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Abstract

Transactional Memory (TM) is an approach to concurrency control that aims to make writing parallel
programs both effective and simple. The approach has been initially proposed for non-distributed mul-
tiprocessor systems, but is gaining popularity in distributed systems to synchronize tasks at large scales.
Efficiency and scalability are often the key issues in TM research, so performance benchmarks are an impor-
tant part of it. However, while standard TM benchmarks like the STAMP suite and STMBench7 are available
and widely accepted, they do not translate well into distributed systems. Hence, the set of benchmarks
usable with distributed TM systems is very limited, and must be padded with microbenchmarks, whose
simplicity and artificial nature often makes them uninformative or misleading. Therefore, this paper intro-
duces Helenos, a realistic, complex, and comprehensive distributed TM benchmark based on the problem
of the Facebook inbox, an application of the Cassandra distributed store.

Keywords: Transactional memory, distributed systems, performance testing, benchmark, heterogenous
distributed systems

1. Introduction

Transactional Memory (TM) [1] is an approach to concurrency control that aims to make writing parallel
programs both effective and simple. The programmer applies the transaction abstraction to denote sections
of code whose atomicity must be preserved. The TM system is then responsible for enacting the required
guarantees, and doing so efficiently. Efficiency is often the key question in TM research, and various TM
systems employ different concurrency control algorithms that can achieve quite divergent levels of perfor-
mance depending on the workload. Hence, there is a need for empirical evaluation of their performance
and the trade-offs between efficiency and features.

Initially, TMs were evaluated using microbenchmarks, but these test specific features in isolation and
use data structures that are too trivial to draw general conclusions about a TM. Alternatively, there are HPC
benchmark suites, but these are difficult to translate meaningfully into the transactional idiom. That is,
benchmarks from SPEComp [2] or SPLASH-2 [3] are already expertly optimized to minimize synchroniza-
tion, so any incorporated transactions are used rarely and have little effect on overall performance. Hence,
a set of TM-specific benchmarks was needed, whose transactional characteristics and contention for shared
resources were both varied and controllable. Thus, benchmarks and benchmark suites like STMBench7 [4],
LeeTM [5], and STAMP [6] were developed.
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Given that distributed systems face the same synchronization problems as their multiprocessor coun-
terparts, distributed transactions are successfully used wherever requirements for strong consistency meet
wide-area distribution, e.g., in Google’s Percolator [7] and Spanner [8]. Distributed TM adds additional
flexibility on top of distributed transactions and allows to lay the groundwork for well-performing mid-
dleware with concurrency control. However, in such environments, unlike its non-distributed analogue,
distributed TM must also deal with a flood of additional problems like fault tolerance and scalability in
the face of geo-distribution or heterogeneity. Distributed TMs were developed by using transactions on
top of replication [9, 10, 11, 12] or by allowing clients to atomically access shared resources or to atomically
execute remote code [13, 14, 15, 16]. The latter types are of particular interest and the main focus of this
paper, since they incorporate the distributed elements directly into the transaction abstraction and apply to
a wide variety of distributed system models from cluster computing to clouds and web services.

As with non-distributed TMs, the variety of differently-featured distributed TMs require empirical
evaluation to find how their features, the workloads, and the configuration of distributed systems influences
their performance. Therefore, as with non-distributed TMs, they must be evaluated empirically. However,
the existing TM benchmarks are not appropriate for distributed TMs. This is primarily the case since the
structures they use are not easy to distribute. Distributing non-distributed TM benchmarks often leads to
arbitrary sharding of the structure that has no purpose for the application itself (e.g., the clients still must
access the entire domain). Hence distributing STMBench7, LeeTM, or labyrinth or k-means from STAMP
creates applications that do not reflect realistic use cases for distributed systems. On the other hand,
even if a benchmark has valid distributed variants, the conversion is often non-trivial and should not be
expected to be done ad hoc, if it is to be uniformly applied by various research teams. As a result systems
like HyFlow [13], HyFlow2 [14], and Atomic RMI [15, 16] are all evaluated using a few microbenchmarks
supplemented by a distributed version of the vacation benchmark from STAMP, which originally mimics
a distributed database use case. In effect, the results of the evaluation are not always satisfactory because
of the simplicity of the testing procedure. There is also little research showing comparisons between the
performance of distributed TMs.

Hence, in this paper we introduce Helenos, a new complex benchmark dedicated for distributed TMs,
that would help to remedy the lack of tools for evaluating such systems. The benchmark proposed here is
also the first step towards creation of a comprehensive framework for evaluating all facets of distributed
TMs. Such a complete system for an evaluation of distributed TMs would be an indispensable tool and is
much awaited in the community of distributed TM researchers. Although Helenos is only the first part of
such an extensive framework, it is certainly a great move forward and a substantial improvement in the
quality of distributed TM evaluation, as it is created with this particular type of test subject in mind from
the very beginning. The source code of Helenos is available for download [17].

The usefulness of the Helenos benchmark is demonstrated by an example evaluation of four different
distributed concurrency control mechanisms and an analysis of the produced results. The aforementioned
absence of other benchmarks that can fit a similar role makes conducting a straightforward comparison
between Helenos and its competitors impossible. Thus, the only way for us to showcase Helenos is to per-
form an example evaluation presented in this paper and show that the obtained results are understandable,
predictable and explicable, as well as meaningful.

This paper is structured as follows. Section 2 discusses the existing TM benchmarks in more detail and
describes how they can be used for evaluating distributed TMs or what prevents them from being practical
for that aim. Section 3 introduces the Helenos benchmark and provides detail as to its data model, executed
transactions, and defined metrics. Then, in Section 4, we evaluate two distributed TMs and two lock-based
distributed concurrency control mechanisms. Finally, we conclude in Section 5.

2. Related Work

There are a number of TM benchmarks for non-distributed TM systems that are noteworthy. We
concentrate on the ones used more often (STAMP and STMBench7), but we also present some less known
benchmarks further below. We also give our attention to the benchmarks bundled with HyFlow.
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2.1. STAMP
The most prevalent suite of benchmarks in use with non-distributed TM is the STAMP benchmark intro-

duced in [6] and retrofitted to work with more modern TM systems in [18]. It consists of eight applications,
each presenting a different algorithm, as a whole providing a wide range of transaction characteristics.
Out of the eight benchmarks within STAMP, only some can be used as distributed applications. The best
candidate for a distributed benchmark is vacation. It simulates a travel agency application with a database
of hotels, cars, and flights, where a number of clients attempt to book one of each, while offers are sporad-
ically modified. The database is homogeneous in nature and can easily be distributed without incurring
major modifications on the benchmark. Hence, the benchmark is often used to evaluate distributed TMs
[15, 16, 19]. However, the benchmark has a limited range of transaction types, so it does not constitute a
comprehensive evaluation tool.

Other benchmarks which lend themselves to distribution are genome, bayes, ssca2, yada, and intruder.
The applications are based respectively on algorithms for gene sequencing, learning structures of Bayesian
networks, creating efficient graph representations, Delaunay mesh refinement, and detecting intrusions in
a network. The processing in each of these applications follows a pipeline where a complex data structure
is processed into another form in a series of steps by multiple simultaneous threads. Such processing can
be distributed among several network nodes (e.g. in high performance clusters) in order to provide more
system resources (processing power, memory) to the algorithms. The issue with producing such distributed
versions of these algorithms is that it cannot be done ad hoc, and often requires that an expert-prepared
variant exists with at least a reference distributed implementation that could be simply instrumented by
TM researchers. In any case, from the perspective of distributed system architecture genome, bayes, ssca2,
yada, and intruder are all an example of a single use-case, and therefore even though these applications
provide breadth for a concurrent benchmark, they provide little breadth in the distributed context.

The kmeans benchmark represents a K-means clusterer known from data mining. The algorithm executes
in rounds: in every round a thread reads the values of some partition of objects and designates one of them
the new center of the cluster, then all the data objects are reassigned to the closest center. While the data
for the clusterer can be distributed onto multiple nodes, the resulting variant does not present a genuine
distributed use case, because execution in rounds induces too high a level of coordination required among
client threads. We find the remaining labyrinth benchmark to be a similar case. There, transactions operate
on a central data structure representing a 3D maze and attempt to route a path from one point to another
using Lee’s algorithm. Since a path cannot intersect other paths, conflicting writes must be avoided. Such
an application can be employed for circuit-board design. However, even if the maze is distributed, as with
kmeans, the application has no reflection in distributed system use cases.

2.2. STMBench7
The other popular STM benchmark, STMBench7 [4], is based on an object-oriented database benchmark.

In STMBench7 clients perform a wide range of transactions on a shared tree-based database. The tree, called
a module, contains three levels of nodes: a) complex assemblies (CAs), whose children are either other complex
assemblies or base assemblies, b) base assemblies (BAs), which link to several composite parts, or c) composite
parts (CPs), the leafs of the tree whose payload is a document and a graph. Each element contains links to
its parent as well as children, allowing bottom-up or top-down traversal. Transactions in STMBench7 are
either traversals (accessing a path from root to leaf), queries (accessing sets of random nodes), or structure
modifications (adding or removing parts of a tree). They can be either long or short, and either read-only or
update. The benchmark simulates a CAD/CAM/CASE application or a multi-user server.

The benchmark can be used for distributed TMs if the tree structure is spread among several servers
in a network. This can be done in one of three ways: The benchmark can be distributed per CP, so that
each CP is located on the same network node as its children, but it can be located on a different server than
its parent base assembly, which, in turn, can be located somewhere different than its own parent complex
assembly, etc. From the perspective of the client this leads to a system with a flat structure, where the
tree structure from the original application becomes a simple collection of distributed objects with some
objects referring to other ones. From the distributed TM’s point of view the difference between CPs, BAs,
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and CAs largely disappears, since their internal workings will be largely obscured. It is another practical
consequence of this, that the difference between queries and traversals becomes blurred, since the only
distinguishing feature between them now is how the access sets of transactions are selected (from other
object in traversals rather than from an index in queries). In effect, this variant creates a very simple
benchmark, which resembles the bank microbenchmark used with distributed TMs, only with a new
transaction type—structure modifications. In addition, the benchmark can be distributed per CA or BA,
i.e., a BA and its children are located on the same node, but any two BAs or CAs can be located in different
parts of the network. This variant allows groups of objects to be treated as a single structure by the clients,
and, rather than accessing each object individually, transactions can treat a BA with all its children jointly.
However, from the point of view of a distributed TM, this again becomes a flat distributed collection of
remote objects. In addition to the former variant, however, the benchmark is further simplified, because
the number of interdependencies between objects is smaller. This is not offset by the increased complexity
of remote objects, which simply means that processing time of an access increases, but does not have any
other effect on transactional processing. Finally, the benchmark can be distributed by adding new modules
and distributing per module. However, as the authors themselves note in [4], increasing the number of
modules (or distributing by module) isolates transactions from one another, and is therefore not useful for
evaluating TMs. Neither of the three variants provide a satisfactory tool for evaluating distributed TMs,
since distribution leads to simplification and divorcement from the original realistic CAM/CAD/CASE use
case.

2.3. HyFlow Benchmarks
The microbenchmarks and benchmarks included by the authors of HyFlow [13] in their implementation

represent what can be considered to be the best available set of benchmarks for evaluating distributed
TM systems. The suite consists of three microbenchmarks, bank, loan, and distributed hashtable (DHT),
as well as a distributed version of the vacation benchmark from STAMP (described above). DHT is a
micro-benchmark where each server node acts as a shard of a distributed key-value store. Transactions
atomically perform a number of writes or a number of reads on some subset of nodes. The bank benchmark
simulates a straightforward distributed application using the bank metaphor. Each node hosts a number of
bank accounts that can be accessed remotely by clients who perform transfers between accounts or atomic
reads of several accounts. Finally, the loan benchmark presents a more complex application where the
execution of transactional code is also distributed among several nodes. Each server hosts a number of
remote objects that allow write and read operations. Each client transaction atomically executes two reads
or two writes on two objects. When a read or write method is invoked on a remote object, then it also
executes two reads or writes (respectively) on two other remote objects. This recursion continues until it
reaches a specified depth. Hence, the benchmark is characterized by long transactions and high contention,
as well as relatively high network congestion, and is unique in focusing on the control flow transactional
model.

However, while the benchmark suite is able to shed light on the performance of distributed TMs
and includes a distributed TM-specific applications, it lacks complex benchmarks and therefore does not
comprise a comprehensive evaluation tool.

2.4. Other TM Benchmarks
A number of other applications were used to test TM systems apart from the ones mentioned above.

Notably, LeeTM [5] is an independent implementation of Lee’s algorithm, analogous to the one used in
STAMP’s labyrinth. The benchmark has limited use in distributed TM evaluation for the same reasons
as its STAMP counterpart. EigenBench [20] is a comprehensive and highly configurable microbenchmark
for multiprocessor TM evaluation. One of its interesting features is that it allows induction of problematic
executions (e.g. convoying) to observe a TM’s behavior in their presence. EigenBench uses a number of
flat arrays as its data structure, so it is easy to distribute for use with distributed TM. However, EigenBench
is designed to test individual characteristics of a TM, and as such does not generate complex workloads
containing heterogenous transactions. Another interesting application is Atomic Quake [21], a transactional
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implementation of a multithreaded game server, which was used to compare the performance of TM with
locking in a complex realistic use case. The benchmark uses a central server to coordinate remote clients,
whose nature prevents the application from being employed as a truly distributed benchmark. Finally,
in [11] the authors present a custom benchmark application for replicated transactional memory called
Twitter Clone which simulates the operation of a social networking service. The benchmark is not useful
for non-replicated TM, but the overall idea influenced the benchmark presented in this paper.

2.5. Distributed database benchmarks
There is another group of benchmarks that are being used to test distributed TMs, which were derived

from distributed database benchmarks (such as a series of popular TPC benchmarks or others). As shown
in [22], they can be altered to work as an evaluation tool for distributed TMs. Another example is Yahoo
Cloud Serving Benchmark (YCSB) [23] which was proposed to compare performance of NoSQL database
management systems. As they are designed to work in distributed environment and test the performance
of data storage systems, they can be adapted to work with distributed TMs in a relatively straightforward
way. However, databases differ from TMs in a completely fundamental way. They are used in different
business scenarios , play a different role in larger systems, the underlying theory (such as consistency
constraints) is different as well as many characteristics used to describe both of them. Additionally, in
the distributed TM research the problem of the distributed data storage is only a part of a much larger
picture. For instance, it also comprises the execution of arbitrary code within transactions. Distributed
databases on the other hand are only responsible for correctly storing the data in a distributed environment.
Therefore, benchmarks created to evaluate them assess characteristics useful for their descripton, but only
partially useful for benchmarking distributed TMs – excluding such general metrics as total execution time,
parallel transactions count or general throughput. So despite being a fairly good substitute benchmarks
for distributed TMs, they are still clearly inferior to the benchmarks especially designed for this kind of test
subjects.

3. The Helenos Benchmark

We introduce the Helenos benchmark which provides a platform for comprehensively evaluating a
distributed TMs for use in non-uniform large scale distributed systems. Such a benchmark must contain a
wide variety of transaction types and provide a high level of control over the workload that a TM can be
subjected to. This allows thoroughly to test all aspects of a distributed TM, and observe its performance
in diverse environments. However, it is equally important that a benchmark be evaluated in a realistic
setting, i.e., such where there exists a need for both transactional memory and for distributed systems. The
benchmark is implemented in Java, which allows us to interface with some of the existing distributed TM
systems either also implemented in Java [13, 15, 16] or other languages on the Java Virtual Machine [14].
Places where transactions start and end must be manually marked for each of the tested libraries allowing
great flexibility of measurement.

In order to achieve our goal of providing a realistic use case for a distributed TM, we base our benchmark
on Cassandra [24], a distributed storage system for large volumes of structured data that emphasizes
decentralization, scalability, and reliability. Cassandra was created to serve as a storage system for the user-
to-user message inbox in Facebook, where it must be able to withstand large write-heavy throughputs. The
authors specify a data model that is used for Cassandra’s intended application, as well as two typical search
procedures: term search (find a message by keywords) and interaction search (find all messages exchanged
between two users). Cassandra allows to control consistency of its operations by managing which replicas
reply to certain requests. However, the consistency guarantees can be further extended by introducing the
transaction abstraction. Thus, the Cassandra implementation of the inbox is both an inherently distributed
application, as well as one which can benefit from using the TM.

Hence, we use Cassandra’s application as the Facebook inbox as the basis for our benchmark for
distributed TM. We do this by implementing the data model specified in [24] and supplement the original
search procedures with a comprehensive spectrum of pertinent transactions. On the other hand, we remove
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Figure 1: Database architecture.

features that are not directly á propos, including fault tolerance, local persistence, and partial replication.
This makes any evaluation results simpler to predict and analyze, but does so without loosing the nuance
of the original benchmark.

3.1. Data Model
We follow Cassandra’s data model and a logical data model from the inbox application in [24]. First of

all, a Cassandra cluster is composed of several nodes forming a logical topology of a ring. Each server node
being assigned an arbitrary (random) position in the ring. As described in [24], the dataset is distributed
among these nodes using consistent hashing. This means that for each data item a position in the ring is
derived from a hash of it’s key, and then that item is assigned to the first node with a greater position. In
this way the data items are “wound around” the ring (multiple times) and one node becomes responsible
for multiple ranges of keys. We refer to each such range as a bucket and use this level of granularity for
synchronization. That is, two transactions conflict if they try to access the same bucket. We show this model
in Fig. 1.

The original inbox application data model consists of two tables distributed in a Cassandra cluster, one
for term search and one for interaction search. Each table row is a separate data item containing data from
all of the table’s columns in that row (as the object’s fields). The users of the application all have unique
identifiers (UserID), as do all messages in the system (MsgID). Note that the data resolution changes between
the original application and the benchmark, since bucket-level granularity gives us a greater level of control
over contention.

The term search table (TermTable) is used to find messages in a user’s inbox by keywords. The logical
structure of the table consists of one column containing a UserID and one column for each possible keyword.
Each keyword column contains lists of message identifiers (MsgIDs) of messages that include this keyword.
More formally:

TermTable : UserID ÞÑ Keywordˆ pMsgID listq
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This schema assumes that the number of users is orders of magnitude greater than the size of one user’s
inbox. However, this is problematic for the purposes of a benchmark, since it makes contention both lower
and more difficult to adjust. Hence, we decided to modify this table to increase the number of keys by
moving the keyword data from separate columns into the key. In effect, the number of objects per user is
increased and contention is no longer strictly dependent on the number of users but can be controlled by
adjusting the population of keywords. Hence our schema looks as follows:

TermTable : UserIDˆ Keyword ÞÑ MsgID list

Note that, since the benchmark only stores hashes of keys, the hashed keyword information has to be kept
elsewhere in addition to the key column, but we omit this detail for clarity.

The interaction search table (InterTable) stores conversations between users. The table’s key is the
identifier of the user sending the message. The table also contains one column per receiving user which
holds the IDs of the messages exchanged between the two users. Thus:

InterTable : UserID ÞÑ UserIDˆ pMsgID listq

This schema encounters the same problems as TermTable, so we perform a similar modification in order to
increase the key domain: we use an ordered pair indicating the sender and the receiver of the message as
the key, rather than just the sender. Thus, in the benchmark the table is defined as:

InterTable : UserIDˆ UserID ÞÑ MsgID list

We extend the data model by adding additional tables which can be used to introduce new functionality
into the application, and in this way increase the benchmark’s depth—widen the range of transactions
that can be performed. The message table (MessageTable) stores the contents of the messages used in the
system (note that TermTable and InterTable both operate on message identifiers alone). The table’s key
is the identifier of the recipient of the message, and the value is the message, which can be expressed as
five columns: the identifier of the message, the user identifiers of the sender and the recipient, the text of
the message, and the timestamp of when it was sent. (The timestamps are used to sort messages, allowing
transactions to return a group of most recent ones). In effect, we have the following definition:

MessageTable : UserID ÞÑ pMsgIDˆ UserIDˆ UserIDˆ Textˆ Timeq list

Finally, we employ a sequential number table (SeqNoTable) which is used to generate new message
identifiers for a given user’s inbox and to specify a cut off point for deleting old messages. Thus, the
table’s key is the identifier of an owner of an inbox and the data columns include the sequence number
(SequenceNo) of the most recently created message in the inbox and the sequence number of the last deleted
message there. This is defined as:

SeqNoTable : UserID ÞÑ SequenceNoˆ SequenceNo

The actual data to be used by the benchmark during operation is generated randomly while creating a
scenario. The messages exchanged by the users are created using words from a dictionary file. This
implies that the number of words in the dictionary is inversely proportional to the overall contention for
the keyword buckets.

3.2. Tasks and Transactions
Clients in the benchmark can run 8 types of high-level tasks on the distributed database. Each of these

tasks performs some non-transactional operations (primarily locating nodes in the ring from hashes and
performing local processing) and employs one or more atomic transactions. The first two tasks: term search
and interaction search are a part of the original example in [24], and the remainder are domain-appropriate
additions that ensure the configurability of the benchmark. We describe the tasks below and provide detail
about the transactions they use. All transactions are further detailed in Fig. 2. We also provide a summary
in Fig. 3.
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1 atomic getByKeyword(myUserID, myKeywords) {
2 for (myKeyword : myKeywords)
3 for ((userID, keyword) : TermTable)
4 if (userID == myUserId and keyword == myKeyword) {
5 msgIDs = TermTable[(userId, keyword)];
6 result.addAll(msgIDs);
7 }
8 }

10 atomic getMessages(msgIDs) {
11 for (msgID : msgIDs)
12 for (recipientID : MessageTable)
13 if (recipientID == msgID.recipientID) {
14 messages = MessageTable[recipientID];
15 for (msg : messages)
16 if (msgID == msg.msgID)
17 result.add(msg);
18 }
19 }

21 atomic getConversation(senderID, recipientID) {
22 for ((sendID, recpID) : InterTable)
23 if (sendID == senderID and recpID == recipientID)
24 result.addAll(InterTable[(senderID, recipientID));
25 }

27 atomic sendMsg(senderID, recipientID, content, keywords) {
28 SeqNoTable[recipientID] += 1;
29 (currentSeq, deletedSeq) = SeqNoTable[recipientID];
30 msgID = new MsgID(recipientID, currentSeq);
31 timestamp = currentTimestamp();
32 msg = new Message(msgID, senderID, recipientID,
33 content, timestamp);
34 MessageTable[recipientID].add(msg);
35 InterTable[(senderID, recipientID)].add(msgID);
36 InterTable[(recipientID, senderID)].add(msgID);
37 for (keyword : keywords)
38 TermTable[(recipientID, keyword)].add(msgID);
39 }

41 atomic importMessages(messages) {
42 for (msg : messages) {
43 (currentSeq, deletedSeq) = SeqNoTable[msg.senderID];
44 if (msg.sequenceNo < deletedSeq)
45 continue
46 if (MessageTable[msg.recipientID].exists())
47 continue
48 MessageTable[msg.recipientID].add(msg);

49 InterTable[(msg.senderID, msg.recipientID)].add(msgID);
50 InterTable[(msg.recipientID, msg.senderID)].add(msgID);
51 for (keyword : msg.keywords)
52 TermTable[(msg.recipientID, keyword)].add(msg.msgID);
53 }
54 }

56 atomic resetCutoff(userID) {
57 (currentSeq, deletedSeq) = SeqNoTable[userID];
58 result.add((currentSeq, deletedSeq))
59 SeqNoTable[userID] = (currentSeq, currentSeq);
60 }

62 atomic removeMessages(messages) {
63 for (msg : messages) {
64 for (keyword : msg.keywords)
65 TermTable[(msg.userID, keyword)].remove(msg.msgID);
66 InterTable[(msg.senderID, msg.recipientID)].remove(msg.msgID);
67 InterTable[(msg.recipientID, msg.senderID)].remove(msg.msgID);
68 MessageTable[(msg.recipientID)].remove(msg.msgID);
69 }
70 }

72 atomic getAssociation(userID1, userID2) {
73 result[MSG_ID].addAll(InterTable[(userID1, userID2));
74 result[MSG_ID].addAll(InterTable[(userID2, userID1));
75 result[SEQ].add(SeqNoTable[userID1]);
76 result[SEQ].add(SeqNoTable[userID2]);
77 }

79 atomic indexMessages(queries) {
80 for ((userID, keywords) : queries)
81 for (keyword : keywords) {
82 msgIDs = TermTable[(userID, keyword)];
83 for (msgID : msgIDs) {
84 messages = MessageTable[msgID.recipientID];
85 for (msg : messages)
86 if (msgID == msg.msgID)
87 result[MSG].add(msg);
88 }
89 }
90 result[MSG].sortByTimestamp();
91 for (userID : queries)
92 result[SEQ].add(SeqNoTable[userID]);
93 }

Figure 2: Benchmark transactions pseudocode.

Term Search. A user (identified by a specific UserID) specifies a set of keywords. The user’s inbox is then
searched to find all messages which contain one of the keywords by using transaction getByKeyword. This
transaction traverses TermTable and returns all message identifiers whose key both matches the user’s ID
and at least one of the specified keywords. This section must be atomic to return a consistent state of the
inbox. Finally, the contents of the matching messages are retrieved with transaction getMessages, which
retrieves the contents of the messages from MessageTable on the basis of the list of message identifiers.
Again, this is done atomically, in order to return a consistent snapshot of the inbox. Overall, the term search
task reads from two tables: TermTable and MessageTable and we estimate it to be medium in length. The
length of the task will depend on the size of the keyword domain. Depending on the distribution of buckets
among nodes and the length of the query this task may involve from one to all nodes.

Interaction Search. A user specifies aUserIDof another user in order to find all conversations between the two
of them. In order to do this, the task runs transaction getConversation, which gets all message identifiers
from InterTable whose keys fit the user identifiers of both users in question. Then, the contents of the
messages are retrieved using getMessages. Thus, interactions search reads from two tables: InterTable
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and MessageTable and is of small length, depending on the number of users in the system and the number
of messages in both the users’ inboxes. Depending on the distribution of buckets among nodes this task
may involve from one to four nodes.

Send Unicast. A user, the sender, sends a message consisting of a text content to another user, the recipient.
This consists of executing transaction sendMsg which is preceded by extracting the set of keywords from
the contents of the message. The transaction then increments and retrieves the next sequence number
from SeqNoTable and uses it to create a new MsgID. Then, a message object is created and written into
MessageTable. Subsequently, the identifier of the message is inserted into InterTable twice: once to
indicate the message sent out from the senders inbox, and once to indicate the message received in the
inbox of the recipient. Finally, the transaction inserts an entry into TermTable for each keyword extracted
from the contents of the message. All these actions must be performed atomically, in order to prevent
another transaction from interfering and causing an inconsistent state. E.g., if a message were removed by
another transaction from the MessageTable while this task was yet to add all the keywords to TermTable,
the contents of TermTable would point to messages which no longer existed. Overall, this task updates
SeqNoTable and writes to all the other tables. On the whole, this is a short read/write task with a relatively
limited read/write set (R/W set). Depending on the distribution of buckets among nodes and the content of
the message this task may involve from one to all nodes.

Send Multicast. A user sends a single message to several recipients. This task is an extension of the send
unicast task (defined above), where the sendMsg transaction is executed in series, but the entire series is
executed atomically. This task is a medium- to large-sized write task that touches the same tables as the
send unicast task, but it strongly depends on the number of recipients. Similarly to the send unicast task
this one may involve from one to all nodes.

Batch Import. The system is given a set of complete messages to store in the database. This represents a use
case where the database is replicated and two of the replicas synchronize, by one sending a state update
to the other. Another pertinent scenario is one where the database tries to recover from a crash. The task
involves extracting keywords from each message’s contents and executing transaction importMessages.
The transaction filters the set of imported messages against SeqNoTable to remove all those that have a
sequence number lower or equal to the sequence number of the last deleted message. If a message has
a higher sequence number than the current highest sequence number in SeqNoTable, then the database
is also updated. Then, the transaction filters out those messages which are already in MessageTable. All
the remaining messages are added to MessageTable, InterTable, and TermTable by analogy to sendMsg.
The task is a long write task (depending on the number of imported messages) which updates SeqNoTable
and MessageTable, and writes to the two remaining tables. Similarly to the send unicast task this one may
involve from one to all nodes.

Clear Inbox. A user requests that all messages from her inbox be removed. This task sequentially executes
three separate transactions. First, the task runs transaction resetCutoff which retrieves the sequence
numbers of the most recent message in the user’s inbox as well as the sequence number of the most recent
deleted message from SeqNoTable. In addition, the transaction sets the deleted sequence number to the
current sequence number, signifying that all messages in the inbox are now below the cutoff for deletion.
Next, the task uses transaction getMessages to retrieve all the existing messages in the inbox. Afterward,
the task executes transaction removeMessages to remove all the messages from the three tables in the
database that hold message information. Specifically, for each keyword of each message to be removed,
the transaction removes each message’s identifier from TermTable. Then, on the basis of the recipient and
sender of each message, the transaction removes both occurrences of its message identifier from InterTable.
Finally, the transaction searches each message in MessageTable by their recipient and remove them from
there. The task is a medium-sized read/write tasks (although the execution can be shorter depending on
the number of messages in the inbox) and touches all tables. The task is not executed atomically as a whole
because any potential inconsistencies stemming from the lack of atomicity between transactions can be
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Task R/W set Length Used transactions

association level read-only short getAssociation

term search read-only medium getByKeyword, getMessages
interaction search read-only short getConversation, getMessages
indexing read-only long indexMessages

send unicast read/write short sendMsg

send multicast read/write medium/long sendMsg

batch import read/write long importMessages

clear inbox read/write medium resetCutoff, getMessages, removeMessages

Transaction R/W set Length Touched tables

getByKeyword read-only short/medium TermTable

getConversation read-only short InterTable

getAssociation read-only short InterTable

getMessages read-only medium MessageTable

indexMessages read-only long TermTable, SeqNoTable
resetCutoff read/write short SeqNoTable

sendMsg read/write medium TermTable, InterTable, MessageTable, SeqNoTable
importMessages read/write long TermTable, InterTable, MessageTable, SeqNoTable
removeMessages read/write medium TermTable, InterTable, MessageTable

Figure 3: Overview of tasks and transactions in Helenos.

fully and easily resolved by the application. Thus this decomposition makes for a more realistic workload.
Depending on the distribution of buckets among nodes and contents of the removed messages this task
may involve from one to all nodes.

Association Level. Given two users, the system checks what is the level of interaction between them, by
counting the number of exchanged messages and normalizing the number against the number of messages
in the inbox. This involves running transaction getAssociation, which retrieves the identifiers of messages
involved in conversations between both users (from InterTable). It also retrieves the sequence numbers
of the most recent existing and the most recent deleted message in both users’ inboxes (from SeqNoTable).
The results of these executions are then processed non-transactionally by the task. This produces a short
read-only task operating on a single table—InterTable. We add this task to have a finer control over
contention, since the existing short read-only transactions in interaction search and term search are always
followed by a medium-sized read-only transaction. Depending on the distribution of buckets among nodes
this task may involve from one to four nodes.

Indexing. Creates a cache for the most common keyword searches by the most active users. Given a list of
users and a list of keyword search queries per user the task runs transaction indexMessages. For each user
and for every keyword, the transaction searches through TermTable and collects message identifiers of all
pertinent messages. Then, unique message identifiers are extracted from the list. The results are then sorted
and cropped to a prescribed length. Then, the transaction retrieves the body of the three example messages
for each user from MessageTable. Finally, the transaction retrieves sequence number information from
SeqNoTable for each of the investigated users. Indexing is a work-intensive read-only task that contains
a long transaction with a large readset. Depending on the distribution of buckets among nodes and the
contents of the queries this task may involve from one to all nodes.

Fig. 3 contains the most important information about the tasks described above in a concise form, i.e.
their length and whether they are read-only or not, as well as which transaction types are used in each of
them. It also contains similar information about the transaction types used in the tasks, including the tables
that are touched by each of them.

3.3. Metrics
In recognition of the fact that complex systems require comprehensive metrics, the benchmark imple-

mentation includes several metrics useful for monitoring distributed TM performance.
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Classically, we provide the commonly employed throughput metric, defined as the number of transactions
executed per second by the system. We also measure latency (or mean flow time), which is an alternative
performance goal to throughput. A single transaction’s latency (flow time) is the time between a transaction
commences and finally completes. This time includes any time spent re-executing the transaction due to
forced aborts. The system’s metric is the mean of all transactions’ latency. We measure latency on the
system level as well as per transaction. Furthermore, we allow measuring transactions’ abort rate, which
indicates how often transactions are forced to re-execute. These metrics allow to measure to what extent
a TM’s overall performance goals were reached. They also constitute the most basic tool for comparing
different TMs.

In addition, we provide more diagnostic metrics that allow to reason about the workload itself. First of
all, we measure retry rate, the total execution time of all transactions, the total execution time of all retries, sum of
all startup times for all transactions, i.e. the amount of time between a start of a transaction and a start of its
first retry, as well as the the total number of operations on all buckets. Finally, we supplement these measures
with metrics showing the total execution time of the whole benchmark run, the total parallel execution time, i.e.
the time between the start of the first client thread and the end of the last client thread, and transactional
execution ratio, the percentage of time the system spent within transactions.

3.4. Parameters
The benchmark includes a number of parameters that can be used to evaluate a distributed TM in a

range of workload types. The most important aspect controlled by the parameters is contention, which can
be controlled by adjusting the number of shared objects in relation to the number of transactions that use
these objects on average, and to the number of objects used by each transaction. Larger R/W sets or more
clients in relation to the same number of objects means increased contention.

We allow fine control over the domain of shared objects by changing the configuration of the system: the
number of network nodes, and the number of remote objects (buckets) per table. We also allow changing
the domain of words allowed in messages, which increases the number of keys in TermTable. The number
of transactions is controlled by adjusting the number of simultaneous clients in the system, as well as the
number of tasks executed by each of them. Finally, the R/W sets of transactions can be controlled directly
by adjusting the cap on the number of keywords allowed in a query (getByKeyword, indexMessages) and
setting the minimum and maximum number of messages for importMessages.

The benchmarks also allow to control the composition of the workload, by specifying what percentage
of which types of transactions will be executed. This allows to test various features of distributed TMs that
depend on e.g., a high ratio of read operation or read-only transactions. In addition, since moving data
around a network can have a significant cost, we allow adjusting the size of data by setting the maximum
length of the content of messages in MessageTable. Hence caching and storage strategies used by various
distributed TMs can be evaluated in various environments. Lastly, we introduced a configurable delay in
milliseconds that is applied to every operation on every bucket in the system. It can be used to mimic
higher network latency or slower nodes.

4. Evaluation

In this section we present an example of empirical evaluation of several distributed concurrency control
mechanisms using Helenos, including two distributed TMs that represent two different approaches to
synchronization. We must stress, however, that the purpose of the paper is not to provide a comprehensive
evaluation of the TM systems in question (both of which were thoroughly evaluated in [16, 14]). Instead,
the main objective of our evaluation is to demonstrate how particular settings of the benchmark impact
the system’s workload and the performance of disparate concurrency control schemes. In effect, this
shows that Helenos’ parameters have strong influence on its behavior and they can be used to evaluate
different aspects of the test subject. It is also demonstrated that the benchmark can be used to mimic
complex, real-life distributed systems. In addition, we showcase how an evaluation can be used to draw
meaningful conclusions that can help diagnose problems within the evaluated system and provide a
reference benchmark for future research in distributed TM.
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4.1. Frameworks
For the purpose of comparison we use four distributed concurrency control frameworks, including two

distributed TM implementations that represent two main approaches to transactional synchronization, and
two typical distributed locking schemes.

The first distributed TM we evaluate is HyFlow2 [14], a state-of-the-art optimistic data-flow distributed
TM implemented in Scala. The optimistic approach to concurrency control means that when two trans-
actions conflict on a shared object, one of them is aborted and re-executed. The data-flow model means
that whenever a client accesses a shared object, the object is moved to the client’s node for the duration of
the access (but there is always exactly one copy of each object in the system). HyFlow2 implements the
Transaction Forwarding Algorithm (TFA) [25] to handle synchronization (with the guarantee of opacity
[26]) and uses the Akka library for networking. For the evaluation we configure HyFlow2 to use standard
Java serialization.

The second distributed TM is Atomic RMI [16], a pessimistic control-flow distributed TM implemented
in Java, on top of Java RMI. The pessimistic approach means transactions defer operations to avoid conflicts
altogether and thus preventing transactions from aborting. The control flow model means that shared
objects are immobile and execute any code related to accesses on the nodes they are on. Atomic RMI uses
the Supremum Versioning Algorithm (SVA) [27] for concurrency control, which guarantees last-use opacity
[28].

The two locking schemes used for the evaluation are fine grained locks (FGL) and a global lock (GLock).
FGL simulate an expert implementation of a distributed locking scheme using mutual exclusion locks with
one lock per shared object. Locks in FGL are always acquired and released according to two-phase locking
(2PL) and used according to a predefined global locking order to prevent deadlocks. Locks are released in
FGL after the last access to a particular object within a given transaction. Such an implementation of 2PL is
trivially last-use opaque. GLock is a locking scheme where the system contains a single lock on one of the
nodes that must be acquired at the beginning of each transaction and held throughout each transaction’s
duration. This means that only one transaction can be executed at a time in the entire system. Hence, this is
an anchor implementation, roughly equivalent to using a sequential baseline execution in non-distributed
TM evaluations. GLock is trivialy opaque. Both locking schemes used for the evaluation are built on top of
Java RMI and use custom lock implementations.

4.2. Testing Environment
We perform our evaluation using a 16-node cluster connected by a 1Gb network. Each node is equipped

with two quad-core Intel Xeon L3260 processors at 2.83 GHz with 4 GB of RAM each and runs a OpenSUSE
13.1 (kernel 3.11.10, x86 64 architecture). We use the 64-bit Java HotSpot(TM) JVM version 1.8 (build
1.8.0 25-b17).

4.3. Parameter Settings
As the first part of our evaluation we showcase the benchmark’s configurability by displaying the

behavior of the four frameworks within diverse workloads generated by manipulating the parameters
of Helenos. The starting point for the reconfiguration is the standard workload, which has an 80–20%
read-to-write-task ratio (the probabilities of executing a specific task are shown in Fig. 6) typically used
for TM evaluation. The basic configuration of the standard scenario contains 1024 buckets deployed on
16 nodes, with 200 concurrent clients executing 3 consecutive tasks each. The message length is set to 8
words and the operation delay is set to 3ms. We treat these parameters as our reference for comparing TM
implementations. The parameters were selected for the standard benchmark on the basis of experimentation
to simulate a well-behaved distributed TM system. We then show how the manipulation of these reference
values impacts the performance of the various concurrency control mechanisms. We test each of the
parameters independently. If it is not explicitly stated otherwise the values of all parameters are exactly as
in the standard scenario.
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Figure 4: Impact of parameters on throughput.

Buckets. Fig. 4a shows the impact of manipulation of the number of buckets used within the system on
throughput. As the number of buckets is increased, transactions are less likely to access the same bucket,
so the system’s contention decreases. A decrease in contention leads to an increase in throughput for all
evaluated frameworks, but the change has varying impact. The evaluation shows that Atomic RMI and
FGL both capitalize on higher contention in the range between 1 and 500 buckets, which is attributable
to the higher costs of conflict avoidance in those frameworks. This is contrasted with HyFlow2, whose
throughput increases more gradually in the same range, as contention lowers. When the number of buckets
exceeds 1000, any further increase does not result in an improvement in throughput, showing that at this
point contention is negligible and other factors, like operation overhead, dictate performance. Given these
results, we use 1024 buckets as the reference value.

Delay. Fig. 4b shows the transactional throughput of the four frameworks as the length of the operations
executed by transactions changes. Naturally, as the length of each operation increases, the throughput of
the system decreases (even for a sequential execution simulated by GLock). Here, all frameworks behave
similarly, showing a steady decrease in performance, that converges around the 10ms mark. The reference
delay value we select is 3ms, at which point the throughput for FGL, HyFlow2, and Atomic RMI is in the
vicinity of 175 transactions per second, with a slight divergence.

Tasks per client. Fig. 4c shows the change in transactional throughput as the number of consecutive tasks
executed by each client increases. The results clearly show anomalous behavior for low task numbers, that
significantly diverges from the results for higher task values. The divergence stems from the heterogeneity
of tasks in Helenos, which means that for low task values some clients will finish their tasks much faster
than their counterparts that execute longer tasks at the same time. If the number of consecutive tasks is
low, the clients with shorter tasks finish execution early and leave the system with a diminished number
of concurrent clients, thus randomly, and unwarrantably decreasing the system’s contention. When the
number of tasks per client is increased, the results show that performance steadies for all frameworks. On
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the other hand, increasing the task count leads to a prohibitive total execution time for the entire benchmark
(e.g. for FGL, the execution time for each data point is 35.2s for 3 consecutive tasks, 43.1s for 4, and 96.4s
for 10). Hence, we select 3 tasks, the least value where the performance is not anomalous, for the reference
value.

Nodes. Fig. 4d shows the reaction of the four frameworks to changes in network size. As nodes are
introduced into the distributed system, the contention and transactional characteristics remain constant,
which causes little change in the throughput values for all frameworks. The number of nodes, along with the
number of buckets, decide how buckets are distributed in the system. Given a constant number of buckets,
the lower the number of nodes, the greater the number of buckets that are hosted per node. This change
itself does not impact the behavior of the TM frameworks themselves, however. What the fluctuation in
throughput reflects is the impact of the physical properties of the testing environment itself in general, and
the network topology as well as communication costs in particular, which is consistently more pronounced
for certain configurations (i.e. for a system with 3 nodes or 10 nodes). The reference value for node count
selected for the benchmark is 16, since the TM applications are meant to be used in larger rather than
smaller systems, and that is the largest configuration available to us. There is no recommended number of
nodes for the benchmark, however our experience shows that node counts below 4 can sometimes produce
anomalous results. While using the benchmark we have also noted that only a small part of execution time
was used by the benchmark itself and not by the tested algorithm. Additionally, this part was not increasing
with heavier load or more nodes in the system. Therefore, we can speculate that the benchmark would not
be a bottleneck and allow execution on much greater number of nodes than showed in this paper, provided
the tested algorithm can scale up to this point as well.

Message length. Fig. 5 shows the impact of setting a different message length for the contents of messages,
as it affects TermTable. An increasing message length has a visible effect on all those transactions that
access TermTable, since it increases the access sets of transactions that read from that table (because parts
of a message are distributed among a greater number of buckets) and the length of write operations on
that table. Hence, increasing the message length impacts contention, and thus decreases the transactional
throughput of each framework. The impact is most visible for FGL, where an increased message length
causes a significant drop in the presence of high client numbers. The reference value for message length is
set at 8 words.

4.4. Scenarios
Fig. 7 shows a comparison of the four benchmarks using different workloads, wherein clients execute

different sets of tasks. The composition of particular scenarios in use is shown in Fig. 6, but generally,
scenarios marked small consist primarily of short and medium tasks, with a minimal number of long tasks,
whereas scenarios marked large consist primarily of medium and long tasks, with sporadic short tasks also
occurring. Scenarios marked R are read-dominated, consisting predominantly of tasks executing read-only
transactions, W are write-dominated, consisting mostly of tasks executing read/write transactions, and R/W
scenarios are balanced. Comparing the performance of the four frameworks using a varied set of scenarios
allows us to evaluate in a realistic environment and draw conclusions from their performance.

In scenario Small R (Fig. 7a), we see that the increase in contention driven by a growing number of clients
impacts Atomic RMI least, whereas the impact on FGL and HyFlow2 is significantly more visible. HyFlow2
and FGL start off with an advantage in performance, with throughput as high as 250 transactions per second,
until the number of clients reaches 200, when the performance suddenly degrades and stabilizes between 75
and 100 transactions per second for client counts larger than 300. In contrast, Atomic RMI retains a constant
throughput between 100 and 125 transactions per second regardless of scale. We see, however, that the
aforementioned frameworks manage to scale in the 300–1200 client range with reasonable throughput, and
retain an advantage of a sequential execution of at least 25% and up to 150%. The benchmark then shows
that for specific sets of parameters and a particular workload Atomic RMI maintains better scalability,
whereas solutions like FGL and HyFlow2 have a definite edge in lower contention environments.
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(a) Throughput with message length at 4 words.
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(b) Throughput with message length at 8 words.
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(c) Throughput with message length at 12 words.
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(d) Throughput with message length at 16 words.

Figure 5: Impact of message length on throughput.

In scenario Small R/W (Fig. 7b) we see a general decrease in throughput, as a large contingent of
read/write operations are introduced into the benchmark. These shape the transactional characteristic (e.g.
for all frameworks there is a gradual degradation in performance; see Fig. 7b and Fig. 7c). Due to its
operation-type agnostic concurrency control method and an automated method of early release, Atomic
RMI handles the increase in write operations better than FGL and HyFlow until the contention increases
significantly with the introduction at 800 clients, at which point all frameworks tend to converge and
achieve a near-sequential performance (up to 30 transactions per second for Atomic RMI vs 20 transaction
per second for GLock). Even though FGL is also pessimistic and has early release, releasing objects early
incurs additional network messages in that scheme (since a lock has to be signaled), which, in turn, impacts
performance in a highly saturated network such as the one in this scenario. On the other hand, a large
number of write operations and growing contention cause HyFlow2 to achieve a significant abort rate and
a high retry rate (see below), causing the transactions to often waste work and incur additional network
traffic as data-flow objects are supplied to transactions. The results show that pessimistic distributed TM
may be favorable to optimistic distributed TM in a high contention write-dominated distributed system.

The Small W scenario (Fig. 7c) is analogous to Small R/W, showing similar performance characteristics, but
between 50% and 75% decreased. It is plainly visible that for relatively low numbers of clients (around 600)
all frameworks tend to saturate and perform the same as or not much better than a sequential evaluation.

The Large R scenario (Fig. 7d) shows similar behavior to Small R, but longer transactions have an impact
on the performance of all four frameworks, that is especially visible in the 1–400 client range when the
benchmark has relatively low contention. Note that transactional throughput values for all frameworks
are nevertheless much lower than in Small R, since the transactions are much longer on average. At the
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Task type Standard Small R Small R/W Small W

term search 0.25 0.30 0.19 0.02
interaction search 0.20 0.30 0.19 0.02
send unicast 0.06 0.02 0.19 0.44
send multicast 0.04 0.02 0.02 0.02
batch import 0.04 0.02 0.02 0.02
clear inbox 0.06 0.02 0.18 0.44
association level 0.20 0.30 0.19 0.02
indexing 0.15 0.02 0.02 0.02

Description 80-20% read-to-write
ratio, not biased to-
wards either long or
short transactions

Mainly short, read-only
transactions (90% of all
tasks)

Short transactions, both
read-only and writing
(94% of tasks in the sce-
nario)

Write-heavy, but short
transactions (88% com-
position)

Task type Large R Large R/W Large W

term search 0.44 0.19 0.02
interaction search 0.02 0.02 0.02
send unicast 0.02 0.02 0.02
send multicast 0.02 0.19 0.30
batch import 0.02 0.18 0.30
clear inbox 0.02 0.19 0.30
association level 0.02 0.02 0.02
indexing 0.44 0.19 0.02

Description Long and read-only
transactions (88% of all
tasks)

Both read-only and
writing, long-lasting
transactions (94%
composition)

Long and write-heavy
transactions (90% com-
position)

Figure 6: Descriptions of evaluation scenarios and task type probabilities in each of them.

outset, FGL, HyFlow2, and Atomic RMI all achieve comparatively low throughput, which increases as new
clients are added. We attribute this to the initial undersaturation of the system, which means that adding
new clients only increases tasks executed in parallel, without increasing the incidence of conflicts. Hence,
Atomic RMI gradually increases throughput until it reaches 50 transactions per second at the 400 client
mark. On the other hand, the throughput of HyFlow2 and FGL increases more rapidly with the introduction
of new clients and peaks with around 100 clients at 70–75 transactions per second. This, however saturates
both frameworks, and any further added clients cause a decline in performance, until both frameworks
stabilize around the 600 client mark at about 30–40 transactions per second. Hence, as in Small R, there is
range of load for which optimistic TM or a more subtle locking solution is preferable to pessimistic TM, but
the distinction is much more pronounced. On the other hand, once contention reaches a certain threshold,
pessimistic TM gains a stable advantage over the other two types of frameworks. Thus, the choice of
paradigm must be tailored to the application and its workload, and Helenos provides important clues as
to how this adjustment should be made.

When large read-write tasks are introduced in both Large W (Fig. 7f) as well as Large R/W (Fig. 7e),
they throttle the throughput of all frameworks, since they have long execution times, as well as large
R/W sets, and therefore typically cannot be executed in parallel to other tasks. Hence, throughput is
below 8 transactions per second even for low contention situations. Furthermore, all frameworks perform
similarly to GLock with Atomic RMI performing marginally better, FGL performing the same, and HyFlow2
performing notably worse. The performance of optimistic TM below GLock is attributable to the tendency
of the workload to generate a large incidence of conflicts, leading to a high abort rate (52.5% for Large R/W
and 68.8% for Large W) and a hight retry rate (211 retries per commit in Large R/W and 803 for Large W).

4.5. Aborts
We show the abort and retry rates for Fig. 8. The figure shows the results for HyFlow2, whereas the

remaining frameworks had a consistent abort rate of 0 (i.e. no aborts at all) and a retry rate of 1 (i.e. one
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(a) Small R scenario.
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(b) Small R/W scenario.
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(d) Large R scenario.
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(e) Large R/W scenario.
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(f) Large W scenario.

Figure 7: Workload configurations.

attempt to execute a transaction per commit). The results for HyFlow2 show that the abort rate of that
implementation tends to fluctuate around a certain stable level, despite increasing contention with the
number of clients. However, the retry rate shows, that transactions that abort tend to abort more often on
average as the contention increases, leading to a high number of aborts total.

4.6. Mean Flow Time
The benchmark allows to perform other measurements, including mean flow time. We show an example

of that measurement in Fig. 9 for the standard scenario. Mean flow time indicates, that whereas the analysis
of throughputs prefer Atomic RMI over FGL and HyFlow2 in the standard scenario, the average time
between a transaction’s start and commitment is lower in FGL and HyFlow2. Hence, for systems, where
short response time is important (e.g. from the user experience perspective), those systems are preferable.

4.7. Discussion
The evaluation shows that the benchmark provides a wide range of articulation through its parameter

selection and the composition of the workload. However, despite the achieved configurability, the bench-
mark remains rooted in a real-life application and reflects the complexity of the implementation of such a
system, which differenciates it from microbenchmarks. This connection to reality makes the conclusions
drawn on the basis of the results more meaningful and applicable to practical use cases.

For example, given a specific application like a distributed data warehouse for use in analytics and
decision support, where it is characteristic to expect predominantly read-only transactions that aggregate
data from various sources, the evaluation data gathered in the evaluation indicates that in this particular
use-case pessimistic TM would perform better on average than other types of concurrency control schemes
(Fig. 7d). However, we also note that this is the case only if the contention is fairly high. To the contrary, as
the number of clients depreciates, an optimistic TM is the better choice to capitalize on low overhead. This
data is therefore immediatelly useful to an architect involved in the design of such an application.
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# Clients Abort ratio Retry rate
16 11.8% 1.255
80 22.4% 2.900

144 17.7% 4.516
208 26.1% 6.044
272 21.8% 7.744
336 30.2% 8.625
400 23.1% 10.278
464 21.5% 12.903
528 30.9% 13.909
592 29.5% 16.805
656 30.1% 18.522
720 23.3% 20.657
784 22.5% 23.772
848 21.8% 26.812
912 29.0% 27.750
976 25.9% 31.424

1040 26.0% 34.406
1104 21.8% 36.263
1168 26.8% 38.932

Figure 8: HyFlow2 abort ratio and retry rate for
the standard scenario.
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Figure 9: Mean flow time for the standard scenario.

Another example is that of a geographically distributed system of sensors periodically checked by a
network of servers, that use transactions to maintain consistency. Here, a large quantity of small read
operations is expected as in Fig. 7a. The case is similar to the one above, but while optimistic TM is signif-
icantly more performant in low contention, its throughput degrades in high contention, while pessimistic
TM performs in a more stable fashion. This allows the architect to select either distributed TM based on the
variability of the server network.

On the contrary to both previous system types, the data from Fig. 7f shows that when designing
a datastore used primarily for archivization, i.e. one with a large amount of long and write-oriented
transactions, one need not bother with sophisticated synchronization schemes, since the number of conflicts
involved forces near-serial execution in any case.

Alternatively, developers of distributed TM systems can use the data provided by Helenos to analyze
the systems and easily find their strong and weak points, whether inherent or ammeanable. For instance, as
presented above HyFlow2 shows some room for improvement when subjected to write-heavy workloads
with high retry rates. Knowing this, the developers of HyFlow2 can tune their contention management.
They can still use Helenos for this purpose by creating some specialised scenarios for detailed examination
of very specific situations and workloads. This can lead to the identification of the source of such behavior in
the distributed TM design. As for Atomic RMI, its notably worse performance in terms of MFT comparing to
the HyFlow2 can be at least partially attributed to the fact that this system does not distinguish between read
and write operations. Introducing such distinction in the internal workings of this system and maximizing
the parallelization of read operations can lead to closing the MFT performance gap between said TM
systems, as shown in [29].

5. Conclusions

We presented Helenos, a benchmark for performing comprehensive evaluations and comparisons of
distributed TM systems. It provides depth of analysis by its implementation of a complex use case. It also
allows for analyzing many aspects of the memory using a wide variety of parameters and metrics. Finally,
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it is based on a real application, meaning that the results of evaluations are more likely to be reflected in
practice when the TM system is deployed in the real world. As such, it fills the vacuum caused by a lack of
distributed TM benchmarks other than microbenchmarks. It should be especially pointed out that Helenos
is particularly designed and built with evaluation of distributed TMs in mind. This characteristics make it a
much anticipated tool for many distributed TM researchers and can contribute to rising the overall quality
of distributed TM evaluation in their future work.

We showed that Helenos provides important and meaningful data regarding distributed TM system
performance in near real-life situation. Helenos, in contrast to other benchmarks that have been used
for testing distributed TMs, is built particularly for evaluating distributed TMs, and allows to do so with
specific distributed applications in mind. Users of Helenos can use several, different parameters to create
specialized scenarios to suit their specific needs and use them to perform extenvie and complex evaluation.

In our future work we wish to create a full suite of benchmarks for testing distributed TMs, to fulfill the
requirement for broad evaluations, as well as deep ones. That is, in order to be able to evaluate distributed
TMs in different applications from different fields. To that end we plan on distributing some applications
from the STAMP benchmark suite, as well as to find additional applications that are specific to distributed
systems. The work on these is already underway and the early results are promising.
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