, failures are not tolerable. For those kinds of
systems, fault-tolerant techniques such as using redundant
hardware and software replication have been developed to
reduce the possibility of failure; they are however beyond
scope of this paper.

2. No rollback is allowed. Contrary to databases, task
operations may not be recoverable. For instance, let us con-
sider a multi-task middleware. Tasks on each machine are
executed locally but they may exchange messages over the
network with other tasks; the messages are then delivered to
any distributed applications built on top of the middleware.
Full-scale recovery of tasks in such cases is usually too ex-
pensive (it requires some form of distributed agreement [32,
1] between tasks) and impractical (since it would also require
the applications to be able to rollback their state).

3. Serializability is sometimes too conservative. Several
authors described the limitations of serializability as a cor-
rectness criterion (see articles, e.g. [20, 29], for details).

Based on the above requirements, we now motivate and
introduce the main features of our language.

Fine-grain, rollback-free concurrency control In our
previous work [34], we have introduced (informally) several
novel pessimistic concurrency control algorithms for schedul-
ing critical task operations with the isolation property. The
algorithms are rollback-free. In §5 we describe an implemen-
tation of our language that uses these algorithms.

Roughly, a greater degree of concurrency leads to higher
performance. The degree depends on the amount of informa-
tion available to the concurrency controller. Knowing more
information about intended program behaviour, such as pre-
defined patterns of acquiring locks and semantic information
about the meaning of data and operation performed, allows
one to select an algorithm that permit more concurrency.

In this paper we give a rigorous design of our language,
and describe formally the semantics of its constructs using a
Basic Versioning Algorithm (BVA). It permits less concur-
rency than other, more complex algorithms that we describe
in [34], but it is more convenient to illustrate a novel hybrid
approach that combines concurrency control with typing.

Typing for safe concurrency control Our language has
a construct isolated x e, that spawns an isolated task e,
where x are the data declared for the concurrency controller.
To make the language safe, we propose in this paper a type
system that can verify if x is correct; to our knowledge it is
the first presentation of a type system for such application.

The type system builds on Flanagan and Abadi’s [9] type
system for detection of race conditions. We have used their
solution to ensure that all accesses to shared data are pro-
tected by locks. This guarantee could be relaxed in the

T

T

1

2

Figure 1: Concurrent, multithreaded transactions

future by refining the type system, e.g. objects known to be
immutable need not be visible to the concurrency controller
when accessed, and so they could be left unprotected.

Isolation of arbitrary operations (including I/O)
Our language allows arbitrary sets of operations to be iso-
lated, including I/O operations such as message output and
input. These operations just need to be protected by ver-
sioning locks (or verlocks). Verlocks are similar to locks.
They however extend the standard locking principle with
a runtime locking strategy for isolation preservation. The
programmer can therefore use verlocks to declare operations
that must be serialized. Operations that are not protected
by verlocks are not serialized; this design choice supports the
requirement about relaxing isolation, e.g. message receipts
in our example application in §5 are not serialized.

Alternatively, (ver)locking could be left as an implementa-
tion issue of the isolated construct by letting the compiler
to place verlocks automatically. In this paper, however, we
keep verlocks as a language construct, as it allows us to ex-
plain the semantics and typing rules at the level of detail
that is required for rigorous proofs of isolation.

Multithreaded tasks To support cases when isolation is
too restrictive, we allow tasks to be multithreaded. Threads
are lightweight processes that can communicate using shared
mutable data and synchronize (in scope of a task) by acquir-
ing and releasing verlocks (with caution to avoid deadlock);
other synchronization means such as monitors can also be
used. Individual threads may fork and e.g. start other tasks.

Figure 1 illustrates two concurrent, multithreaded tasks
T1 and T2. Execution of each task is atomic with respect to
other tasks (run on the same machine). We do not require
however threads within a task to be serializable; thus, they
can engage in two-way communication using shared data.
(Note that constructs such as nested transactions [32] do not
apply here, as they normally do not relax isolation between
subtransactions, and they depend on rollback-recovery.)

1.2 Contribution
We make several contributions:

• We present an operational semantics of tasks and ver-
locks; the semantics has been split into a dynamic se-
mantics of the host language constructs, and of the
concurrency controller; we have used the semantics to
formalize and prove correct the BVA algorithm.

• We have shown several results and theorems about our
type-directed approach to concurrency control of roll-
back free transactions. The main result is that well-
typed programs satisfy the isolation property.

• To our best knowledge we give the first rigorous proof
of isolation preservation and progress (up to deadlocks

between threads of the same task) that makes data ac-
cesses explicit and deals with multiple threads within
an atomic block.

The paper is organized as follows. §2 explains the con-
structs using an example program. §3 – the heart of our
paper – defines syntax, semantics, and typing of the calcu-
lus. §4 states the main results, including type soundness
and dynamic correctness of the BVA algorithm. §5 sketches
an implementation of tasks and an example networked ap-
plication. §6 discusses related work and §7 concludes.

2. EXAMPLE
We use an example of transactions with irrevocable I/O

effects from [29]. Consider a central air route surveillance
station that controls air traffic in a large geographic area.
It receives aircraft positions from local stations – one per
geographic region i – and records them in a corresponding
“track table” tabi; in parallel, it outputs control data.

Below are two concurrent tasks T1 and T2, expressed using
our language (and objects and some syntactic sugar).

newlock x : TabA in
newlock y : TabB in
isolated x,y (* task T1: hand-over *)
(

sync x tabA.withdraw(aircraft);
sync y tabB.deposit(aircraft);

)
isolated x,y (* task T2: control *)
(

view_tabA := sync x tabA.get();
view_tabB := sync y tabB.get();
analyseAndOutput(view_tabA, view_tabB);

)

Task T1 records aircraft movement based on information
from adjacent local stations; the new correlation is stored in
track tables of the corresponding regions. It must maintain a
consistent view, i.e. a track of an aircraft must not disappear
or appear in more than one table. (For simplicity, we only
encoded the hand-over from region A to B.)

Suppose some aircraft moved from region A to B while
task T1 is updating the track tables. Meanwhile, the task
T2 analyses the traffic pattern in the controlled area and
produces a warning if two aircraft fail to maintain minimum
separation. For this, T2 must obtain a snapshot view of the
controlled area by reading the tables.

T2 could obtain an inconsistent view if it first retrieves
data in region B before T1 updates it. This may lead to fail-
ure to prevent an impending collision if the aircraft moved
from A to B is missing. The isolation property of tasks en-
sures however that any (concurrent) execution of T1 and T2

is equivalent to an execution in which the tasks are serial-
ized. This means that they will never interfere.

Execution of newlock x : t in e creates a new verlock x
(or a lock in short) of type t; the lock type identifies data
protected by the lock. The expression sync e e′ is similar
to Java’s synchronized statement [12], i.e. the expression
e is evaluated first, and should yield a lock, which is then
acquired when possible; the expression e′ is then evaluated;
and finally the lock is released.

Execution of isolated e e creates a new task for the eval-
uation of expression e. After the creation, e commences
execution, in parallel with the rest of the body of the spawn-
ing program (i.e. each task is executed by a new thread).

The declaration e should give verlocks that can be used by
the task to control access to shared data. We assume that
information on locks is provided explicitly, and leave type
inference as an open problem. Tasks can perform I/O and
spawn threads, e.g. task T2 may output a warning message,
and spawn a new thread for auditing.

Flanagan and Abadi’s type system provides guarantees for
the concurrency scheduler that all data accesses are made
using verlocks. Our extension of their type system also ver-
ifies if verlocks that may be acquired by a task are known
before the task commences, i.e. they are declared in e. It
thus eliminates errors due to omission of such declarations,
e.g. the above program does not typecheck if the arguments
x or y of isolated are removed. The above two guarantees
enable a safe use of our abort-free versioning algorithm.

Execution of tasks T1 and T2 satisfies the isolation prop-
erty. However, any threads inside tasks are not constrained;
a required synchronization policy could be encoded using
verlocks (accompanied in the scope of a task with any other
synchronization means if needed).

3. LANGUAGE FOR ISOLATED TASKS

3.1 Syntax
We define our language as the call-by-value λ-calculus,

extended with reference cells, isolated tasks, and version-
ing locks. The abstract syntax is in Figure 2. The main
syntactic categories are values and expressions. We write
x as shorthand for a possibly empty sequence of variables
x1, ..., xn (and similarly for t, e, etc.).

Types Types include the base type Unit of unit expres-
sions, which abstracts away from concrete ground types for
basic constants (integers, Booleans, etc.), the type t →a,p t
of functions, the type Refm t of reference cells containing a
value of type t, and finally a singleton lock type m. A sin-
gleton lock type is the type of a single lock. The types of
references and functions are decorated by correspondingly,
m and a, p, where m is a singleton lock type of a verlock used
to protect the reference cell against simultaneous accesses by
concurrent threads, and a and p describe an allocation and
permission. Allocations and permissions are sets of singleton
lock types, representing respectively, the set of all verlocks
that may be demanded during evaluation of a function, and
the set of verlocks that must be held before a function call.

Values and basic expressions A value is either an empty
value () of type Unit, or function abstraction λa,px : t. e
(decorated with allocation a and permission p). Values are
first-class programming objects, they can be passed as argu-
ments to functions and returned as results and stored in ref-
erence cells. Basic expressions e are mostly standard and in-
clude variables, values, function applications, reference cre-
ation refm e (decorated with a singleton lock type m), and
the usual imperative operations on references, i.e. derefer-
ence !e and assignment e := e. We also assume existence of
let-binders, and use syntactic sugar e1; e2 (sequential exe-
cution) for let x = e1 in e2 (for some x, where x is fresh).

Threads and tasks The language allows multithreaded
programs by including the expression fork e, which spawns
a new thread for the evaluation of expression e. This evalu-
ation is performed only for its effect; the result of e is never
used. Execution of isolated e e creates a new isolated task

Variables x, y ∈ Var

Type Var-s m, o ∈ TypVar

Allocations a, b ∈ 2TypVar

Permissions p ∈ 2TypVar

Types s, t ::= Unit | t →a,p t | Refm t | m

Values v, w ∈ Val ::= () | λa,px : t. e

Expressions e ∈ Exp ::= x | v | e e | refm e | !e

| e := e | newlock x :m in e | sync e e

| fork e | isolated e e

We work up to alpha-conversion of expressions throughout,
with x binding in e in expressions λx : t. e.

Figure 2: The iso-calculus: Syntax

thread for the evaluation of expression e. Tasks can use
fork to spawn their own threads. The declaration e should
give verlocks that can be used by a task to control access to
shared data. All program threads will be interleaved while
providing the illusion that tasks are executed in isolation.

Verlocks The execution of newlock x : m in e creates a
new unique name x of a versioning lock (or verlock). It also
introduces the type variable m which denotes the singleton
lock type of the newly created verlock. Both x and m may be
referred to in the expression e, i.e. x and m are bound in e.
The expression sync e e′ is similar to Java’s synchronized

statement [12], i.e. the expression e is evaluated first, and
should yield a verlock, which is then acquired when possi-
ble; the expression e′ is then evaluated; and finally the ver-
lock is released. Verlocks combine a simple lock (mutex) for
protection against simultaneous data accesses by concurrent
threads, with an access versioning algorithm that schedules
lock acquisitions by (threads of) isolated tasks based on ac-
cess versions; the details of the algorithm will be given in
§3.3.

3.2 Operational Semantics
We specify the operational semantics using the rules de-

fined in Figure 3. A state S consists of three elements: a
lock store π and a reference store σ, which are sometimes
referred to collectively as a store π, σ, and a collection of
expressions T , which are organized as a sequence T0, ..., Tn.
Each expression Ti in the sequence represents a thread.

The lock store π is a finite map from lock locations to
their states; a lock location has two states, unlocked (0) and
locked (1), and is initially unlocked. The reference store σ
is a finite map from reference locations to values stored in
the references. Lock locations l and reference locations r are
simply special kinds of variables that can be bound only by
the respective stores.

The expressions f are written in the calculus presented in
§3.1, extended with a new construct task pv T . The con-
struct is not part of the language to be used by programmers;
it will be used later to explain semantics.

We define a small-step evaluation relation π, σ | e −→
π′, σ′ | e′, read “expression e reduces to expression e′ in
one step, with stores π, σ being transformed to π′, σ′”. We
also use −→∗ for a sequence of small-step reductions. By
concurrent evaluation, or run, we mean a sequence of small-
step reductions in which the reduction steps can be taken
by different threads with possible interleaving.

Reductions are defined using evaluation context E for ex-
pressions e and f . The evaluation context ensures that the
left-outermost reduction is the only applicable reduction for
each individual thread in the entire program. Context ap-
plication is denoted by [], as in E [e]. Structural congruence
rules allow us to simplify reduction rules by removing the
context whenever possible.

The evaluation of a program e starts in an initial state
with empty stores (∅, ∅) and with a single thread that evalu-
ates the program’s expression e. Evaluation then takes place
according to the transition rules in Figure 3. The evaluation
terminates once all threads have been reduced to values, in
which case the value v0 of the initial, first thread T0 is re-
turned as the program’s result (typing will ensure that other
values are empty values). Subscripts in values reduced from
threads denote the sequence number of the thread, i.e. vi is
reduced from i’s thread, denoted Ti (i = 0, 1..). The execu-
tion of threads can be arbitrarily interleaved. Since differ-
ent interleavings may produce different results, the evaluator
eval(e, v0) is therefore a relation, not a partial function.

Below we describe reduction rules in Figure 3. The rules
in the middle are common for all versioning concurrency
control algorithms, while the rules in the bottom part of the
figure describe our example algorithm.

The first four evaluation rules are the standard rules of a
call-by-value λ-calculus [26], extended with references. We
write {v/x}e to denote the capture-free substitution of v
for x in the expression e. The notation (σ, r 7→ v) means
“the store that maps r to v and maps all other locations
to the same thing as σ”. Rules (R-Ref), (R-Deref), and (R-

Assign) correspondingly, create a new reference cell with a
store location r initially containing v, read the current store
value, and assign a new value to the store located by r.
For instance, let us look at the rule (R-Assign). We use the
notation σ[r 7→ v] to denote update of map σ at r to v. Note
that the term resulting from this evaluation step is just ();
the interesting result is the updated store.

An expression f accesses a reference location r if there
exists some evaluation context E such that f = E [!r] or
f = E [r := v]. (Note that both assign and dereference
operations are non-commutative.)

Evaluation of expression fork e in (R-Fork) creates a new
thread which evaluates e. The result of evaluating expres-
sion e is discarded by rule (R-Thread).

A program completes, or terminates, if all its threads
reduce to a value. By (R-Thread), values of more recent
threads are ignored, so that eventually only the value of the
first thread T0 will be returned by a program.

3.3 Basic Versioning Algorithm
Below we describe the Basic Versioning Algorithm (BVA)

for “isolated evaluation” of tasks. For clarity, we have chosen
one of the simplest algorithms possible. The semantics can
be however easily extended to optimized algorithms of [34]
that permit more concurrency.

The algorithm implements a runtime locking strategy that
assigns essentially tickets to threads that allow them to ac-
quire verlocks. The tickets are monotonically increasing
counters, one per lock. On task entry, a thread obtains
incremented ticket values (called versions) for all the ver-
locks that it wants to acquire during the task. It can then
acquire these verlocks only when the corresponding verlocks
service count has reached its ticket count. Since tickets for

State Space

S ∈ State = LockStore × RefStore × ThreadSeq
π ∈ LockStore = LockLoc → {0, 1}
σ ∈ RefStore = RefLoc → Val
l ∈ LockLoc ⊂ Var
r ∈ RefLoc ⊂ Var

pv ∈ VerMap ⊂ LockLoc → Nat
T ∈ ThreadSeq ::= f | T, T
f ∈ Expext ::= x | v | f e | v f | refm f | !f
| f := e | r := f | newlock x :m in e | sync f e | insync l f

| fork e | isolated fe e | isolated lf e | task pv T

Evaluation Contexts E = [] | E e | v E | refm E | !E | E := e | r := E | sync E e | insync l E
| isolated lEe e | task pv E | E, T | T, E

Structural Congruence

T, T ′ ≡ T ′, T T, () ≡ T
π, σ | f −→ π′, σ′ | f ′

π, σ | E[f] −→ π′, σ′ | E[f ′]
f −→ f ′

π, σ | f −→ π, σ | f ′
Transition Rules

eval ⊆ Exp ×Val
eval(e, v0) ⇔ ∅, ∅ | e −→∗ π, σ | v0, (),· · · , ()

λx. e v −→ e{v/x} (R-App)

r /∈ dom(σ)

π, σ | refm v −→ π, (σ, r 7→ v) | r
(R-Ref)

π, σ | !r −→ π, σ | v if σ(r) = v (R-Deref)

π, σ | r := v −→ π, σ[r 7→ v] | () (R-Assign)

E[fork e] −→ E[()], e (R-Fork)

vi, v
′
j −→ vi if i < j (R-Thread)

π(l) = 1

π, σ | insync l v −→ π[l 7→ 0], σ | v
(R-InSync)

Transition Rules of Basic Versioning Algorithm (BVA)

gv, lv ∈ VerMap ⊂ LockLoc → Nat

eval(e, v0) ⇔ ∅, ∅, ∅, ∅ | e −→∗
π, σ, gv, lv | v0, (),· · · , ()

π(l) ∈ {0, 1}
gv(l) ≥ lv(l) ≥ 0 for all l ∈ dom(π)

π, σ, gv, lv | e −→ π′, σ′, gv′, lv′ | e′
(Invar)

(BVA-0) : l /∈ dom(π)
gv′ = (gv, l 7→ 0) lv′ = (lv, l 7→ 0)

π, σ, gv, lv | newlock x :m in e −→
(π, l 7→ 0), σ, gv′, lv′ | e{l/x}{ol/m}

(R-Lock)

(BVA-1) : l = l1, ..., ln
gv′ = gv[li 7→ gv(li) + 1] i = 1..n
pv = (l1 7→ gv′(l1), ..., ln 7→ gv′(ln))

π, σ, gv, lv | E[isolated l e] −→ π, σ, gv′, lv | E[()], task pv e
(R-Isol)

task pv E[fork e] −→ task pv (E[()], e) (R-Fork’)

(BVA-2) : π(l) = 0 pv(l)− 1 = lv(l)

π, σ, gv, lv | task pv E[sync l e] −→
π[l 7→ 1], σ, gv, lv | task pv E[insync l e]

(R-Sync)

(BVA-3) : pv(l)− 1 = lv(l)
lv′ = lv[l 7→ pv(l)] for all l ∈ dom(pv)

π, σ, gv, lv | task pv v −→ π, σ, gv, lv′ | ()
(R-Task)

Figure 3: The iso-calculus: Reduction semantics

all verlocks are obtained atomically, this guarantees that
tasks with conflicts (shared verlock) will commit in global
order of task starts.

We define the algorithm formally via four operational se-
mantics rules (BVA-0–3) in the lower part of Figure 3. The
rules define creation and destruction of tasks, and verlock
acquisition and release. Below we explain these rules.

Task creation and destruction The program state is
extended with a map gv of global version counters gv(l) for
each lock l in π (initialized to 0). A version is a natural num-
ber playing a rôle of access capability. Each lock l maintains
a local version counter lv(l), which is also initialized to 0; a
map lv of local counters is part of the state, too. For clarity
we usually omit the counters in the rules when possible. The
algorithm maintains an invariant (Invar) that a local version
of each lock is equal or less than a global version of the lock,
and it is equal or greater than zero.

Evaluation of a term isolated l e creates a new thread
for evaluation of expression task pv e; see (R-Isol). The
term task pv e is a task evaluating expression e, where pv
is a private versions map of (ver)locks l declared by term

isolated. The map pv associates lock locations with glob-
ally unique versions, maintained by global version counters
gv. The map pv is created for a given set of (ver)locks dy-
namically in one atomic step, and remains constant for the
task’s lifetime. Program evaluation maintains an invariant
that a private version of each lock in a private versions map
of every task is globally unique.

Tasks are analogous to multithreaded transactions decom-
posed to ensure an isolation property only. Tasks can spawn
their own threads using fork; see (R-Fork’). Tasks are used
only for their side-effects, which are in our case modifications
to the store. A task task pv e has completed or terminated
if expression e yields a value; see (R-Task). Then the task
upgrades local counters of its verlocks and reduces to an
empty value. (In [34] we describe variants of BVA that per-
mit more concurrency by making the upgrades during task
execution.) To ensure that the order of upgrades by all tasks
is correct, the task completion is guarded by the condition
that pv(l)− 1 must be equal lv(l) for all l in dom(pv).

A state S is task-free if it does not have a context
E [task pv T]. Any task-free state is called a result state.
The result states subsume data stored in all reference cells.

Serialized and isolated evaluation Two tasks are exe-
cuted serially if one task commences after another one has
completed. By serialized evaluation, or serial run, we mean
evaluation, in which all tasks are executed serially. (Note
that a serial run is also concurrent since serialized tasks may
be themselves multithreaded.)

Isolation has been proposed as the correctness condition
of concurrency control algorithms [2]. It means, intuitively,
that if the effects of one task are visible to some other task
executing concurrently, then the opposite is not true, where
an effect is usually defined as any change to the content of
reference cells; from the perspective of a task, it appears
that tasks execute sequentially rather than in parallel.

We extend the above definition of an effect, and assume
that both assignment and dereference has an effect, respec-
tively an output and input effect. Our definition of isolation
is therefore more conservative; it is captured precisely using
the notion of noninterference.

Tasks in a concurrent run do not interfere (or satisfy the
noninterference property) if there exists some ideal serial
run Rs of all the tasks, such that given any reference, the
order of accessing the reference by tasks in the concurrent
run is the same as in Rs.

Definition 1 (Isolation Property) Evaluation of an expres-
sion e satisfies an isolation property if all tasks of e do not
interfere. A program satisfies the isolation property if all ter-
minating evaluations of the program satisfy this property.

Verlock acquisition and release The expression (R-

Lock) dynamically creates a new verlock’s lock location l
(with the initial state 0) and replaces occurrences of x in e
with l. It also replaces occurrences of m in e with a type
variable ol that denotes the corresponding singleton lock
type. A lock store π that binds a verlock’s lock location l
also implicitly binds the corresponding type variable ol with
kind Lock; the only value of ol is l. Below we sometimes
confuse a verlock and the verlock’s lock location, where it is
clear from the context what we mean.

A lock location l is free if π(l) = 0, otherwise it is not free.
The semantics of sync e e′ executed by a task is defined by

rule (R-Sync). The expression e is evaluated first, and should
yield a verlock l, which is then acquired if free and if the task
holds a version number pv for l that matches a local version
maintained by l (i.e. pv(l) − 1 = lv(l)). The expression
e′ is then evaluated as part of an expression insync l e′.
The verlock is released by (R-InSync) when the expression e′

reduces to a value v (then insync l v is replaced by v).
The second premise of rule (R-Sync) (pv(l) − 1 = lv(l))

guarantees that a task can acquire a verlock only at a time
when it is safe, i.e. when accessing data protected by the ver-
lock does not invalidate isolation. Otherwise, the verlock’s
lock is not taken even if it is free, resulting in the task’s
thread being blocked (any other threads are not blocked).

However, each lock will be eventually acquired (evalua-
tion progress) if only tasks are themselves deadlock-free and
terminate. We discuss the deadlock issue in §4.3, after ex-
plaining typing.

Correctness assumptions The BVA algorithm guaran-
tees noninterference, provided the following two conditions
hold. Firstly, programs do not have race conditions, i.e. no
data can be accessed without first acquiring a verlock. Sec-
ondly, all verlocks that may (not necessarily have to) be used

by a task are known at a time when the task is spawned, so
that the (R-Isol) rule can create the private version for each
such verlock type, stored in the task’s map pv. To maximize
parallelism, we require only such verlocks to be declared. In
§4, we show that both conditions are verified statically by
the type system in §3.4.

3.4 Typing
The type system is formulated as a deductive proof sys-

tem, defined using conclusions (or judgments) and the static
inference rules for reasoning about the judgments in Fig-
ure 4. The typing judgment for expressions has the form
Γ; a; p ` e : t, read “expression e has type t in environment
Γ with allocation a and permission p”, where an environ-
ment Γ is a finite mapping from free variables to types. An
expression e is a well-typed program if it is closed and it has
a type t in the empty type environment, written ` e : t.

Our intend is that, if the judgment E; a; p ` e : t holds,
then any terminating execution of expression e is race-free,
satisfies the isolation property, and yields values of type t,
provided:

(i) the current thread holds at least the verlocks described
by p (Condition 1),

(ii) if e is part of a task, then the task has declared all
verlocks described by a (Condition 2), and

(iii) the free variables of e are given bindings consistent
with Γ.

We will show in §4 that the type system is sound. Based
on this result, we state dynamic correctness of our exam-
ple concurrency control algorithm, which together with type
soundness gives the expected result of isolation preservation.

Our type system is an extension of Flanagan and Abadi’s
type system for detecting race conditions [9]. It provides
rules for proving that the above two conditions are always
true for well-typed programs. Condition 1 is verified using
an approach described in [9]. The set of typing rules in Fig-
ure 4 has been obtained by extending this approach with
allocations needed to verify Condition 2, and adding a new
rule for typing the isolated construct. Most of the typing
rules are fairly straightforward. For simplicity, we present
a first-order type system and omit subtyping of allocations.
The subtyping rules would be similar to the subtyping rules
with permissions in [9], where also extensions with polymor-
phism and existential types have been described.

To verify Conditions 1 and 2, a verlock l is represented at
the type level with a singleton lock type m that contains l.
The singleton type allows typing rules to assert that a thread
holds verlock l by referring to that type rather than to the
verlock l. During typechecking, each expression is evaluated
in the context of allocations a and permissions p. Includ-
ing a singleton lock type in the allocation a, respectively
permission p, amounts to assuming that the corresponding
verlock’s version, respectively the corresponding verlock, are
held during the evaluation of e.

For instance, consider typing dereference and assignment
operations on references, as part of typechecking some ex-
pression e′′. As in [9], the corresponding rules (T-Deref) and
(T-Assign) check if a singleton lock type m decorating the
reference type is among lock types mentioned in the current
permission p. The permission p can be extended with m only
while typechecking a synchronization expression sync e e′′,
where e has type m (see typing of e in (T-Sync)).

Judgments

Γ ` ¦ Γ is a well-formed typing environment
Γ ` t t is a well-formed type in Γ
Γ ` a, p a, p is a well-formed resource allocation and permission in Γ

Γ; a; p ` e : t e is a well-typed expression of type t in Γ
with allocation a and permission p

Typing Rules

∅ ` ¦ (Env-∅)

Γ ` t x /∈ dom(Γ)

Γ, x : t ` ¦ (Env-x)

Γ ` ¦ m /∈ dom(Γ)

Γ, m :: Lock ` ¦ (Env-m)

Γ ` ¦
Γ ` Unit

(Type-Unit)

Γ ` t Γ ` t′ Γ ` a, p

Γ ` t →a,p t′
(Type-Fun)

Γ ` t Γ ` m

Γ ` Refm t
(Type-Ref)

m :: Lock ∈ Γ

Γ ` m
(Type-Lock)

Γ ` ¦
Γ ` m for all m ∈ a ∪ p

Γ ` a, p
(Alloc)

Γ ` ¦
Γ; a; p ` () : Unit

(T-Unit)

x : t ∈ Γ

Γ; a; p ` x : t
(T-Var)

Γ, x : s; a; p ` e : t

Γ; a′; p′ ` λa,px : s. e : s →a,p t
(T-Fun)

Γ; a; p ` e : s →a′,p′ t
Γ; a; p ` e′ : s a′ ⊆ a p′ ⊆ p

Γ; a; p ` e e′ : t
(T-App)

Γ ` m Γ; a; p ` e : t

Γ; a; p ` refm e : Refm t
(T-Ref)

Γ; a; p ` e : Refm t m ∈ p

Γ; a; p `!e : t
(T-Deref)

Γ; a; p ` e : Refm t
Γ; a; p ` e′ : t m ∈ p

Γ; a; p ` e := e′ : Unit
(T-Assign)

Γ, m :: Lock, x : m; a; p ` e : t
Γ ` a, p Γ ` t

Γ; a; p ` newlock x :m in e : t
(T-Lock)

Γ; a; p ` e : m m ∈ a
Γ; a; p ∪ {m} ` e′ : t

Γ; a; p ` sync e e′ : t
(T-Sync)

Γ; a; ∅ ` e : Unit

Γ; a; p ` fork e : Unit
(T-Fork)

Γ; a; p ` ei : mi for all i = 1..|e|
Γ; {m1} ∪ ... ∪ {m|e|}; ∅ ` e0 : t

Γ; a; p ` isolated e e0 : Unit
(T-Isol)

Figure 4: The first-order type system for the iso-calculus

To verify if a task e0 executing sync e e′ declared verlock
e of some type m, we introduce an allocation a and require
that m is mentioned in a. Note that m can be added to al-
location a only while typechecking the construct isolated

that has spawned task e0. The rule (T-Isol) creates the allo-
cation a from singleton types of all verlocks declared by the
task; the allocation is then used for typechecking the body
of the task.

An allocation a and permission p decorate a function type
and function definition, representing respectively, allocation
a – the set of all verlocks that may be requested while eval-
uating the function and any thread spawned by it, and per-
mission p – the set of verlocks that must be held before a
function call. Note that allocations are preserved by thread
spawning since we allow tasks to be multithreaded, while
permissions are nulled since spawned threads do not inherit
locks from their parent thread.

Rules (T-Fork) and (T-Isol) require the type of the whole
expression to be Unit; this is correct since threads are eval-
uated only for their side-effects.

4. TYPE SYSTEM RESULTS
The fundamental property of the type system and abstract

machine of our language is that evaluation of well-typed, ter-
minating programs satisfies the isolation property. The first
component of the proof of this property is a type preserva-
tion result, stating that typing is preserved during evalua-
tion. The second one is a progress result, stating that eval-
uation of an expression never enters into a state for which
there is no evaluation rule defined. To prove both results, we
extended typing judgments from expressions Exp to expres-
sions Expext, and then to states as shown in Figure 5. The
judgment ` S : t says that “S is a well-typed state yielding
values of type t”. We assume a single, definite type for every

location in the store π, σ. These types have been collected
as a store typing Σ – a finite function mapping locations to
types, and type variables to kinds.

Type preservation and progress yield that our type system
is sound. It guarantees that if a program is well-typed then:

(i) each operation on references requires to first obtain a
verlock, and

(ii) if obtaining a verlock is part of some task spawned
using the isolated construct, then the task has a pri-
vate version of this verlock (which is possible only if
the name of it is the argument of the construct).

The first property is called absence of race conditions and is
guaranteed by Abadi and Flanagan’s type system for avoid-
ing race conditions that we have extended. The second prop-
erty is called absence of non-declared verlocks and is guar-
anteed by our extension of their type system. Based on the
two properties of the type system, we prove that evaluation
of well-typed, terminating programs satisfies the isolation
property; the proof is in the technical report [35].

Below we state formally the absence of race conditions and
the absence of non-declared verlocks properties. Finally, we
give our main result of isolation preservation in §4.3.

4.1 Flanagan and Abadi’s Absence of Races
After removing allocations a and the rule (T-Isol) for typ-

ing the construct isolated in Figure 4, and replacing the
semantics of verlocks by simple locks, we obtain Flanagan
and Abadi’s first-order type system [9]. The fundamental
property of this type system is that well-typed programs do
not have race conditions. Below are Lemmas as found in [9],
extended with store typing Σ and allocations.

The semantics can be used to formalize the notion of a
race condition, as follows. A state has a race condition if

Judgments
` S : t S is a well-typed state of type t

Rules Σ(l) = {0, 1} Σ(ol) = Lock

Σ | Γ; a; p ` l : ol
(T-LockLoc)

Γ ` m Σ(r) = t

Σ | Γ; a; p ` r : Refm t
(T-RefLoc)

dom(π) = {l1, ..., lj} dom(σ) = {r1, ..., rk}
Σ = l1 : {0, 1}, ..., lj : {0, 1}, r1 : s1, ..., rk : sk

ol1 :: Lock, ..., olj :: Lock

|T | > 0 Σ | Γ; ai; pi ` Ti : ti for all i < |T |
` π, σ | T : t0

(T-State)

` S : t0 ` S′ : t0

` S + S′ : t0
(T-Choice)

Σ | Γ; a; p ` fi : ti
Σ | Γ; a′; p′ ` f ′j : tj i < j

Σ | Γ; a; p ` fi, f ′j : ti
(T-Thread)

a = {ol1 , ..., oln} Σ | Γ; a; p ` li : oli
Σ | Γ; a; p ` pv(li) : Nat for all i = 1..n

Σ | Γ; a; p ` T : t

Σ | Γ; a; p ` task pv T : Unit
(T-Task)

Σ | Γ; a; p ` l : m
Σ | Γ; a; p ` f : t m ∈ a m ∈ p

Σ | Γ; a; p ` insync l f : t
(T-InSync)

Nat = 0, 1, 2, .. (includes zero)

Figure 5: Additional judgments and rules for typing states

its thread sequence contains two expressions that access the
same reference location. A program e has a race condition
if its evaluation may yield a state with a race condition, i.e.
if there exists a state S such that ∅, ∅ | e −→∗ S and S has
a race condition.

Independently of the type system, locks provide mutual
exclusion, in that two threads can never be in a critical
section on the same lock. An expression f is in a critical
section on a lock location l if f = E [insync l f ′] for some
evaluation context E and expression f ′. The judgment `cs S
says that at most one thread is in a critical section on each
lock in S. According to Lemma 1, the property `cs S is
maintained during evaluation.

Lemma 1 (Mutual Exclusion [9])
If `cs S and S −→ S′, then `cs S′.

Lemma 2 says that a well-typed thread accesses a refer-
ence cell only when it holds the protecting lock.

Lemma 2 (Lock-Based Protection [9])
Suppose that Σ | Γ; a; p ` f : t, and f accesses reference
location r. Then Σ | Γ; a; p ` r : Refm t′ for some lock type
m and type t′. Furthermore, there exists lock location l such
that Σ | Γ; a; p ` l : m and f is in a critical section on l.

The lemma below implies that states that are well-typed
and well-formed with respect to critical sections do not have
race conditions.

Lemma 3 (Race-Conditions-Free States [9]) Suppose
` S : t and `cs S. Then S does not have a race condition.

Finally, we can conclude that well-typed programs do not
have race conditions.

Theorem 1 (Absence of Race Conditions [9])
If ` e : t then e does not have a race condition.

4.2 Absence of Non-declared Verlocks
An expression f is part of a task task pv T if T = E [f] for

some evaluation context E . A task task pv T has a version
of a lock l if pv(l) is defined. An expression f has a version
of a lock l if there exists some task which has a version of l,
and f is part of this task. An expression f requests a lock
location l if f = E [sync l e] for some evaluation context E

and expression e. A task task pv T is in a critical section on
a lock location l, if some thread of T is in a critical section
on the lock location l.

Now, for the complete language with isolated and task,
the judgment `cs S says in addition to mutual exclusion
property stated in §4.1, that each task being in a critical
section on some lock in state S has a version of this lock
(see Figure 6). According to Lemma 4, the property `cs S
is maintained during evaluation.

Lemma 4 (Version-Completeness Preservation) If
`cs S and S −→ S′, then `cs S′.

Lemma 5 says that a well-typed thread obtains a verlock
only when it holds a version of this verlock.

Lemma 5 (Version-Based Protection)
Suppose that Σ | Γ; a; p ` f : t, and f requests a lock lo-
cation l. Then Σ | Γ; a; p ` l : m for some lock type m.
Furthermore, there exists a task task pv T which f is part
of, such that Σ | Γ; a; p ` task pv T : Unit and version pv(l)
is defined.

The above property implies that in our language all lock
requests are part of some task. This feature has simplified
the type system and reasoning about the isolation property.
A full-size language could make a difference between access-
ing a lock as part of some task, or outside tasks.

We conclude that all verlocks used by each task in well-
typed programs are known a priori.

Theorem 2 (Verlock-Usage Predictability) All ver-
locks that may be requested by a task of a well-typed
program are known before the task begins.

The above result implies that the BVA algorithm will be
able to create upon a task’s creation, a private version of
each verlock that may be used by the task.

4.3 The Main Result of Isolation Preservation
We have defined the isolated evaluation for complete tasks

(see §3.2). This is however not a problem since in practice we
are interested only in result states of this evaluation. Below
we therefore formulate an isolation preservation result for
traces (i.e. sequences of evaluated states) that begin and
finish in a task-free state. The judgment for such states has

Judgments
M `cs f f has exactly one critical section for each lock in M
M `cs task pv T task T has a version pv(l) for each lock l in M
`cs S S is well-formed with respect to critical sections and tasks
`tf S S is well-formed and task-free

Rules for Critical Sections of [9]

f = x | v | newlock x :m in e | fork e

∅ `cs f
(CS-Empty)

M `cs f
f ′ = f e | v f | refm f | !f
| f := e | r := f | sync f e

M `cs f ′
(CS-Exp)

M `cs f

M] {l} `cs insync l f
(CS-InSync)

∀i < |T |. Mi `cs Ti

M = M0] . . .]M|T |−1

∀l ∈M. π(l) = 1

`cs π, σ | T
(CS-State)

Additional Rules for Critical Sections and Tasks

∀i = 1..|f |. Mi `cs fi

M = M1] . . .]M|f|
f ′ = isolated f e

M `cs f ′
(CS-Isol)

∀i < |T |. Mi `cs Ti

M = M0] . . .]M|T |−1

∀l ∈M. pv(l) is defined and pv(l) > 0

M `cs task pv T
(CS-Task)

`cs π, σ | T
∀i < |T |. Ti 6= task pv T ′

`tf π, σ | T
(TF-State)

Figure 6: Judgments and rules for reasoning about critical sections and tasks

the form `tf S, read “state S is well-formed and task-free”,
which means that either no task has been spawned yet, or
if there were any, then they have already completed.

Below we state that each trace of a well-typed program
has the “isolation up to” property, provided that the corre-
sponding evaluation finishes in a result state.

Lemma 6 (Isolation Property Up To) Suppose
Σ | ∅; ∅; ∅ ` S : t and `tf S. If S −→∗ S′ and `tf S′,
then the run S −→∗ S′ satisfies the isolation property up
to S′.

Based on the above lemma, we can prove that well-typed,
terminating programs satisfy the isolation property. A pro-
gram is terminating if all its runs terminate; a run termi-
nates if it reduces to a value.

Theorem 3 (Isolation Property) If ` e : t, then all ter-
minating runs e −→∗ v0, where v0 is some value of type t,
satisfy the isolation property.

Proof of Theorem 3 is based on dynamic correctness of the
BVA algorithm, formulated using the following theorem.

Theorem 4 (Noninterference) If a program has proper-
ties (i) and (ii) (see §4, 2nd paragraph) then any evaluation
of the program up to any result state, using the BVA algo-
rithm, satisfies the noninterference property.

Deadlocks We stated our main result for terminating
programs. Note however that if a program deadlocks or
never terminates, all its runs reaching some result state have
the “isolation up to” property (up to this state). Thus, the
deadlock issue is orthogonal to the goals of this paper, and
can be solved using the existing approaches.

The only deadlocks possible in our language stem from
either two threads of the same task that try to acquire two
locks l1 and l2 in parallel but in a different order, or when a
thread tries to acquire a lock again before releasing it. This

means however that other tasks that want to acquire these
locks will be also blocked. Deadlock can be avoided by im-
posing a strict partial order on verlocks within each task,
and respecting this order when acquiring verlocks; our lan-
guage and type system can be extended with this principle
by embodying the solution described in [9].

4.4 Proving Type Soundness
Reduction of a program may either continue forever, or

may reach a final state, where no further evaluation is pos-
sible. Such a final state represents either an answer or a
type error. Since programs expressed in our language are
not guaranteed to be deadlock-free, we also admit a dead-
locked state to be an (acceptable) answer. Thus, proving
type soundness means that well-typed programs yield only
well-typed answers.

Our proof of type soundness in [35] rests upon the notion
of type preservation (also known as subject reduction). The
type preservation property states that reductions preserve
the type of expressions. Below are excerpts from the proof.

Type safety The statement of the main type preservation
lemma must take stores and store typings into account. For
this we need to relate stores with assumptions about the
types of the values in the stores. Below we define what it
means for a store π, σ to be well typed. (For clarity, we omit
permissions p from the context.)

Definition 2 A store π, σ is said to be well typed with re-
spect to a store typing Σ and a typing context Γ, written
Σ | Γ; a ` π, σ, if dom(π, σ) = dom(Σ) and Σ | Γ; a ` µ(l) :
Σ(l) for every store µ ∈ {π, σ} and every l ∈ dom(µ).

Intuitively, a store π, σ is consistent with a store typing
Σ if every value in the store has the type predicted by the
store typing.

Type preservation for our language states that the reduc-
tions defined in Figure 3 preserve type:

Theorem 5 (Type Preservation) If Σ | Γ; a ` T : t and
Σ | Γ; a ` π, σ and π, σ | T −→ (π, σ)′ | T ′, then for some
Σ′ ⊇ Σ, Σ′ | Γ; a ` T ′ : t and Σ′ | Γ; a ` (π, σ)′.

Evaluation progress Subject reduction ensures that if
we start with a typable expression, then we cannot reach an
untypable expression through any sequence of reductions.
This by itself, however, does not yield type soundness.

We also had to show that evaluation of a typable expres-
sion cannot get stuck, i.e. either the expression is a value or
there is some reduction defined. However, we do allow reduc-
tion to be suspended indefinitely since our language is not
deadlock-free. This is acceptable since we define and guaran-
tee isolation, respectively isolation-up-to, only for programs
that either terminate, or reach some result state (see Theo-
rem 3 and Lemma 6).

We state progress only for closed expressions, i.e. with no
free variables. For open terms, the progress theorem fails.
This is however not a problem since complete programs –
which are the expressions we actually care about evaluating
– are always closed.

Independently of the type system and store typing, we
should define which state we regard as well-formed. Intu-
itively, a state is well-formed if the content of the store is
consistent with the expression executed by the thread se-
quence. In case of store π, if there is some evaluation context
E [insync l e] in the thread sequence for any lock location l,
then π(l) should contain 1, marking that the lock has been
acquired. As for the store σ, containing the content of each
reference cell, we may only require that it is well typed.

Definition 3 Suppose π, σ is a well-typed store, and f is a
well-typed sequence of expressions, where each expression is
evaluated by a thread. Then, a state π, σ | f is well-formed,
denoted `wf π, σ | f , if for each expression fi (i < |f |) such
that fi = E [insync l e] for some l, there is π(l) = 1.

Of course, a well-typed, closed expression with empty
store is well-formed.

According to Lemma 7, the property `wf π, σ | f is main-
tained during evaluation.

Lemma 7 (Well-Formedness Preservation) If

`wf π, σ | f and π, σ | f −→ (π, σ)′ | f
′
then `wf (π, σ)′ | f

′
.

A state π, σ | T is deadlocked if there exist only evaluation
contexts E , such that T = E [sync l e] for some verlocks l,
such that π(l) = 1 for each l (i.e. the verlocks are not free)
and there is no other evaluation context possible.

Now, we can state the progress theorem.

Theorem 6 (Progress) Suppose T is a closed, well-typed
term (that is, Σ | ∅; ∅; ∅ ` T : t for some t and Σ). Then
either T is a value or else, for any store π, σ such that
Σ | ∅; ∅; ∅ ` π, σ and `wf π, σ | T , there is some term T ′

and store (π, σ)′ with π, σ | T −→ (π, σ)′ | T ′, or else T is
deadlocked on some lock(s).

5. IMPLEMENTATION EXPERIENCE

Protocol framework We develop SAMOA [34] – a pro-
tocol framework that allows networked applications to be
built from components that communicate using the frame-
work’s interface; an implementation as a Java [12] package
is available [27]. The framework provides event communi-

cation, message flow control, and an isolated construct for
spawning isolated tasks.

The programmer can choose among several versioning al-
gorithms for rollback-free task execution, including the BVA
algorithm, and also its two optimized variants that permit
more parallelism by upgrading local version counters as soon
as possible [34]. They however demand some additional
data. For instance, one algorithm requires the least upper
bound on the number of times a critical operation can be
performed by a task, another one requires a graph (or pat-
tern) that represents an order of possible critical operations.
These data must be declared and passed as the argument of
the isolated construct.

Implementing the type system described in §3.4 would
make programming safe when choosing the BVA algorithm.
In the future, we would like to extend the type system for the
other algorithms. However, it may not be possible to verify
some class of programs, e.g. supremum required by one
algorithm cannot be derived if the program uses recursion.

Example application SAMOA has been used to imple-
ment modular group communication protocols [21, 34]. Our
protocols execute some actions concurrently, e.g.: (i) for
better response time when performing slow I/O operations,
(ii) to avoid blocking while processing different types of mes-
sages, or (iii) to gain benefit of the multi-CPU architectures.
In practice, messages of certain types that are received from
the network (or application) spawn a new task. Any concur-
rent jobs in the context of the same message are performed
by multiple threads within the task. Task isolation ensures
however that each concurrent message is processed by the
protocol using a consistent set of data, which made program-
ming easier and less error-prone.

6. RELATED WORK
There have been recently many proposals of concurrent

languages with novel synchronization primitives, e.g. the
join-calculus language [11], Concurrent Haskell [24], Con-
current ML [23], Pict [25] and Nomadic Pict [28]. They
enable to express complex synchronization code more eas-
ily than when using standard constructs, such as monitors
and locks. This work is however orthogonal to the goals of
our paper. We are primarily focused on high-level language
support that provides automatic concurrency control.

The work in this paper builds on research in three areas:
atomic transactions, language support for atomic blocks,
and concurrency control algorithms. Below we discuss ex-
ample work in these areas, and also on formalization.

Atomic transactions Atomic transactions that can be
decomposed to satisfy only a subset of the Atomicity, Con-
sistency, Isolation, and Durability (ACID) properties ap-
peared in distributed operating systems, such as Camelot
[8], in transactional platforms, such as Sun Enterprise Jav-
aBeans (EJB) [30] and Microsoft Transaction Server (MTS)
[22], and programming languages, such as Avalon/C++ [7]
and Venari/ML [14, 33].

Venari/ML is an extension of the ML programming lan-
guage with atomic transactions. Concurrency control is
factored out into a separate mechanism that the program-
mer can use to ensure isolation. Higher-order functions in
ML allow the programmer to easily express transactions
with desirable ACID properties. Transactions can be multi-
threaded.

However, we intended to address the issue of local concur-
rency control in network protocols, rather than distributed
transactions; the design considerations were therefore dif-
ferent. Contrary to traditional database transactions, our
tasks never rollback their execution – we guarantee that I/O
operations are performed exactly once, unless the process
running all local tasks crashes.

Alternative approaches such as compensations [5], i.e. im-
plicit or programmable procedures that can undo the effects
of a transaction that fails to complete, do not apply here.
Some I/O operations performed by tasks cannot be easily (or
routinely) undone or compensated. For instance, we usually
assume that an output of a network message either succeeds,
i.e. the message is sent, or not, i.e. the message is not sent
due to e.g., a socket error. The protocol designer should
not be concerned with another case, when the message has
been sent, but the operation needs some compensation due
to conflicts on task operations.

Atomic blocks While our construct isolated can allow
to declare multithreaded sections of code to be executed
in isolation, several researchers have proposed programming
language features for isolation of sequential code blocks. Be-
low is the previous work closest to our own.

Flanagan and Qadeer [10] proposed a type system for
specifying and verifying the atomicity of methods in multi-
threaded Java programs, where the notion of “atomicity” is
similar to linearizability [17] for concurrent objects, and iso-
lation in this paper. Their approach allows program meth-
ods to be annotated with the keyword atomic. If the pro-
gram type checks, then any interaction between an atomic
method executed by a thread and steps of other threads is
guaranteed to be benign, in the sense that these interac-
tions do not change the program’s overall behaviour. The
type system is a synthesis of Lipton’s theory of left and
right movers (for proving properties of parallel programs)
and type systems for race detection.

Our decision to allow tasks to be multithreaded means
however, that in our language it may not be possible to verify
the isolation property statically (at compile time only), since
the language allows threads to be created and terminated
dynamically at will. This, together with the requirements of
rollback-freedom and language safety, motivates our hybrid,
type-directed approach to concurrency control.

Moreover, applications that we consider may demand dif-
ferent levels of performance, isolation and real-time con-
straints; these varying demands will lead to a multiplicity
of runtime concurrency controllers, based on a variety of
scheduling algorithms (e.g. real-time algorithms [13]). Our
intend is to allow the programmer to choose between differ-
ent dynamic locking strategies, based on the available static
information. Our declarative approach therefore differs from
the above type-based approach to verify atomicity.

More recently, Harris and Fraser [15] have been investi-
gating an extension of Java with (again, sequential only)
atomic code blocks that implement Hoare’s conditional crit-
ical regions (CCRs) [18]. The programmer can guard a con-
ditional region by an arbitrary boolean condition, with call-
ing threads blocking until the guard is satisfied. The im-
plementation is based on mapping CCRs onto a software
transactional memory (STM) which groups together series
of memory accesses and makes them appear atomic.

The main difference between their approach and ours is
the lack of a need for rollback. Unlike our pessimistic con-

currency control, their implementation of atomicity depends
on rollback and recovery. This restricts the availability of
I/O operations within an atomic block. For instance, the
STM-based implementation of atomic blocks in Haskell [16]
forbids all operations that may have irrevocable I/O effects,
which limits the scope of possible applications.

A plausible option could be based on buffering input op-
erations (for possible recovery) and flushing all output oper-
ations on transaction commit (to prevent their duplication
due to rollback). However, it does not seem to support an
arbitrary pattern of I/O communication at real time.

Concurrency control Our versioning concurrency con-
trol algorithms have some resemblance with two-phase lock-
ing [2, 32]. However, instead of acquiring all locks needed
(in the 1st phase) and releasing them (in the 2nd phase),
tasks take and dynamically upgrade version numbers, which
optimizes unnecessary blocking. The conflicting operations
are ordered according to versions, which is similar to times-
tamp algorithms [2, 32]. However, we associate versions with
verlocks, not with transactions. Therefore all data accesses
protected by verlocks are always made in the right order for
the isolation property (the verlock requests with too high
versions are simply delayed), unlike common timestamp al-
gorithms for transactions, where if an operation has arrived
too late (that is it arrives after the transaction scheduler has
already output some conflicting operation), the transaction
must abort and be rolled back.

More discussion of other related work on algorithms can
be found in [34].

Transaction models Turning to the semantics of trans-
actions, Chrysanthis and Ramamritham [6] have specified
the broad spectrum of transactional models.

More recently, Black et al. [4] have defined an equation
theory of operators, where an operator corresponds to an
individual ACID property. The operators can be composed,
giving different semantics to transactions. The above models
are however presented abstractly, without being integrated
with any language or calculus.

Vitek et al. [31] and Jagannathan and Vitek [19] have
recently proposed a calculi-based model of standard ACID
transactions. They have formalized the optimistic and two-
phase locking concurrency control strategies. Their ap-
proach to formalization of the isolation property (I) is simi-
lar to the one in this paper. However, the soundness result
rests upon an abstract notion of permutable actions, while
our soundness result and proofs make explicit data accesses
and task noninterference.

Berger and Honda [1] have used a variant of π-calculus
to formalize the operational semantics of the standard two-
phase commitment protocol for distributed transactions.
This work however does not address local concurrency con-
trol (on a machine) and the isolation property.

7. CONCLUSION AND FUTURE WORK
The paper describes a language and runtime support

for isolation-only, multithreaded transactions (tasks). The
main idea of the paper is to avoid the need for rollback at
runtime, which greatly simplifies the runtime system, allows
tasks to perform arbitrary I/O operations, and also elimi-
nates the risk of multiple restarts when many tasks compete
for the same resource (since no task is aborted).

The runtime system requires however resources to be
known a priori. Therefore, to make our language safe, we
propose in this paper a type system that can verify resource
declarations for the concurrency controller.

For clarity, we have chosen a somewhat idealised concur-
rency control algorithm. The algorithm is not free from
drawbacks. For instance, if a thread is preempted while
holding a lock then no other thread can safely access the
lock. In the future, we would like to work on more robust
approaches to implementing isolated.

The type system could be extended to add distinction be-
tween read-only and read-write locking for efficiency. It may
be also worthwhile to investigate algorithms for inferring the
typing annotations.

Acknowledgments We thank Olivier Rütti, Peter Sewell,
the Crystall project participants and the anonymous referees
for helpful comments on drafts of this paper. This work was
supported by Swiss NSF contract #21-67715.02 and Hasler
Stiftung project DICS-1825.

8. REFERENCES
[1] M. Berger and K. Honda. The two-phase commitment

protocol in an extended pi-calculus. Electronic Notes
in Theoretical Computer Science, 39(1), 2000.

[2] P. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[3] A. Bestavros. Advances in real-time database systems
research. ACM SIGMOD Record, 25(1):3–8, 1996.

[4] A. P. Black, V. Cremet, R. Guerraoui, and
M. Odersky. An equational theory for transactions. In
Proc. FSTTCS ’03, Dec. 2003.

[5] R. Bruni, H. Melgratti, and U. Montanari. Theoretical
foundations for compensations in flow composition
languages. In Proc. POPL ’05, Jan. 2005.

[6] P. K. Chrysanthis and K. Ramamritham. ACTA: A
framework for specifying and reasoning about
transaction structure and behavior. In ACM SIGMOD
Conference on Management of Data, 1990.

[7] D. Detlefs, M. Herlihy, and J. Wing. Inheritance of
synchronization and recovery properties in Avalon /
C++. IEEE Computer, 21(12):57–69, Dec. 1988.

[8] J. L. Eppinger, L. B. Mummert, and A. Z. Spector,
editors. Camelot and Avalon: A Distributed
Transaction Facility. Morgan Kaufmann, 1991.

[9] C. Flanagan and M. Abadi. Types for safe locking. In
Proc. ESOP ’99, LNCS 1576, Mar. 1999.

[10] C. Flanagan and S. Qadeer. A type and effect system
for atomicity. In Proc. PLDI ’03, June 2003.

[11] C. Fournet and G. Gonthier. The reflexive chemical
abstract machine and the join-calculus. In Proc.
POPL ’96, Jan. 1996.

[12] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification, 2nd Ed. Addison Wesley, 2000.

[13] M. H. Graham. Issues in real-time data management.
Technical Report SEI-TR-17, Carnegie-Mellon
University, July 1991.

[14] N. Haines, D. Kindred, J. G. Morrisett, S. M. Nettles,
and J. M. Wing. Composing first-class transactions.
ACM TOPLAS, 16(6):1719–1736, Nov. 1994.

[15] T. Harris and K. Fraser. Language support for
lightweight transactions. In Proc. OOPSLA ’03, 2003.

[16] T. Harris, S. Marlow, S. Peyton Jones, and
M. Herlihy. Composable memory transactions. In
Proc. PPoPP ’05, June 2005.

[17] M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990.

[18] C. A. R. Hoare. Towards a theory of parallel
programming. In Operating Systems Techniques,
volume 9 of A.P.I.C. Studies in Data Processing,
pages 61–71, 1972.

[19] S. Jagannathan and J. Vitek. Optimistic concurrency
semantics for transactions in coordination languages.
In Proc. Coordination ’04, LNCS 2949, Feb. 2004.

[20] K.-J. Lin and C.-S. Peng. Enhancing external
consistency in real-time transactions. ACM SIGMOD
Record, 25(1):26–28, 1996.

[21] S. Mena, A. Schiper, and P. T. Wojciechowski. A step
towards a new generation of group communication
systems. In Proc. Middleware ’03, LNCS 2672, 2003.

[22] Microsoft. MTS. http://www.microsoft.com/.

[23] P. Panangaden and J. Reppy. The Essence of
Concurrent ML. In ML with Concurrency: Design,
Analysis, Implementation, and Application., pages
5–29. Springer, 1997.

[24] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent
Haskell. In Proc. POPL ’96, Jan. 1996.

[25] B. C. Pierce and D. N. Turner. Pict: A programming
language based on the pi-calculus. In Proof, Language
and Interaction: Essays in Honour of Robin Milner.
MIT Press, 2000.

[26] G. D. Plotkin. Call-by-name, call-by-value and the
λ-calculus. TCS, 1:125–159, 1975.

[27] SAMOA. http://lsrwww.epfl.ch/samoa.

[28] P. Sewell, P. T. Wojciechowski, and B. C. Pierce.
Location-independent communication for mobile
agents: a two-level architecture. In Internet
Programming Languages, LNCS 1686, 1999.

[29] L. Shu and M. Young. Correctness criteria and
concurrency control for real-time systems: a survey.
Technical Report SERC-TR-131-P, Purdue University,
Nov. 1992.

[30] Sun Microsystems. EJB. http://java.sun.com/.

[31] J. Vitek, S. Jagannathan, A. Welc, and A. L. Hosking.
A semantic framework for designer transactions. In
Proc. ESOP ’04, LNCS 2986, March/April 2004.

[32] G. Weikum and G. Vossen. Transactional Information
Systems. Morgan Kaufmann, 2002.

[33] J. M. Wing, M. Faehndrich, J. G. Morrisett, and
S. Nettles. Extensions to Standard ML to support
transactions. In Proc. ACM Workshop on ML and its
Applications, 1992.

[34] P. Wojciechowski, O. Rütti, and A. Schiper. SAMOA:
A framework for a synchronisation-augmented
microprotocol approach. In Proc. IPDPS ’04, 2004.

[35] P. T. Wojciechowski. Isolation-only transactions by
typing and versioning. Technical Report IC-2004-104,
EPFL, School of Computer and Communication
Sciences, Dec. 2004.

