
Conditional Concurrency Combinators

Paweł T. Wojciechowski
Poznań University of Technology

60-965 Poznań, Poland
Pawel.T.Wojciechowski@cs.put.edu.pl

ABSTRACT
We introduce the calculus of conditional concurrency combi-
nators, allowing the programmer to declare synchronization
code separately from the main code. The calculus com-
prises a set of novel concurrency combinators embedded in
a small language which has both object-oriented and func-
tional features. The concurrency combinators can be seen
as behavioural types which can be used to express synchro-
nization policies for concurrent threads, such as mutual ex-
clusion (or atomicity), barrier synchronization, and policy
revocation. Our language constructs allow conditional and
complex synchronization policies to be declared for classes,
objects, and expressions. In the paper, we present prelim-
inary results of ongoing work. We define the calculus and
explain its semantics informally. We also discuss the advan-
tages of our language constructs by using them to solve a
few example classical synchronization problems.

Keywords: concurrency, synchronization, atomicity, lan-
guage design, lambda calculus.

1. INTRODUCTION
With the proliferation of multicore processors parallel pro-

gramming, once confined to high-end servers and scientific
computing, has become a mainstream concern. Unfortu-
nately, writing parallel programs using traditional synchro-
nization primitives is notoriously difficult, time consuming,
and error-prone. Thus, to bring parallel programming into
the mainstream of software development, we are in an ur-
gent need of better programming models. In this paper,
we propose novel language primitives that can be used for
synchronization of concurrent threads in programs, and for
controlling access of threads to shared data. The key idea
of our design is to separate a program’s functional behavior
and any synchronization constraints imposed on it, and to
use a small set of concurrency combinators to express the
desired synchronization policy.

Multithreaded programming is considerably more difficult
than implementing sequential programs. Traditional con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LaME ’12, June 13, 2012, Beijing, China.

currency constructs, such as monitors with condition vari-
ables, are used by the programmers to express synchroniza-
tion at the very low level of individual accesses to shared
data. This approach compromises both a good understand-
ing of the synchronization and of the application logic since
it is hard to see at first glance what the code does. The
notions of semantic rôles such as producers and consumers,
which are essential for the understanding of a given synchro-
nization policy, tend to dissolve as lines of code accumulate,
just as the logical essence of a sequential program gets lost
when expressed in, say, an assembly language. Moreover,
synchronization constructs are usually entangled with in-
structions of the main program, which means that the cor-
rectness of concurrent behaviour is bound to the correctness
of the entire application; this feature complicates code main-
tenance, composition, and reuse.

In this paper, we introduce a small language (or calculus)
of conditional concurrency combinators. Our language al-
lows the programmers to declare the required synchroniza-
tion policy for concurrent threads using a set of language
constructs. They can be used for expressing mutual ex-
clusion (or atomicity), barrier synchronization, and policy
revocation. The synchronization policy can be declared for
any code, for all objects of a given class, for particular ob-
jects, and for a given expression. If required, the policy can
be locally revoked for some code. Complex synchronization
policies can be defined using a conjunction of combinator ar-
guments, and a conjunction of synchronization constraints.
Moreover, we can specify a condition for each policy decla-
ration using any program variables. Such a policy will be
enforced at runtime if the condition evaluates to true. The
main advantages of our language are:

• The declared synchronization policy can be modified
and customized by the programmer without changing
the main program code. Any changes to program code,
which may require to revise synchronization policy,
are not subjected to an inspection of the whole pro-
gram but only of declared synchronization constraints.
Thus, our language supports code reuse, making pro-
gramming easier and less error-prone.

• The possibility to declare synchronization at different
levels of abstraction (classes, objects, and expressions)
enhances expressiveness of our language when com-
pared to traditional synchronization constructs. For
example, the revoke combinator allows atomicity to be
locally relaxed if required for progress or dirty reads.
For illustration, we present a few example problems
solved using concurrency combinators in Section 5.

In the paper, we report on ongoing work and present our
language design. Firstly, we motivate our design in Section 2
by discussing a race-free program expressed using traditional
synchronization constructs, atomic blocks, and concurrency
combinators. Then, we explain the semantics informally in
Section 3, and present the abstract syntax of our language
in Section 4. In Section 5, we illustrate the expressiveness of
our language using some classical synchronization problems.
Finally, we outline related work in Section 6, and conclude in
Section 7. In the future, we would like to formalize the oper-
ational semantics and a type system, and develop techniques
for reasoning about correctness of programs expressed in the
calculus.

In our previous work [27], we designed a type system to
verify if a declared synchronization policy matches a pro-
gram. For example, if a policy is such that two expressions
must be executed in parallel or in a certain order but none
execution of a program can exhibit such behavior, the type
checking fails. In this paper, we revise and extend the ini-
tial idea from [27], and present a different set of concurrency
combinators. They are more flexible and practical. There is
also no need to verify satisfiability of combinators statically
since they can always be satisfied at runtime. While similar
work exists (see [10, 5, 22, 21, 17] among others) and ex-
ample language constructs have been proposed (see [20, 21,
16, 17]), to our best knowledge, the calculus for declarative
synchronization presented in this paper is novel. We discuss
some related work in Section 6.

2. MOTIVATING EXAMPLE
Below is a class SyncCounter expressed in a Java-like lan-

guage, in which the construct synchronized is used to avoid
data races on variable c accessed by three methods of this
class:

public class SyncCounter {
private int c = 0;
public synchronized void increment() { c++; }
public synchronized void decrement() { c--; }
public synchronized int value() { return c; }
}

The synchronized keyword specifies (declaratively) that the
methods should not run at the same time on any object of
this class. Thus, it is not possible for any concurrent invo-
cations of these methods on the same object to interleave.
This guarantees that changes to the state of the object are
applied consistently. Thus, synchronized methods enable a
simple strategy for preventing memory consistency errors.

In our language of conditional concurrency combinators,
we can express the above program as follows:

class SyncCounter {
c = 0
increment() {c := c+1}
decrement() {c := c-1}
value() {c}
sync SyncCounter.ANY isol [ANY]
}

Annotating a class SyncCounter with the atomicity (or iso-
lation) combinator SyncCounter.ANY isol [ANY] using a
keyword sync has two effects. First, if an object of this
class is visible to more than one thread, all its methods
are executed atomically. This corresponds to annotating all
methods of class SyncCounter with the synchronized key-
word. Similarly to synchronized, we do not require the

implementation to use locks. We only require that the con-
current execution of synchronized methods is serializable.
Second, any concurrent accesses of objects’ instance fields
are synchronized (or race-free). This corresponds to declar-
ing c as a non-volatile variable in a Java-like language. We
explain the syntax in more detail in Section 3.

Our language allows for more expressiveness. For exam-
ple, more subtle synchronization policies can be declared us-
ing various combinator arguments, which include the univer-
sal quantifier ANY and the names of object fields and meth-
ods. Below, we declare synchronized accesses to variable c,
and the self-isolation of methods:

class SyncRelaxed {
c = 0
increment() {c := c+1}
decrement() {c := c-1}
value() {c}

sync SyncRelaxed.c isol [ANY]
∧ SyncRelaxed.increment isol SyncRelaxed.increment
∧ SyncRelaxed.decrement isol SyncRelaxed.decrement

}

The above policy is weaker than before: The concurrent ex-
ecutions of increment on the same object are isolated (seri-
alizable), and also the concurrent executions of decrement

on the same object are isolated. However, the concurrent
execution of increment and decrement can be arbitrarily
interleaved. If both methods would happen to read the same
value of c, no results of their execution will be visible.

We allow conditional concurrency combinators to be used
as typing declarations of arbitrary expressions. For instance,
consider implementing a shared buffer within an array. The
core of a Java-style design could be:

public synchronized int get() {
int result;
while (items == 0)

wait ();
items --;
result = buffer[items];
notifyAll ();
return result;

}

Assuming that get is a method of a class P, we can express
the above program in our language using a conditional con-
currency combinator, as below:

int get() {
sync (items != 0) P.get isol [ANY]
in

items := items - 1;
buffer[items]

}

The code following in will be executed atomically, and its
execution is blocked until condition items != 0 evaluates
to true. Conditions may contain arbitrary Boolean expres-
sions, which can refer to objects and variables. Below we
express the above program using the atomic construct [6],
implementing conditional critical regions (CCR) relying on
transactional memory (TM) [9, 23]:

public int get() {
atomic (items != 0) {

items --;
return buffer[items];
}

}

Although both programs appear similar, there are impor-
tant differences which we explain below. The TM-based
CCR is a synchronization construct designed to replace locks
by transactional memory. The majority of TM implemen-
tations developed for shared memory multiprocessors (see
e.g., [6, 7, 19] among others) are based on optimistic con-
currency control. There are also TM frameworks [8] which
can support a variety of concurrency control algorithms. In
optimistic TMs, atomic transactions run in parallel and any
conflicting transactions are automatically rolled back and
reexecuted. TM avoids typical lock-induced deadlocks (but
see [2] and Section 5). But irrevocable I/O actions may be
forbidden inside atomic transactions. Some TMs also sup-
port a ’retry’ or ’abort’ construct which we do not have.

TM implementations obey either weak or strong atom-
icity [2]. The former semantics is guaranteed with respect
to transactional code only, while the latter semantics re-
quires that every non-transactional access to a variable is
serialized with respect to all concurrent transactions that
share the same variable. The weak atomicity gives some ad-
ditional expressiveness but it is generally unsafe since any
non-transactional code can read uncommitted data, and so
potentially invalidate invariants about code atomicity. On
the other hand, strong atomicity ensures strict safety but
can unnecessarily restrict concurrency.

Concurrency combinators give more flexibility since they
allow both strong and weak semantics. In particular, strong
atomicity can be revoked for code that can read uncom-
mitted state without invalidating any important invariants.
For example, we used ANY to express isolation of get with
respect to any other code (strong atomicity). Alternatively,
we could declare atomicity of get with respect to some code
only, thus weakening atomicity.

We can also relax declared atomicity with respect to some
code. For example, consider a method Q.dirty read which
scans buffer. To increase concurrency, we locally revoke
atomicity of get with respect to dirty read, as below:

sync
P.get ! isol [Q.dirty_read]

in
e

The revocation of atomicity of get is observed only by the
executions of method dirty read invoked by expression e.

Both atomic transactions and concurrency combinators
improve over locks due to the declarative style of expressing
synchronization. To express a synchronization policy, such
that a consumer is blocked until a buffer is nonempty and
a producer is blocked if a buffer is full, a method put also
has to be protected by CCR (or synchronized by a concur-
rency combinator), much like when using locks with condi-
tion variables. However, the lock-based synchronization is
not local—to verify the correctness of get, the code of put

must also be inspected to check if both methods synchro-
nize using exactly the same lock. On the other hand, the
correctness of put and get can be verified independently if
declarative synchronization is used.

In [2], the authors invalidate the intuition that transac-
tions are strictly safer than lock-based critical sections, that
strong atomicity is strictly safer than weak atomicity, and
that transactions are always composable. Despite these sub-
tleties, atomic supports the declarative style, which simpli-
fies programming. However, it does not allow for much more
expressiveness than traditional synchronization constructs,

such as locks (or monitors) with condition variables.
On the other hand, conditional concurrency combinators

are more flexible (albeit for the cost of additional complex-
ity compared to atomic). By using the combinator P.get

isol [ANY], we declared get to be atomic with respect to
any other code that may share data. Then, we were able
to locally revoke this policy for some concurrent code. This
allows to increase concurrency when it is safe to do so. How-
ever, contrary to open-nesting in TM [18], no conflicts can
occur and so our approach is safer to use for non-experts.
Policy relaxation can also be used to avoid deadlock. We
demonstrate this feature in Section 5, where we also demon-
strate the barrier synchronization combinator.

Unfortunately, it is not clear yet how to efficiently imple-
ment concurrency combinators. It is likely that any practical
implementation will be a trade-off between expressiveness
and efficiency. We leave this problem for future work.

3. CONCURRENCY COMBINATORS
An expression sync SP in e declares synchronization pol-

icy SP for evaluation of expression e. When e reduces to
a value, SP ceases. The value is returned as the value of
the whole expression sync SP in e. The policy is defined
using concurrency combinators, denoted a, b, and c. The
simplest form of concurrency combinators is X s [Y], where
s describes synchronization to be enforced on combinator
arguments X and Y . If sync SP in e is defined as part of a
class, declared synchronization SP is valid for all objects of
this class, and e (of type Unit) is executed just after object
creation; the part in e can be omitted.

An expression sync (condition)a in e can be used to de-
fine conditional concurrency combinators: the execution of
e synchronized by concurrency combinator a is blocked until
condition is true. We use some syntactic sugar: sync a in e
means sync (true)a in e, and sync (condition)ameans sync
(condition)a in (). We also allow a conditional of the form
if condition then a else b, which returns a combinator a
if condition is true and b otherwise.

Concurrency combinators are compositional : expressions
with a declared synchronization policy can be nested in other
expressions guided by another synchronization policy. How-
ever, we require an invariant that any inner policy cannot
be invalidated by an outer policy. This requirement can be
enforced by a type system (future work).

The arguments of combinators can be either expressions,
or object fields and methods, or compounds of these things.
The arguments can be specific: e.g., o.n denotes a field or
method n of some object o. They can also be generic: e.g.,
o.ANY denotes any fields/methods of object o, P.n denotes a
field/method n of any object of class P , P.ANY denotes any
fields/methods of any object of class P , and ANY denotes
any code. A concurrency combinator is valid for all possible
instances of its arguments, e.g., the combinator P.n isol

[Q.ANY] declares that a field (or a method) n of any object
of class P will be isolated with respect to any field and any
method of any object of class Q.

In the most general case, ANY can be used to denote any
instance of any expression among those that must be syn-
chronized by a given combinator, where the precise seman-
tics of ANY depends on the used combinator. For instance,
o.n isol [ANY] declares strong atomicity of o.n, i.e., the ex-
ecution of method n (or access of field n) on object o must
be atomic with respect to any other code.

Complex combinator arguments can be created using a
conjunction ⊕. For instance, a combinator X s Y ⊕ Z de-
clares synchronization constraint s between X and a com-
pound of Y and Z; the ⊕ binds stronger than synchroniza-
tion names. This policy does not declare any synchroniza-
tion constraints between Y and Z (which can be executed
by the same or different threads).

Compound combinator arguments can be defined using an
expression let A← X in e, where a new compound name A
binds in e; the name A can be used to define synchronization
policies. ∧ can be used to define a conjunction of synchro-
nization policies to be enforced in the expression e following.
The above idioms allow a complex synchronization policy to
be defined. For instance,

let A ← X ⊕ Y in
sync X isol Y ∧ Z isol A in

e

declares mutual isolation betweenX and Y and also between
Z and a compound of X and Y , to be enforced in e.

Below we define primitive concurrency combinators of the
form X s [Y], where X 6= ANY and expressions referred to by
X and Y are assumed to be executed by separate threads
(otherwise no synchronization is necessary):

The atomicity (or isolation) combinator X isol [Y] de-
clares X to be atomic (or isolated) with respect to Y , i.e.,
the entire set of operations that X contains appears to Y to
take place indivisibly.

The barrier combinator X 1 [Y], where Y 6= ANY, declares
a synchronization barrier for X: the last write in X will be
blocked until another concurrent thread writes in Y for the
last time (Y is not blocked). 1 could also be encoded using
conditional isol (Section 5).

The revoke combinator X ! s [Y] declares a synchroniza-
tion policy that revokes any valid synchronization constraint
s declared for X with respect to Y , where the constraint is
either atomicity (s = isol), or barrier (s =1). The revoca-
tion of s affects Y only, and does not change any synchro-
nization held between X and any other code. Moreover, any
synchronization policy defined for Y (or other code) and any
components of X remains operational.

Let p be either s or ! s. We use syntactic sugar X p Y for
X p [Y] ∧ Y p [X]. We also write X p self for X p X.
Combinators X p Y are symmetric, i.e., X p Y ≡ Y p X,
while X p [Y] (X 6= Y) is not, but X p [X] ≡ X p X.
X isol Y declares atomic (or isolated) execution of X and
Y that is equivalent to a serial execution of X and Y .

The implementation may rely either on the optimistic con-
currency control (e.g. using transactional memory), or the
pessimistic concurrency control, or some combination of the
two. In the former case, conflicting atomic blocks are rolled
back and reexecuted. However, we assume a reasonable im-
plementation of combinators: any concurrent accesses of ob-
jects that are race free are not instrumented, and so can be
executed in parallel. A race occurs if two threads access the
same data and at least one access is a write operation.

4. THE CALCULUS OF COMBINATORS
In this section, we define a class-based object calculus of

conditional concurrency combinators. It builds on the call-
by-value λ-calculus extended with basic object features. The
syntax of our calculus is in Figure 1. Below we describe lan-
guage constructs that were not explained in the last section

about concurrency combinators. We use the following no-
tation: P , Q range over class names; f ranges over object
field names, and m ranges over method names.

Types include the base type Unit of unit expressions,
which abstracts away from concrete ground types for basic
constants (integers, floats, etc.), the type of Boolean values,
and the type t→ t′ of functions and class methods.

A class has declarations of its name (e.g. class P) and
the class body {f = v,M, es}, where f = v is a sequence of
fields (data containers) accessible via names f and instanti-
ated to values v, M is a sequence of object methods, and es
is an optional synchronization expression let A ← X in e
or sync (condition)a in e. Class inheritance and object con-
structor methods can be added to the calculus, in the style
of Featherweight Java (FJ) [11].

A method of the form t m F has declarations of a type
t of the value that it returns, its name m, and its body
F . Objects can refer to their own methods with this.m,
where this is a special variable (we usually omit this for
simplicity). A method’s body is a function abstraction of
the form x : t = {e} (we adopted the C++ or Java notation,
instead of the usual λx : t.e from the λ-calculus).

Access control is not modelled (all fields and methods are
public). To be able to express synchronization on the same
variable among all objects of a given class, the calculus could
be extended with static to mark these variables.

A value is either an empty value () of type Unit, a null ob-
ject (), an object instance, e.g. new P , a Boolean value true

or false, or a function abstraction, e.g. x : t = {e}. Val-
ues are first-class, i.e., they can be passed as arguments to
functions and methods, and returned as results or extruded
outside objects. (Typing could be used to forbid extruding
functions that contain the this references.)

Basic expressions e are mostly standard and include vari-
ables, values, field/method selectors, function/method ap-
plications, let binders, field assignment e := e, and Boolean
expressions (the latter are omitted in Figure 1). We can
write, e.g., x.f := v to overwrite a field f of object x with
a value v, or we can write, e.g., x.m v to call a method m
of object x. We use syntactic sugar e1; e2 (sequential execu-
tion) for let x = e1 in e2 (for some x, where x is fresh).

The calculus allows multithreaded programs by including
an expression fork e, which spawns a new thread for the
evaluation of expression e. This evaluation is performed only
for its effect; the result of e is never used. fork can also be
used to express asynchronous object calls, as in fork A.m v.

5. SYNCHRONIZATION PROBLEMS
To demonstrate expressive power of our language, we use

concurrency combinators to provide solutions to example
classical synchronization problems.

5.1 Shared/Exclusive Locking
Below we explain how to express the synchronization pol-

icy known as shared/exclusive locking (or readers/writers
locking). Most commonly this policy is used when some
shared data are being read and written by various threads.
Multiple threads are allowed to read the data concurrently,
but a thread modifying the data must do so when no other
thread is accessing the data.

With locks, this policy is implemented using four methods:
any thread wanting to read data calls AcquireShared, then
reads the data, then calls ReleaseShared. Similarly any

Variables x, y, z, o ∈ Var

Comb. arg. names A,B ∈ Lab

Class names P,Q ∈ Lab

Field names f

Method names m

Selector names n ∈ Sel ::= f | m
Types t ::= P | Unit | Boolean | t→ t′

Combinator args X,Y ::= e | e.ANY | P.n | P.ANY | ANY | X ⊕ Y | A
Combinators a, b, c ::= X isol [Y] | X 1 [Y] | X ! isol [Y] | X ! 1 [Y] | a ∧ b | if e then a else b

Funct. abstractions F ::= x : t = {e}
Methods M ::= t m F

Classes K ∈ Class ::= class P {f1 = v1, ... , fk = vk, M1, ... ,Mn} |
class P {f1 = v1, ... , fk = vk, M1, ... ,Mn, es}

Values v, w ∈ Val ::= () | new P | true | false | F
Expressions e ∈ Exp ::= x | v | e.n | e e | let x = e in e | e := e | fork e | es
Sync. expressions es ∈ Exps ::= let A← X in e | sync (e)a in e

We work up to alpha-conversion of expressions throughout, with x binding in e in an expression x : t = {e}, and x binding in e in an

expression let x = e in e.

Figure 1: The class-based object calculus of conditional concurrency combinators

thread wanting to modify the data calls AcquireExclusive,
then modifies the data, then calls ReleaseExclusive. The
implementation can range from a simple one to a fairly com-
plicated one, dealing with spurious wake-ups, spurious con-
flicts and starvation (see e.g. [1], for example code).

Consider the RW class defining the read and write meth-
ods to be called by readers and writes. By using concurrency
combinators, we can define the scheduling policy for all ob-
jects of this class, as follows.

class RW {
v = 0
read () = { v }
write (x:Int) = {v := x}

sync RW.write isol RW.read ∧ RW.write isol RW.write
}

The synchronization code takes only one line. Moreover, the
shared/exclusive policy defined for objects of class RW can be
easily refined or overwritten for some objects of class RW in
some expressions. Below we illustrate the idea:

let o = new RW in
sync

o.write isol o.write ∧ o.write ! isol o.read
in e

For evaluation of expression e, we defined a new local
read/write synchronization policy for an object o of class P.
The shared/exclusive policy inherited from class P is over-
written by a simpler policy that defines an exclusive locking
only for writers, and revokes synchronization between read-
ers and writes. This new policy is valid only for object o.

We decided (perhaps controversially) that this policy
change is valid only for the evaluation of expression e (in-
cluding any threads spawned by e). If object o is accessed
outside the scope of e, the original policy declared in RW is
valid. The rationale behind this design choice is to support
static verification. To verify correctness of components in-
dependently of other code which may be unknown, the syn-
chronization policy should be declared for the components
(and so inferred statically), not obtained dynamically.

Note that the above program can also be expressed as:

let o = new RW in
sync

o.write ! isol o.read
in

e

since the synchronization constraint o.write isol o.write

is already inherited by object o from the declaration of class
P. Accesses to any other objects of class P obey the original
shared/exclusive synchronization policy.

5.2 Five Philosophers
Below is an example implementation of the classical five

philosophers problem: We define a class Fork implementing
two methods take and putdown a fork, parameterized by
philosophers who want to acquire the forks:

class Fork {
p = ()
take (x:Phil) = {p:=x}
putdown () = {p}

}

Then, we define a class Phil implementing a method
take forks that tries to acquire two forks at once. This
method should be atomic to avoid deadlock which might
occur if all philosophers would take either all left or all right
forks only. Thus, we extend the class definition with a con-
currency combinator declaring take forks to be executed in
isolation with respect to any concurrent calls of this method:

class Phil {
take_forks (left : Fork, right : Fork) = {

left.take(this); right.take(this);
... /* eating */
left.putdown(); right.putdown()
}
sync Phil.take_forks isol self

}

Note that forks are obsolete in the above program, since the
isolation policy imposed on method take forks already en-
sures mutual exclusive of “eating”. To express the required
synchronization policy using forks, we can define it as below:

class Phil {
take_forks (left : Fork, right : Fork) = {

sync
left.ANY ⊕ right.ANY isol self

in
left.take(this); right.take(this);
... /* eating */
left.putdown(); right.putdown()

}
}

The above means that for each object of class Fork, a com-
pound of its two methods take and putdown in the body
of method take forks will be executed atomically. This is
enforced by the synchronization policy declared locally for
objects left and right.

5.3 Composition and Deadlock
Composition of code containing traditional synchroniza-

tion constructs is a source of potential problems. Consider
the following program, expressed using conditional critical
regions (alternatively, we could use locks):

atomic {
x=1;
}

atomic(y==1) {
...
}

atomic(x==1) {
y=1;

}

Suppose that these atomic blocks are part of some three
methods correspondingly, m1, m2, and m3, which can be ex-
ecuted by concurrent threads, and initially x=y=0. Now, if
methods m1 and m2 are composed into a compound required
to be executed atomically, we obtain the following code:

atomic {
atomic {

x=1;
}
atomic(y==1) {

...
}
}

atomic(x==1) {
y=1;
}

Unfortunately, the code obtained in this way prevents some
interleaving of threads executing atomic blocks. The last
atomic block requires x==1 before it can assign y to 1. On
the other hand, the atomic block that assigns x to 1 is part
of the outermost atomic block that gets stuck waiting for
the condition y==1 to be true. Since the outermost block
does not commit, the assignment of x to 1 cannot be visi-
ble, which leads to deadlock. To get around this, the pro-
grammer might want to locally relax atomicity. This must
be done with care to avoid breaking the invariants on which
the methods rely. Unfortunately, traditional synchroniza-
tion mechanisms lack language support for it.

Below we use our language to declare the above synchro-
nization policy for methods m1, m2, and m3, and then we
relax the original policy to prevent deadlock. For simplicity,
all methods are part of the same class P:

class P {
x = 0
y = 0
m1() = {sync P.m1 isol [ANY] in x=1}
m2() = {sync (y==1) P.m2 isol [ANY] in ...}
m3() = {sync (x==1) P.m3 isol [ANY] in y=1 }

}

let A ← P.m1 ⊕ P.m2 in
sync A isol [ANY] in
sync A ! isol [P.m3] in

e

We used conditional concurrency combinators to declare the
atomic execution of m1, m2, and m3, guarded by conditions
on x and y. Next, we extended this policy and defined a
compound A of methods m1 and m2 to be executed atomi-
cally (this corresponds to the outermost atomic). To avoid
deadlock, we then revoked the atomicity of compound A with
respect to m3. The final policy is valid in expression e.
A remains atomic with respect to any other code. Thus,

all invariants that require the atomicity of A and do not
depend on values of x and y will be preserved. The revoke
combinator only weakens the atomicity of A, the atomicity
defined for m1, m2, and m3 will not be cancelled.

5.4 Nested Atomic Blocks
Consider transaction nesting like below:

atomic {
...
atomic { ... }
...

}

The most reasonable semantics is closed-nesting: The effects
of a nested transaction are not externally visible until the
outermost transaction completes. However, this approach is
not modular. We explain this using an example of synchro-
nization barrier that appeared in [24, 25].

Below we define a method barrier. A thread calling
method barrier is blocked until NUMTHREADS concurrent
threads will call this method (the barrier is then reached):

void barrier() {
atomic { count++; }
atomic(count == NUMTHREADS) {

/* Barrier reached */
}

}

The problem begins when the barrier routine happens to be
used inside a different critical section, possibly protecting
completely distinct data:

atomic {
... barrier(); ...

}

In this case, no thread will ever exit the barrier, since its
effects are prevented from being seen by other threads. The
intended behavior is that the execution of the outer atomic
section will not be atomic, but will instead be interrupted,
allowing other threads to observe its results (i.e. the result
of count++), and itself observing the results of other threads
at the point of evaluation of the inner atomic sections guard
(i.e. count==NUMTHREADS). But this behaviour is contradic-
tory to the closed-nesting semantics. It is hard to see what
would be a reasonable semantics for the atomic sections in
this case.

On the other hand, concurrency combinators allow the
programmer to locally revoke the atomicity policy (with care
to avoid invalidation of important program invariants) which
solves this problem. Below we invoke method barrier inside
an atomic method m:

class P {
m() = {

sync P.m isol [ANY] in
sync P.m ! isol [P.barrier] in

...
barrier()
...

}
}

Since method barrier is also atomic, we locally revoked
the atomicity policy declared for method m for the execu-
tion of barrier (for other code method m appears atomic).
This, however, does not affect any synchronization defined
for method barrier.

5.5 Barrier Synchronization
Barrier synchronization can be encoded using the condi-

tional atomicity combinator (the method barrier in the last
section gives the idea). However, since barrier synchroniza-
tion is a common idiom, our language has a corresponding
combinator. The combinator can be used to declare a syn-
chronization barrier put on any variable or object field in
any expression modifying this variable/field.

For example, we can declare a synchronization barrier in
an expression e, as follows:

sync o.barrier 1 self in
e

where barrier is a field of an object o of some class P (ini-
tialized to 0). Now, any write to barrier on this object
by a thread executing e will be suspended until all concur-
rent threads forked by e (if there are any) either reach this
barrier or complete without writing to barrier.

We can use a conditional to bound the number of threads
in a barrier, as follows. Below is the code executed by con-
current threads in order synchronize on a barrier:

if (o.barrier =< NUMTHREADS) then
o.barrier := o.barrier + 1; e1

else
sync o.barrier ! 1 self in
o.barrier := 0; e2

If the number of writes to the instance field barrier reaches
NUMTHREADS, the barrier is revoked in expression e2.

By extending the calculus with access modifier static,
and replacing counter=0 by static counter=0, the barrier
could be declared and revoked for all objects of class P using
a combinator argument P.barrier.

6. RELATED WORK
There is a vast amount of work on various synchronization

constructs for concurrent languages but relatively little work
was done on declarative synchronization for shared-memory
multithreaded systems. The work on separation of concerns
(see [10, 14, 5, 22, 16, 17] among others), in particular on
separation of concurrency aspects, is the most relevant here.
Below we discuss example work in this area.

For a long time, the object-oriented community has been
pointing out, that the concurrency control code interwoven

with the code of classes can represent a serious obstacle to
class inheritance (see [15]). Milicia and Sassone [16, 17] ad-
dressed the inheritance anomaly problem in Java, and pro-
posed an extension of this language with a linear temporal
logic for expressing synchronization constraints on object
method calls. The language support of declarative synchro-
nization proposed in this paper shares common features with
their approach but allows the programmer to express arbi-
trarily complex synchronization policies.

Frølund and Agha [5] proposed a language for specifying
multi-object coordination in the actor model, expressed in
the form of constraints. However, the constraints can only
be declared for invocations of a group of objects. Ramirez
et al. [20, 21] proposed a constraint logic language for ex-
pressing temporal constraints between marked points in con-
current programs, and demonstrated their approach using
Java extended with the syntax for marking. However, these
languages have limited expressiveness. Conditional concur-
rency combinators can refer to any variables and code, and
allow composite synchronization policies to be expressed.

In aspect-oriented programming (AOP), the programmers
can specify the various concerns (or aspects) of a program
and some description of their relationship, and use the AOP
tools to weave [12] or compose them together into a coher-
ent program. The aspect code is executed before and after
the execution of pointcuts, where a pointcut usually cor-
responds to a method invocation. Hürsch and Lopes [10]
identified various other concerns, including synchronization.
Lopes [14] developed a programming language D, which al-
lowed thread synchronization to be expressed as a separate
concern. The AOP tools have been developed for popular
programming languages (e.g., AspectJ [13]). However, the
AOP approach does not yet provide the expressiveness of a
declarative synchronization language.

In [26], we described rôle-based synchronization (RBS) for
the OCaml language. RBS assumes assigning semantic rôles
(specific for a given synchronization problem) to concurrent
threads, and using abstract types for expressing constraints
between rôles. The RBS differs from the approach described
in this paper. Firstly, the synchronization behaviour is at-
tached to rôles (or threads), not to code fragments, which
limits the range of synchronization policies to those imple-
mented by types specifying the rôles. Secondly, the synchro-
nization policy can be switched on-the-fly (with dynamic
control on the moment of switching).

Flanagan and Qadeer’s [4] developed a type system for
specifying and verifying the atomicity of methods in multi-
threaded Java programs. The type system is a synthesis of
Lipton’s theory of left and right movers (for proving prop-
erties of parallel programs) and type systems for race detec-
tion. In recent years, many transactional memory systems
have also been developed for shared memory multiproces-
sors (see e.g., [6, 7, 8, 19] among others). They provide
language constructs for expressing atomic transactions as
an alternative to locks. Contrary to our isol combinator,
programmers can also rollback transactions.

Recently, type-based synchronization has also been pro-
posed for other models of concurrency: Bocchino Jr. et al.
[3] describe an object-oriented type and effect system for
expressing deterministic parallelism in imperative, object-
oriented programs. They have similar goals to ours (sim-
plifying concurrent programming) but the models are very
different. While our approach assumes a typical model of

shared memory concurrent systems, their proposal is aimed
at deterministic-by-default systems where non-deterministic
behaviour must be explicitly declared.

Harris et al. [7] proposed composable memory transac-
tions in Haskell. The retry construct can be used inside an
atomic transaction to rollback and reexecute the transaction
if some required condition does not hold; the transaction’s
rollback is blocked until another concurrent thread writes to
a shared variable. The orElse construct allows alternative
code to be executed on rollback. The code chunks contain-
ing retry or orElse can be composed using atomic. The
type system based on monads forbids the use of I/O actions
inside atomic. retry and orElse allow transactions to make
progress, e.g., an atomic transaction can throw an exception;
the transaction is then aborted with no effect. The concur-
rency model based on ’retry’ is elegant but it forbids the use
of irrevocable I/O actions, so it may limit the range of poten-
tial applications. In our calculus, we propose the CCR-style
conditional concurrency combinator, and the policy revoca-
tion mechanism. The programmer can use the latter to re-
voke the declared synchronization policy if some condition is
not satisfied. The policy revocation can be valid for selected
code only. Our guess is that this approach is promising de-
spite the additional complexity and care needed to ensure
safety. However, we need more research on this.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have focused on foundations, and pre-

sented a calculus that allows us to study the problems of
declarative synchronization. The key idea of our design was
to provide a set of concurrency combinators that could be
composed into desired synchronization policies. Our calcu-
lus also allows to locally revoke the declared policy. In the
paper, we showed that the local policy revocation allows the
problems of deadlock and nesting of synchronized code to
be solved in an elegant way.

We think that our calculus can be a useful basis for work
on different problems of parallel programming for multicore
systems. For example, it could be an intermediate language
between some low-level implementation mechanisms and a
language used to express high-level abstractions. As future
work, we will define the operational semantics formally. We
also plan to design an abstract machine for the implemen-
tation of concurrency combinators.

Acknowledgments We would like to thank anonymous
reviewers for useful comments that helped us to improve the
paper. This work has been partially supported by the Polish
Ministry of Science and Higher Education within the Euro-
pean Regional Development Fund, Grant No. POIG.01.03.
01-00-008/08.

8. REFERENCES
[1] A. Birrel. An introduction to programming with C#

threads. Technical Report TR-2005-68, Microsoft
Research, May 2005.

[2] C. Blundell, E. Lewis, and M. Martin. Subtleties of
transactional memory atomicity semantics. Computer
Architecture Letters, 5(2):17–21, Nov 2006.

[3] R. L. Bocchino Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons,
H. Sung, and M. Vakilian. A type and effect system
for deterministic parallel Java. In Proc. of OOPSLA

’09: the 24th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, Oct. 2009.

[4] C. Flanagan and S. Qadeer. A type and effect system
for atomicity. In Proc. of PLDI ’03: the ACM
SIGPLAN Conference on Programming Language
Design and Implementation, June 2003.

[5] S. Frølund and G. Agha. A language framework for
multi-object coordination. In Proc. of ECOOP ’93:
the 7th European Conference on Object-Oriented
Programming, volume 627 of LNCS, July 1993.

[6] T. Harris and K. Fraser. Language support for
lightweight transactions. In Proc. of OOPSLA ’03: the
18th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
Oct. 2003.

[7] T. Harris, S. Marlow, S. Peyton Jones, and
M. Herlihy. Composable memory transactions. In
Proc. of PPoPP ’05: the 10th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, June 2005.

[8] M. Herlihy, V. Luchangco, and M. Moir. A flexible
framework for implementing software transactional
memory. In Proc. of OOPSLA ’06: the 21st ACM
SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications,
Oct. 2006.

[9] M. Herlihy and J. E. B. Moss. Transactional memory:
architectural support for lock-free data structures. In
Proc. of ISCA ’93: the 20th International Symposium
on Computer Architecture, May 1993.

[10] W. Hürsch and C. Lopes. Separation of concerns.
Technical Report NU-CCS-95-03, College of Computer
Science, Northeastern University, Feb. 1995.

[11] A. Igarashi, B. Pierce, and P. Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. In
Proc. of OOPSLA ’99: the 14th ACM SIGPLAN
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Nov. 1999.

[12] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of
untyped aspect-oriented programs. In Proc. of
ECOOP ’03: the 17th European Conference on
Object-Oriented Programming, volume 2743 of LNCS.
Springer, July 2003.

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. Getting started with
AspectJ. Communications of the ACM, 44(10):59–65,
Oct. 2001.

[14] C. V. Lopes. D: A Language Framework for
Distributed Programming. PhD thesis, College of
Computer Science, Northeastern University, Dec. 1997
(1998).

[15] S. Matsuoka and A. Yonezawa. Analysis of inheritance
anomaly in object-oriented concurrent programming
languages. In Research Directions in Concurrent
Object-Oriented Programming, pages 107–150. MIT
Press, 1993.

[16] G. Milicia and V. Sassone. Jeeg: A programming
language for concurrent objects synchronization. In
Proc. of ACM Java Grande/ISCOPE Conference,
Nov. 2002.

[17] G. Milicia and V. Sassone. Jeeg: Temporal constraints

for the synchronization of concurrent objects. Tech.
Report RS-03-6, BRICS, Feb. 2003.

[18] Y. Ni, V. Menon, A.-R. Adl-Tabatabai, A. L. Hosking,
R. L. Hudson, J. E. B. Moss, B. Saha, and
T. Shpeisman. Open nesting in software transactional
memory. In Proc. of PPoPP ’07: the 12th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Mar. 2007.

[19] Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach,
S. Berkowits, J. Cownie, R. Geva, S. Kozhukow,
R. Narayanaswamy, J. Olivier, S. Preis, B. Saha,
A. Tal, and X. Tian. Design and implementation of
transactional constructs for C/C++. In Proc. of
OOPSLA ’08: the 23rd ACM SIGPLAN Conference
on Object-Oriented Programming, Systems,
Languages, and Applications, Sept. 2008.

[20] R. Ramirez and A. E. Santosa. Declarative
concurrency in Java. In Proc. of HIPS 2000: the 5th
Workshop on High-Level Parallel Programming Models
and Supportive Environments, May 2000.

[21] R. Ramirez, A. E. Santosa, and R. H. C. Yap.
Concurrent programming made easy. In Proc. of
ICECCS 2000: the 6th IEEE International Conference
on Engineering of Complex Computer Systems, Sept.
2000.

[22] S. Ren and G. A. Agha. RTsynchronizer: Language
support for real-time specifications in distributed
systems. In Proc. of the 2nd ACM SIGPLAN
Workshop on Languages, Compilers, and Tools for
Real-Time Systems, June 1995.

[23] N. Shavit and D. Touitou. Software transactional
memory. In Proc. of PODCS ’95: the 14th ACM
SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, Aug. 1995.

[24] Y. Smaragdakis, A. Kay, R. Behrends, and M. Young.
Transactions with isolation and cooperation. In Proc.
of OOPSLA ’07: the 22nd ACM SIGPLAN
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Oct. 2007.

[25] Y. Smaragdakis, A. Kay, R. Behrends, and M. Young.
General and efficient locking without blocking. In
Proc. of MSPC ’08: ACM SIGPLAN Workshop on
Memory Systems Performance and Correctness, Mar.
2008.

[26] V. Tanasescu and P. T. Wojciechowski. Role-based
declarative synchronization for reconfigurable systems.
In Proc. of PADL ’05: the 7th Symposium on
Practical Aspects of Declarative Languages, volume
3350 of LNCS, pages 52–66. Springer, Jan. 2005.

[27] P. T. Wojciechowski. Concurrency combinators for
declarative synchronization. In Proc. of APLAS ’04:
the 2nd Asian Symposium on Programming Languages
and Systems, volume 3302 of LNCS, pages 163–178.
Springer, Nov. 2004.

