
A Step Towards a New Generation of Group
Communication Systems?

Sergio Mena, André Schiper, PaweÃl Wojciechowski

Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

1015 Lausanne, Switzerland
{first.last}@epfl.ch

Abstract. In this paper, we propose a new architecture for group com-
munication middleware. Current group communication systems share
some common features, despite the big differences that exist among
them. We first point out these common features by describing the most
representative group communication architectures implemented over the
last 15 years. Then we show the features of our new architecture, which
provide several advantages over the existing architectures: (1) it is less
complex, (2) it defines a set of group communication abstractions that
is more consistent than the abstractions usually provided, and (3) it can
be made more responsive in case of failures.

1 Introduction

1.1 Context

Group communication has been widely argued to be an important enabling tech-
nology for building fault-tolerant applications in distributed systems [6]. Tra-
ditionally, applications can be made tolerant to crashes by replicating critical
processes. In such a context, the group communication system (or middleware)
manages the interaction between the process replicas across the network. The
implementation of group communication middleware in a system with process
crashes and unpredictable communication delay is a difficult task. Therefore,
it is important to have a clean design of the group communication’s architec-
ture, with a well-understood set of programming abstractions provided by each
component of the system.

In the dynamic group communication model, processes are organised into
groups. The membership of a group can change over time, as processes join
or leave the group, or as crashed processes are removed from the group. The
current set of processes that are members of a group is called the group view.

? Research funded by the EPFL grant “Semantics-Guided Design and Implementation
of Group Communication Middleware”, by the Swiss National Science Foundation
under grant number 21-67715.02, and partially by OFES under contract number
02.0328, as part of the IST MIDAS project (2001-37610).



Processes are added to and deleted from the group view via view changes, han-
dled by a membership service. Communication to the members of a group is
done by various broadcast primitives. The basic “reliable” broadcast primitive
in the context of a view is called view synchronous broadcast, or simply view
synchrony1[13]. The semantics of view synchronous broadcast can be enhanced
by requiring messages to be delivered in the same order by all processes in the
view. This primitive is called atomic broadcast2 [13]. Moreover, different research
groups distinguish between the primary partition membership and partitionable
membership [13]. The discussion of these two models is outside the scope of this
paper. In our work, we focus on the primary partition model, in which processes
observe the same sequence of views. Primary partition membership is adequate
for managing replicated servers, even in the case of link failures and/or network
partitions.

The difficulty of implementing a group communication middleware can be
formally explained by theoretical impossibility results, such as the impossibility
of solving consensus in an asynchronous system when processes can crash [17].
These impossibility results can be overcome by strengthening a little bit the sys-
tem model [10]. Even though many experimental group communication systems
have been implemented during the last decade, so far the use of group com-
munication middleware has not yet become a common practice when building
fault-tolerant applications. We think that one of the reasons is the complexity of
specifications of group communication services, which makes it difficult to under-
stand the services provided by these systems. Another reason is the complexity
of the systems itself.

1.2 Traditional Group Communication Architecture

In [13], Chockler et al. describe a comprehensive set of specifications of group
communication services, which correspond to the most popular implementations.
These specifications can serve as a unifying framework for the classification,
analysis and comparison of the group communication systems that have been
implemented over the last fifteen years.

The first observation we made is that all the implemented group communi-
cation systems we are aware of, adopt the same basic architecture, in which the
group membership and view synchrony services are the basic components in the
system. The guarantees provided by these two basic components are then used
to implement other group communication services, e.g., atomic broadcast. We
call this architecture the “traditional architecture”.

1 Basically, view synchrony ensures that between two consecutive views v and v′,
processes that are members of v and v′ deliver the same set of messages broadcast to
the group. View synchrony is sometimes called virtual synchrony. View synchronous
broadcast is actually the best denomination, but we keep the term view synchrony
to be consistent with the group communication literature.

2 Atomic broadcast is also called total order broadcast.



1.3 Contribution: a New Architecture

In this paper we propose a new architecture with two key features that distin-
guish it from traditional architectures.

The first key feature is atomic broadcast (instead of group membership and
view synchrony) as the basic component. The atomic broadcast component is
then used to build other group communication services on top, e.g., group mem-
bership. Such an architecture has better separation of concerns. For example,
the group membership service usually has to deliver new group views with guar-
antees that resemble those provided by the atomic broadcast. Therefore it seems
logical for the atomic broadcast service to be more primitive than the group
membership service. This architecture is formally supported by the new specifi-
cation of group communication given in [32].

The second key feature of our new architecture is the absence of the view-
synchrony service. This traditional service, which has a rather complex specifi-
cation [13], is replaced by a new service called generic broadcast [29, 28]. Generic
broadcast has a simpler specification than view-synchronous broadcast, but at
the same time provides a more general service.

In our opinion, the reason for adopting the traditional architecture in the im-
plementation of group communication systems seems more historical than justi-
fied by some strong arguments against other architectures. At the time when the
first group communication systems (such as Isis) were built, it was not clear how
to implement fault-tolerant atomic broadcast protocols without reconfiguration
to exclude crashed processes. In later years, when the first papers appeared that
suggested a different implementation of atomic broadcast (for example [9]), the
traditional architecture had been already well established and the new imple-
mentations of group communication systems usually closely followed this initial
approach.

In this paper, we compare different variants of the traditional architecture
and argue that our new architecture is not only more elegant than the traditional
architecture, but also has several advantages, which make it an interesting choice
for designing and implementing new generations of group communication sys-
tems. The rest of the paper is organized as follows. Section 2 presents examples
of the traditional group communication architecture. Section 3 describes our
new architecture. Section 4 discusses the advantages of the new architecture
compared to the traditional architecture. Finally, Section 5 concludes the paper.

2 Existing Group Communication Architectures

In this section we present the architecture of existing group communication sys-
tems. Since it is not possible (and also not really worth) to present the architec-
ture of all group communication systems that have been implemented, we have
selected here the most representative architectures. At the end of the section we
abstract from the specific architectures and draw some general conclusions.

We have divided this section into two parts: monolithic and modular systems.
As the name suggests, monolithic systems do not allow the system to be easily



customized to the user needs; modular systems allow the user, using off-the-shelf
components, to build the protocol stack that fits his/her needs.

Among all existing monolithic systems, we have chosen to present Isis [7, 6],
Phoenix [25], RMP [34, 27], and Totem [2]. Among modular systems the most
representative one is Ensemble [21]. There are many other group communication
systems but their architecture overlap with the ones presented here. Transis [14],
Relacs [3], and Newtop [16] architectures overlap with Totem and Ensemble.
JavaGroups [4] is strongly inspired by Ensemble (it can even be configured to
use an Ensemble stack). The group communication protocol suite implemented in
the Appia framework [26] is also strongly inspired by Ensemble. The membership
service presented in [23] uses a token based approach as in Totem or RMP.

2.1 Monolithic Systems

Isis. Isis was the first system to propose group communication [7, 8]. It is a
monolithic primary partition system, i.e., when a network partition occurs, the
computation can only proceed in one partition of the network, called the primary
partition. The Isis architecture is depicted in Figure 1. The main layers are the
following:3

– The group membership layer, which is responsible for maintaining the mem-
bership of groups. This layer handles joins (request to join the group) and
leaves (request to leave the group). The layer also excludes processes that
are suspected to have crashed. The group membership layer ensures that
processes deliver the successive views in the same total order.

– Group membership does not provide any semantics for communication. For
that reason, the group membership layer needs to be extended with a layer
providing a semantics for the messages broadcast to the current group mem-
bers. This semantics is called view synchrony (see Section 1).

– The upper layer provides atomic broadcast : it ensures that messages are de-
livered in the same order by all processes. Atomic broadcast is implemented
using the view synchrony layer [8].

Phoenix. The Phoenix architecture [25] is a variation of the Isis architecture
(Fig 2). The basic layer solves the consensus problem [10].4 Membership (pri-
mary partition) and view synchrony are provided by the same layer: both the
membership problem and view synchrony are solved using the underlying con-
sensus layer. Similarly to the Isis architecture, atomic broadcast is provided on
top of the view synchrony/membership layer.

The main limitation of Isis is to provide the membership service at the level
of processors. In case of partition, this leads the service to kill all processes on
3 The architecture corresponds to the protocol described in [8]. Since we do not discuss

causal order in the paper, the Isis causal order protocol does not appear here.
4 In the consensus problem, each process pi starts with an initial value vi, and all

correct processes must agree on a common value v that is one of the initial values vi.



Application

Atomic Broadcast

View Synchrony

Membership

Network

Fig. 1. Isis architecture

View Synchrony
+

Membership

Network

Application

Atomic Broadcast

Consensus

Fig. 2. Phoenix architecture

processors that are not in the primary partition. This drawback is prevented
in Phoenix, which provides the membership service at the level of processes.
This allows the computation to proceed in all partitions. Consider for example
link failures leading to the following situation: the primary partition of some
replicated service S is in some network component Π1, and the primary partition
of some other replicated service S′ is in some other network component Π2. A
client process in Π1 can read/update the service S and read S′, while a client
in Π2 can read/update S′ and read S.

RMP. RMP [34, 27] is another monolithic group communication system, whose
architecture differs from the Isis and Phoenix architectures (see Figure 3). The
RMP protocol has been influenced by Chang-Maxemchuk’s atomic broadcast
algorithm [11]. In RMP, the membership layer is split into two parts: fault-free
membership and fault-tolerant membership.

The fault-free membership handles joins and leaves in the absence of failures,
using the underlying atomic broadcast layer: joins/leaves are implemented us-
ing atomic broadcast. This totally orders joins/leaves with respect to any other
application message that is issued using atomic broadcast, i.e., it ensures the
view synchrony property in the absence of failures. However, the atomic broad-
cast protocol blocks in case of a process crash. The role of the fault-tolerant
membership layer is to avoid blocking by excluding processes that are suspected
to have crashed. The fault-tolerant membership protocol, based on a two-phase
commit protocol [5] among the surviving processes, is completely different from
the fault-free protocol. This fault-tolerant protocol has also the responsibility to
ensure the view synchrony property, i.e., it orders view changes with respect to
application messages that are atomically broadcast.

Totem. Unlike the architectures presented so far, Totem [2] – while being a
monolithic architecture – is a representative of the systems based on the parti-
tionable membership model.

Similarly to RMP, Totem uses an atomic broadcast algorithm based on a
rotating token. Total order is provided by the middle layer of the architecture
depicted in Figure 4 (the layer handles also flow control). The lower layer mem-



bership protocol, apart from detecting failures and defining views, recovers token
and messages that had not been received by some members when failures occur.
The top recovery layer completes the membership layer, by ensuring the (ex-
tended) view synchrony property.5 When the membership layer is invoked, e.g.,
to exclude a process, it does not enforce the (extended) view synchrony property.
This is ensured by the recovery layer.

Fault−tolerant Membership
+

View Synchrony

Fault−free Membership

Atomic Broadcast

Application

Network

Fig. 3. RMP architecture

Application

Recovery

Atomic Broadcast

Membership

Network

Fig. 4. Totem architecture

2.2 Modular Protocol Stacks

Unlike monolithic systems, modular systems allow users to customize the pro-
tocol stack to their specific needs. Horus [31] (the successor of Isis) and the
re-implementation of Horus in the OCaml language called Ensemble [21] are the
best representatives of modular group communication stacks. The idea is to use a
set of off-the-shelf components and to compose them using the Horus/Ensemble
framework to obtain a protocol stack with the functionalities customized to the
user requirements. Similarly to Horus, Ensemble is based on the partitionable
membership model. A sample Ensemble protocol stack is depicted in Figure 5.
A few explanations are needed:

– A component, e.g., stable, can be placed at many places in the stack. The
choice of the place has an impact on efficiency. For example, the role of the
stable component is to detect messages stability.6 When stability is detected
by the stable component, an event is delivered to the layer below, and travels
down from layer to layer until it reaches the bottom of the stack. At this
point the event is bounced back, and travels up through the stack from com-
ponent to component, until it reaches the top of the stack. The notification
of stability occurs during the upwards travel of the event.

5 Extended view synchrony [13] extends the view synchrony property, defined in the
context of the primary partition model, to the partitionable membership model.

6 A message is stable at a process when the process knows that the message has been
delivered at all destinations.



– The application is not the uppermost layer in the stack. The reason is that it
would take more time to convey events from the network level to the applica-
tion. The most efficient layering leads placing components active in normal
scenarios below the application, and components that handle abnormal sce-
narios above.

Membership

View Synchrony
+

Sync

Failure Detection

Applic_Interface

Atomic Broadcast

Stable

Reliable FIFO

Network

Application

Fig. 5. Ensemble sample protocol stack

Apart from these generalities, here are comments about the Ensemble stack
example depicted in Figure 5:

– The atomic broadcast component only orders messages in the absence of fail-
ures, or more precisely, when the system is stable (since Ensemble provides
a partitionable membership service). Without additional membership layers,
the different atomic broadcast protocols used would block in case of failures
(e.g., upon crash, or disconnection).

– Sync: The layer implements a protocol for blocking a group during view
changes, i.e., for preventing the broadcast of new messages during view
changes.

– Membership: Actually, this is not a single layer, but a protocol suite, which
includes various components, e.g., merge, inter, intra, etc. It is important to
note that even though the membership component appears above the atomic
broadcast component, it does not rely on it at all; a correct stack can have
the membership components without the atomic broadcast component.

2.3 Discussion

The first observation from the above overview is that an architecture is nec-
essarily influenced by the underlying algorithms. In other words, the architec-
tures that have been presented differ because they rely on different algorithms



(for membership, for view synchrony, for atomic broadcast, etc.). However, even
though these architectures differ, they share some common features.

Group Membership and Failure Detection Are Strongly Coupled. Fail-
ure detection is a lower level mechanism than group membership. Failure detec-
tion gives notification of (possible) process failures (or disconnection) without
worrying about inconsistencies (e.g., process p might suspect process r, whereas
q might never suspect r). On the other hand, group membership gives consistent
failure notification.7

However, none of the architectures that we have presented exploits this dif-
ference: group membership and failure detection are strongly coupled. In most
of the architectures, the failure detection component does not even appear ex-
plicitly: it is completely hidden within the group membership component. Even
in the architectures where the failure detection component is not hidden in the
group membership, it directly interacts with the group membership, and only
with it. In other words, other components learn about suspicions from the group
membership component, not from the failure detection component. The group
membership component acts as a failure detection component for the rest of the
system.

Atomic Broadcast Algorithms Rely on Group Membership. A corollary
of the previous observation is that, in all the above architectures, atomic broad-
cast algorithms rely on the group membership component; all these algorithms
require the help of group membership to avoid blocking in the case of the failure
of some critical process.

Basically these atomic broadcast algorithms operate in two modes: (1) a
failure-free mode, and (2) a failure mode. A failure notification received from
the group membership leads the protocol to switch from the failure-free mode
to the failure mode. Here are two examples:

– In Isis and Phoenix, atomic broadcast is implemented using a fixed sequencer
process. In the normal mode, the sequencer process attaches sequence num-
bers to messages that are atomically broadcast. However, the protocol blocks
if the sequencer crashes. The notification of the failure of the sequencer is
needed to prevent blocking, and to switch to the failure mode. In the fail-
ure mode the algorithm ensures that if one process has received a sequence
number for some message m, then all correct processes receive the same se-
quence number for m. Once this is ensured, a new sequencer is chosen, and
the algorithm returns to the normal mode.

– In RMP and Totem, processes form a logical ring and atomic broadcast is
implemented using a rotating token. In the normal mode, the token is passed
over the ring of processes. A process holding the token can attach a sequence

7 The notion of consistency differs in the primary and in the partitionable membership
service.



number to the messages it wants to broadcast. If one process crashes, the
ring is broken, and the token may be lost. The failure mode is needed to
recover from this situation.

This dependency of atomic broadcast on group membership is visible in the
above stacks, where the membership component is below the atomic broadcast
component. This is only partially true for RMP (see Figure 3), in which the
dependency of atomic broadcast on group membership holds only in case of
failures (failure-free membership is implemented using atomic broadcast). This
dependency of atomic broadcast on group membership also holds in Ensemble,
even though the atomic broadcast component is below the membership compo-
nent in the stack in Figure 5: in Ensemble, as already explained, the layering of
components does not reflect functional dependencies.

The Consensus Abstraction is Barely Used. When the consensus problem
was defined in the early eighties [18], it was largely considered as a theoretical
problem, with little practical relevance. Since then, the practical importance of
consensus for solving problems such as atomic broadcast, (primary partition)
group membership or view synchrony has been recognized. Nevertheless, except
for Phoenix, no consensus component appears in the implementations.

Notice that this comment about consensus applies only to the primary par-
tition systems, since the role of consensus in the context of partitionable group
membership and extended view synchrony [13] (the counterpart of view syn-
chrony in the context of partitionable membership) is not clear.

3 The New Architecture

We present now our new architecture. We proceed in three steps, starting with
an overview at the same level of details as the architectures presented in Sec-
tion 2 (allowing comparison). Then in Section 3.2, we present the augmented
version of the architecture with a new key component: generic broadcast. Finally
in Section 3.3, we describe the full version of the architecture with additional
details.

3.1 Overview of the New Architecture

Figure 6 shows an overview of our new architecture. At this level of details, we
can already see three important features:8

– Atomic broadcast does not rely on group membership, but group membership
relies on atomic broadcast.

– There is no view synchrony component.
– Group membership and failure detection are decoupled.

8 Note that Figure 6 does not mean that the application can only interact with the
Group Membership component (the component just below the application).



Group Membership Relies on Atomic Broadcast and Not the Oppo-
site. All the systems that have been described in Section 2 rely on atomic
broadcast algorithms that require a perfect failure detector, i.e., a failure detec-
tor that makes no mistakes. This failure detector is denoted by P in [10]. The
group membership service, when placed below atomic broadcast, emulates the
perfect failure detector P by forcing incorrectly suspected processes to crash.

Instead, we propose to use an atomic broadcast algorithm requiring a 3S fail-
ure detector (much weaker than P), which allows to make mistakes by suspecting
correct processes: 3S allows even an unbounded number of wrong suspicions.
Such an atomic broadcast algorithm is given in [10]: it is based on a sequence of
instances of consensus (see the consensus component in Figure 6 below the total
order broadcast component). This algorithm is able to work without blocking
even if up to f < n/2 crashes occur. As a result, this algorithm does not have
to rely on a group membership service.

Since the group membership component does not need to appear below the
atomic broadcast component, it can be placed above: this means that group
membership can be implemented using atomic broadcast, which is quite natural,
since views need to be totally ordered. This generalizes the solution of RMP
(Sect. 2.1). However, because of the limitations of the atomic broadcast algorithm
used by RMP (it assumes a perfect failure detector, emulated by the membership
service), RMP could use the solution only in the absence of failures: RMP’s
atomic broadcast relies on membership in case of failures.

It might appear to the reader that inverting the group membership com-
ponent and the atomic broadcast component in the stack is just moving the
complexity from one component to the other (the more complex component be-
ing the lowest in the stack). This is not true. It should be noted that any solution
that implements (primary partition) group membership below atomic broadcast,
actually has two algorithms to solve the same ordering problem: one specific so-
lution to order membership changes, and one general (in the context of atomic
broadcast) to order application messages. This only observation suggests that
such architectures are not optimal.

There Is No View Synchrony Component. There is no view synchrony
component in Figure 6. This component is replaced by a more powerful compo-
nent, called generic broadcast, which is discussed below.

Group Membership and Failure Detection Are Decoupled. The strong
coupling between failure detection and group membership in the architectures
described in Section 2 was motivated by the atomic broadcast algorithms (re-
quirement of a perfect failure detector emulated by the membership service).
These architectures could not exploit the distinction between failure suspicion
and membership exclusion (only process exclusions could be exploited by the
atomic broadcast algorithm).

Decoupling group membership from failure detection has the following ad-
vantage: failure detections do not necessarily lead to process exclusion. This



also means that decisions to exclude processes are no more taken by the group
membership component. We come back to this issue below.

3.2 Augmented Version of the New Architecture

We introduce now the key component of our new architecture, namely generic
broadcast (see Figure 7).

Network

Application

Atomic Broadcast

Consensus

Failure Detection

Group Membership

Fig. 6. New architecture: overview

Network

Application

Group Membership

Generic Broadcast

Atomic Broadcast

Consensus

Failure Detection

Fig. 7. New architecture with the Ge-
neric Broadcast component

Generic Broadcast Component. Generic broadcast is a powerful group com-
munication primitive proposed recently [29, 30]. It is generic in the sense that the
ordering of messages is defined by a conflict relation on the messages. If two con-
flicting messages m and m′ are broadcast, then generic broadcast delivers them
in the same order on all destination processes. However, if m and m′ do not con-
flict, then generic broadcast does not order them (which is less expensive). So, if
all messages conflict, then generic broadcast is equivalent to atomic broadcast.
If no message conflicts, then generic broadcast reduces to reliable broadcast. As
we explain below, generic broadcast favourably replaces view synchrony.

In terms of the implementation of our architecture, we assume here a thrifty
implementation of generic broadcast that uses atomic broadcast [1]. In such a
solution, atomic broadcast is not necessarily called in every run. Atomic broad-
cast is used only when conflicting messages are broadcast (see [1] for an extended
discussion of the notion of thrifty implementation of generic broadcast).

Active and Passive Replication. Since a group communication middleware
is supposed to provide abstractions for the replication of critical components, it is
natural to confront the abstractions provided so far with the needs of replication
techniques. Our preliminary architecture (Fig. 6) provides atomic broadcast,
which allows us to implement active replication [33], also called state machine



approach (in active replication, the client requests are sent to all servers using
atomic broadcast, and every server processes the request).

Atomic broadcast is not needed in passive replication. Instead, view syn-
chrony provides the right abstraction, see for example [20]. However, our new
stack does not provide such an abstraction. We illustrate in the next section
how generic broadcast can be used in place of view synchrony. More generally,
as shown in [32], view synchrony does not need to be considered as a basic ab-
straction. View synchrony follows rather from adequate specifications of dynamic
group communication [32].

Generic Broadcast instead of View Synchrony for Passive Replication.
In passive replication, the client sends its request to only one server, the primary.
Only the primary processes the client request; before sending the response back
to the client, the primary updates the state of the backups. This is done by an
update message, sent from the primary to the backups. The standard solution
consists in relying here on view synchrony.

With generic broadcast,9 the solution consists in considering two types of
messages (Fig. 8): (1) update messages, and (2) primary change messages. The
update messages are used by the primary to update the state of the backups.
The primary change messages are used by the backups to change the new pri-
mary, when the current primary is suspected to have crashed. A primary change
message does not lead to the exclusion of the old primary, which remains in the
view. If the primary has actually crashed, a new view will be installed to exclude
it after a very long timeout (see Monitoring Component, Section 3.3).

The conflict relation between update and primary change messages is as
follows:

update primary change
update no conflict conflict

primary change conflict conflict

This conflict relation ensures that (1) primary change messages are totally or-
dered, (2) update messages are totally ordered with respect to primary change,
and (3) update messages are not ordered with respect to other update messages.
For illustration, consider a replicated server with three replicas s1, s2, s3 (which
define the group s) and the following scenario (Figure 8):

– The server s1 is initially the primary.
– At time t, s1 receives a client request, processes it, and generic-broadcasts

the update message to the group s.

9 In this example we have to assume FIFO generic broadcast, i.e., the FIFO point-to-
point property in addition to the ordering properties of generic broadcast. The same
FIFO property is required in the context of the solution based on view synchrony.



– Approximately at the the same time t, server s2 suspects s1 to have crashed,
and generic-broadcasts the “primary-change(s1)” message to the group s.
Upon delivery of this message, all servers (including s2) modify their view
from [s1; s2; s3] to [s2; s3; s1], which leads the servers to consider s2 to be the
new primary.10

change (s1)
primarys2

client

s1

s3

request processing

update(primary)
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

Fig. 8. Generic broadcast for passive replication

Since these two messages conflict, we have only two possible outcomes:

1. All members of s deliver the update message before the primary-change
message.

2. All members of s deliver the primary-change message before the update
message.

In case 1, the primary change occurs logically after the handling of request
req by s1. In case 2, the primary change occurs logically before the handling
of the request. This means that the processing of the request by s1 must be
ignored. The client will timeout, learn that s2 is the new primary, and reissue
its request to s2.

3.3 Full Version of the New Architecture

The full version of our architecture, which includes all components and all in-
terfaces between components, is given in Figure 9. The additional components
are:

– the reliable channel component,
– the monitoring component.

10 Views are here lists of processes, rather than sets of processes. The primary is the
process at the head of the list. Note that the delivery of the primary-change(s1)
message does not lead to the exclusion of s1.



Atomic Broadcast

Consensus

Reliable Channel

Failure Detection

u−
re

ce
iv

e

Unreliable Transport

de
ci

de

Generic Broadcast

Monitoring

Group Membership

Application

ne
w

_v
ie

w

ad
el

iv
er

rd
el

iv
er

rb
ca

st

ab
ca

st

in
it

_v
ie

w
re

ce
iv

e

se
nd

u−
se

nd

st
ar

t_
st

op
_m

on
it

or

su
sp

ec
t

ab
ca

st
ad

el
iv

er

ru
n

re
m

ov
e

jo
in

jo
in

_r
em

ov
e_

li
st

Fig. 9. New architecture: full version



Note that in Figure 9, the operations on the generic broadcast component are
called abcast (invocation of atomic broadcast) and rbcast (invocation of reliable
broadcast).11 The conflict relation is the following:

rbcast abcast
rbcast no conflict conflict
abcast conflict conflict

In other words, in the context of the passive replication example, rbcast
should be used for the “udpate” message, and abcast for the “new primary”
message. Of course, generic broadcast can be initialized with a different conflict
relation table.

We explain now briefly the role of the reliable channel and monitoring com-
ponents.

Reliable Channel Component. The reliable channel component ensures the
following property: if a correct process p sends message m to some correct process
q, then q eventually receives m. This abstraction can be easily implemented on
top of TCP [15].

Monitoring Component. In our architecture, the decision to exclude a sus-
pected process from the membership is not made by the group membership
component.12 The decision is made by the monitoring component, which then
calls the remove operation of the membership component.

The separation of concerns between the failure detection component and the
monitoring component allows for very flexible policies. On the one hand, the
consensus component of process p could ask the failure detection component
to use a small timeout value (e.g., in the order of seconds) to suspect some
other process q. Typically, this suspicion would not lead to the exclusion of
q. On the other hand, the monitoring component of p might ask the failure
detection component to use a large timeout value (e.g., in the order of minutes)
to suspect q. Here a suspicion would lead the monitoring component to call
the membership component to remove q. However, to make such a decision,
the monitoring component may also interact with the monitoring component of
other processes, and for example decide on the removal of q only after having
learned that a threshold of other processes also suspect q.

Still another exclusion policy can be expressed, which is relevant when process
p sends message m to process q. The reliable channel component at p buffers m,
until ack(m) is received from q (which acknowledges reception of m by q). If q
crashes, m might stay in p’s buffer forever. In this case, the only way to discard
11 See [32] for a precise specification.
12 The operations on the membership component are join – to add a process to the

group, and remove – to remove a process from the group (including itself).



m is to exclude q from the membership (if q is excluded from the membership,
there is no more obligation for q to deliver m, i.e., m can be safely discarded).
This is called output-triggered suspicion in [12]. The monitoring component can
exclude processes based on output-triggered suspicions (which should be based
on long timeout values).

4 Assessment of the New Architecture

We stress now on the advantages of the new architecture compared to the tra-
ditional architectures presented in Section 2.

4.1 Less Complex Stack

With traditional architectures, the ordering problem is solved in two places:
(1) within the group membership component for views, and (2) within the atomic
broadcast component for messages.13 From a conceptual point of view this is
not optimal, and introduces an unnecessary complexity. This redundancy has
disappeared in the new architecture, where the ordering problem is solved only
once (in the atomic broadcast component).

Actually, in the traditional architectures the ordering problem is even solved
in a third place, namely in the view synchrony component, which orders messages
with respect to view changes. In our new architecture, this additional ordering
problem is also solved in the same place, namely in the atomic broadcast compo-
nent. Indeed, when the generic broadcast component detects a message conflict
(e.g., between a reliable broadcast and atomic broadcast view change message),
then it calls the atomic broadcast component. The details can be found in the
thrifty generic broadcast algorithm [1].

Altogether, from the point of view of the ordering problem, the new architec-
ture is less complex than traditional architectures. Smaller complexity usually
leads to easier maintenance.

4.2 More Powerful Stack (Provides More Functionalities)

The new suite of components provides functionalities which are not present in
traditional stacks. The prominent example is generic broadcast, which extends
the ordering provided by view synchrony. Consider for example a replicated
service managing client bank accounts, with deposit and withdrawal operations
(withdrawal does not allow to withdraw more than available). Both classes of op-
erations update the state of the server, but deposit operations are commutative,
i.e., they do not need to be ordered with respect to themselves. This ordering
typically can be solved using generic broadcast. Traditional stacks do not provide
any specific solution: atomic broadcast would have to be used both for deposit
and withdrawal operations. This would induce a non-necessary overhead.

13 In RMP, ordering is performed in two different places only in case of failures.



On a more minor issue, the fact that failure suspicions can be generated in two
distinct places is not without benefit. Depending on the context, the monitoring
component can take the decision to exclude a process from the membership
either (1) based on notification from the failure detector component, or (2) based
on notifications from the reliable channel components, or (3) it could wait for
notifications from both components.

4.3 Higher Responsiveness

Group communication allows the implementation of fault-tolerant replicated ser-
vices. Performance of group communication is usually measured in failure-free
executions. However, performance of group communication in case of failures
often is equally important.

Consider for example the latency of atomic broadcast, i.e., the time elapsed
between the atomic broadcast of m and the first delivery of m. In case of failures,
the timeout used to detect failures represents an important part of this latency.
So, reducing the latency in case of failures requires failure detection timeouts to
be as small as possible. However, reducing failure detection timeouts increases
the probability of false suspicions. Decoupling failure suspicions from process
exclusions plays here an important role.

In traditional architectures, wrong failure suspicions have a high cost: the cost
of excluding the wrongly suspected processes, followed by the cost of the join
operation (with the costly state transfer operation) in order to include again
the process in the membership. This has forced traditional systems to adopt
large failure detection timeout values. In our stack, where failure suspicions
are decoupled from exclusions (i.e., false suspicions lead to a small overhead),
timeouts can be chosen to be smaller. This leads to a gain in efficiency in case
of failures, e.g., to higher responsiveness.

4.4 Minor Efficiency Issue

Traditional systems have another responsiveness problem, namely in the context
of view changes. This problem is not related to failures, since view changes may
be triggered by join requests, and remove requests that are not exclusions. The
traditional solution in the context of membership changes ensures that messages
broadcast before the membership change are delivered before the membership
change takes place. This property is called sending view delivery (see [13]). How-
ever, in order to ensure this property without discarding messages, processes
must stop sending messages while the membership change protocol is running
(see for example the Sync layer of Ensemble, Section 2.2). To prevent this un-
desirable blocking problem, which reduces responsiveness, alternate and more
complex solutions to handle membership changes have been proposed [19, 24].
These solutions implement a weaker property called same view delivery [13]. The
implementation based on generic broadcast does not lead to blocking: the solu-
tion “naturally” implements the same view delivery property without additional
complexity [32].



5 Conclusion

Existing group communication systems (GCS) can be classified according to
two dimensions: (1) the membership model dimension, and (2) the structuring
dimension. The membership model dimension allows the classification of GCS
as either (i) primary partition GCS, or (ii) partionable membership GCS. The
structuring dimension allows the classification of GCS as either (i) monolithic
or (ii) modular. Isis, falls into the category primary partition/monolithic, while
Ensemble falls into the category partitionable/modular.

This paper has introduced a third dimension: the protocol dimension. With
respect to this third dimension, existing GCS can be characterized as GM-VS :14

(1) membership is the basic component in the stack, and (2) view synchrony
is the basic communication abstraction. The paper has presented an alternate
solution that could be called AB-GB15 based: (1) atomic broadcast is the basic
component, (2) no view synchrony as such is provided, and (3) the GCS provides
generic broadcast (instead of view synchrony) as a more powerful abstraction.

We have started the implementation of this new architecture, using two dif-
ferent protocol composition frameworks: Appia [26] and Cactus [35, 22]. The
two implementations share the same protocol code at each module, and differ
only in the way interactions (events) are routed across modules in each of the
frameworks.

References

1. M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Thrifty generic
broadcast. In Proceedings of the 14th International Symposium on Distributed
Computing (DISC’2000), October 2000.

2. Y. Amir, L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal, and P.Ciarfella. The
Totem Single-Ring Ordering and Membership Protocol. ACM Trans. on Computer
Systems, 13(4):311–342, November 1995.

3. O. Babaoglu, R. Davoli, L. Giachini, and M. Baker. Relacs: A communication
infrastructure for constructing reliable applications in large-scale distributed sys-
tems. In Proceedings of the 28th Hawaii Interntional Conference on System Sci-
ences, volume II, pages 612–621, Jan 1995.

4. Bela Ban. JavaGroups 2.0 User’s Guide, Nov 2002.

5. P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recov-
ery in Distributed Database Systems. Addison-Wesley, 1987.

6. K. Birman. The Process Group Approach to Reliable Distributed Computing.
Comm. ACM, 36(12):37–53, December 1993.

7. K. Birman and T. Joseph. Reliable Communication in the Presence of Failures.
ACM Trans. on Computer Systems, 5(1):47–76, February 1987.

8. K. Birman, A. Schiper, and P. Stephenson. Lightweight Causal and Atomic Group
Multicast. ACM Trans. on Computer Systems, 9(3):272–314, August 1991.

14 Group Membership - V iew Synchrony.
15 Atomic Broadcast - Generic Broadcast.



9. T. D. Chandra and S. Toueg. Unreliable Failure Detectors for Asynchronous Sys-
tems. In proc. 10th annual ACM Symposium on Principles of Distributed Comput-
ing, pages 325–340, 1991.

10. T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of ACM, 43(2):225–267, 1996.

11. J. M. Chang and N. Maxemchuck. Reliable Broadcast Protocols. ACM Trans. on
Computer Systems, 2(3):251–273, August 1984.

12. B. Charron-Bost, X. Défago, and A. Schiper. Broadcasting messages in fault-
tolerant distributed systems: the benefit of handling input-triggered and output-
triggered suspicions differently. In Proceedings of the 20th IEEE Symposium on
Reliable Distributed Systems (SRDS), pages 244–249, Osaka, Japan, October 2002.

13. Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communication spec-
ifications: A comprehensive study. ACM Computing Surveys, 33(4):1–43, December
2001.

14. Danny Dolev and Dalia Malki. The Transis approach to high availability cluster
communication. Communications of the ACM, 39(4):64–70, 1996.

15. Richard Ekwall, Péter Urbán, and André Schiper. Robust TCP connections for
fault tolerant computing. In Proc. 9th International Conference on Parallel and
Distributed Systems (ICPADS), pages 501–508, Chung-li, Taiwan, December 2002.

16. Paul D. Ezhilchelvan, Raimundo A. Macedo, and Santosh K. Shrivastava. Newtop:
A fault-tolerant group communication protocol. In International Conference on
Distributed Computing Systems, pages 296–306, 1995.

17. M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Consensus
with One Faulty Process. Journal of ACM, 32:374–382, April 1985.

18. M.J. Fischer. The consensus problem in unreliable distributed systems (A brief
survey. In Proc. Int. Conf. on Foundations of Computations Theory, pages 127–
140, 1983.

19. R. Friedman and R. van Renesse. Strong and Weak Virual Synchrony in Horus.
In 15th IEEE Symp. on Reliable Distributed Systems (SRDS-15), pages 140–149,
Niagara-on-the-Lake, Ontario, Canada, September 1996.

20. R. Guerraoui and A. Schiper. Software-Based Replication for Fault Tolerance.
IEEE Computer, 30(4):68–74, April 1997.

21. Mark Hayden. The Ensemble system. Technical Report TR98-1662, Department
of Computer Science, Cornell University, January 8, 1998.

22. Jun He, Matti A. Hiltunen, Mohan Rajagopalan, and Richard D. Schlichting. Pro-
viding transparent qos customization for CORBA objects, 1997.

23. Matti A. Hiltunen and Richard D. Schlichting. A configurable membership service.
IEEE Transactions on Computers, 47(5):573–586, 1998.

24. J. Sussman I. Keidar and K. Marzullo. Optimistic virtual synchrony. In 19th
IEEE Symp. on Reliable Distributed Systems (SRDS-19), pages 42–51, Nurnberg,
Germany, October 2000.

25. C. Malloth. Conception and Implementation of a Toolkit for Building Fault-
Tolerant Distributed Applications in Large Scale Networks. PhD thesis, Federal
Institute of Technology, Lausanne (EPFL), 1996.

26. Hugo Miranda, Alexandre Pinto, and Lúıs Rodrigues. Appia, a flexible proto-
col kernel supporting multiple coordinated channels. In Proceedings of The 21st
International Conference on Distributed Computing Systems (ICDCS-21), pages
707–710, Phoenix, Arizona, USA, April16–19 2001. IEEE Computer Society.

27. Todd Montgomery. Design, implementation, and verification of the reliable multi-
cast protocol. Master’s thesis, West Virginia University, Dec 1994.



28. F. Pedone and A. Schiper. Handling Message Semantics with Generic Broadcast
Protocols. Distributed Computing. Submitted for publication.

29. F. Pedone and A. Schiper. Generic Broadcast. In 13th. Intl. Symposium on Dis-
tributed Computing (DISC’99). Springer Verlag, LNCS 1693, September 1999. Ex-
tended version to appear in ACM Distributed Computing, 2002.

30. F. Pedone and A. Schiper. Handling Message Semanticas with Generic Broadcast
Protocols. Distributed Computing, 15(2):97–107, april 2002.

31. Robbert Van Renesse, Kenneth P. Birman, Bradford B. Glade, Katie Guo, Mark
Hayden, Takako Hickey, Dalia Malki, Alex Vaysburd, and Werner Vogels. Horus: A
flexible group communications system. Technical Report TR95-1500, Department
of Computer Science, Cornell University, Apr 1996.

32. André Schiper. Dynamic Group Communication. Technical Report, EPFL, March
2003.

33. F.B. Schneider. Replication Management using the State-Machine Approach. In
Sape Mullender, editor, Distributed Systems, pages 169–197. ACM Press, 1993.

34. Brian Whetten, Todd Montgomery, and Simon M. Kaplan. A high performance
totally ordered multicast protocol. In Dagstuhl Seminar on Distributed Systems,
pages 33–57, 1994.

35. Gary T. Wong, Matti A. Hiltunen, and Richard D. Schlichting. A configurable and
extensible transport protocol. In INFOCOM’01, April 2001.


