
Hybrid Replication: State-Machine-based and
Deferred-Update Replication Schemes Combined

Tadeusz Kobus, Maciej Kokociński, and Paweł T. Wojciechowski
Institute of Computing Science

Poznań University of Technology
60-965 Poznań, Poland

Email: {Tadeusz.Kobus,Maciej.Kokocinski,Pawel.T.Wojciechowski}@cs.put.edu.pl

Abstract—We propose a novel algorithm for hybrid transac-
tional replication (HTR) of highly dependable services. It com-
bines two schemes: a transaction is executed either optimistically
by only one service replica in the deferred update mode (DU),
or deterministically by all replicas in the state machine mode
(SM); the choice is made by an oracle. The DU mode allows for
parallelism and thus takes advantage of multicore hardware. In
contrast to DU, the SM mode guarantees abort-free execution,
so it is suitable for irrevocable operations and transactions
generating high contention. For expressiveness, transactions can
be discarded or retried on demand. We developed HTR-enabled
Paxos STM, an object-based distributed transactional memory
system, and evaluated it using several benchmarks: Bank, Dis-
tributed STMBench7, and Twitter Clone. We tested our system
under various workloads and three oracle types: DU and SM,
which execute all transactions in one mode, and Hybrid—tailored
specifically for each benchmark—which selects a mode for each
transaction dynamically based on various parameters. In all our
tests, the Hybrid oracle is not worse than DU and SM and
outperforms them when the number of replicas grows.

Index Terms—state machine replication; transactional replica-
tion; deferred update; distributed transactional memory

I. INTRODUCTION

Replication is an established method to increase service
accessibility and dependability. It means deployment of a
service on multiple machines and coordination of their actions
so that a consistent state is maintained across all the service
replicas. In case of a (partial) system failure operational
replicas continue to provide the service.

We consider two basic models of service replication: state-
machine replication (SM) and transactional replication (TR).
In the pessimistic SM approach [1], each client request is first
ordered among all service replicas and then processed by each
replica independently. Given that the service is deterministic
and all requests are executed in the same order (sequentially)
on all replicas, all the replicas are in a consistent state.
The total order is achieved using fully distributed, fault-
tolerant protocols for distributed agreement. TR corresponds to
multi-primary passive replication (also known in the database
community as multi-master replication) [2]. In this optimistic
approach, no replica coordination is required prior or during
request execution—each request is handled by only one replica
using a fresh atomic transaction. The transaction can run in
parallel with any other transactions. However, a transaction
that conflicts with a concurrent transaction is forced to abort

(revoke all the changes performed so far) and is restarted.
A conflict occurs when a transaction reads data modified by
an older transaction that runs concurrently. We consider TR
that employs the deferred-update (DU) replication scheme
which relies on the atomic broadcast (abcast) primitive to
propagate transaction updates between replicas, and alleviates
the need for atomic commitment (see [3], [4], [5]). Transaction
commit is based on a certification test. The use of abcast has
advantages compared to atomic commitment, such as deadlock
avoidance (as explained e.g., in [5] among others).

The programming model of TR matches distributed transac-
tional memory (DTM)—an extension of transactional memory
(TM) [6] [7] to distributed systems. Programmers can use
language constructs to declare the request processing code (or
other concurrent code to be executed atomically) as an atomic
transaction. Note that the code executed upon requests in SM
may also be perceived as (serialized) transactions. However,
SM guarantees sequential execution of transactions (requests),
so isolation is provided trivially. Moreover, the SM model is
more general than TR since it can also be used for replication
of services that require linearizability [8]. TR can normally
only guarantee serializability.

In our previous work [9], we analytically and experimentally
compared the SM and TR replication models. Our results show
that, surprisingly, there is no clear winner—each approach has
its advantages and drawbacks, and various factors such as a
workload type, parallelism on multicore CPUs, and network
congestion have significant impact on performance of the SM
and DU replication schemes. This insight has led us to an
idea of combining SM and DU into a hybrid transactional
replication (HTR) model, where both replication schemes may
be used interchangeably on a per-request (or transaction) basis.
In this way, we aim to achieve increased performance and
more flexible semantics. Some requests are better performed
in the state machine (SM) mode, especially if they access many
objects, result in large updates, or cause many conflicts (e.g.,
resizing and rehashing a hashtable). On the other hand, other
requests that can be easily executed concurrently benefit from
execution in the deferred update (DU) mode.

In this paper, we introduce the HTR algorithm in which
the DU and SM modes co-exist and are selected dynamically
per transaction execution instance by an application-specific
oracle. The oracle constantly monitors the system to determine

which mode is optimal for a particular run of a transaction.
Among the data gathered by oracles are the duration of
transaction execution, the latency of atomic broadcast, the size
of messages, network congestion, and the system load.

In addition to efficiency gains, HTR has another advantage.
The fully-optimistic TR scheme imposes some limitations on
transaction semantics. Since a transaction may be forced to
restart in case of a conflict, it must not execute any irrevocable
operations, that is, operations whose effects cannot be rolled
back (e.g., local system calls). The problem of transactions
which contain irrevocable operations has been extensively
studied in the context of non-distributed TM systems (see e.g.,
[10] among others). However, none of the proposed solutions
can be easily adapted to the distributed environment (and
replication). To our best knowledge there was no prior work
on irrevocable operations in the context of DTM. In the HTR
algorithm, transactions with irrevocable operations are simply
executed in the SM mode which ensures abort-free execution
of transactions. Our algorithm satisfies opacity [11].

To evaluate our ideas, we extended Paxos STM [9], our
optimistic distributed transactional memory system, with the
HTR algorithm presented in this paper. Paxos STM replicates
all transactional objects (objects shared by transactions) and
maintains strong consistency of object replicas. Transactions
are executed atomically and in isolation despite system fail-
ures, such as server crashes; the crashed servers can be
recovered. For expressiveness, transactions can be rolled back
or retried on demand. The former operation revokes all the
changes performed so far by a transaction and resumes the
code after the transaction, while the latter rolls back and
reexecutes a transaction. The transaction retry construct can be
used in programming idioms such as suspending the execution
until a given condition is met.

In the paper, we describe the results of the experimental
evaluation of the HTR algorithm using three benchmarks:
Bank, a distributed version of STMBench7, and a real world
application (a custom implementation of the Twitter social
networking service). We examine various oracles and observe
how they influence the system performance and network
congestion under varying workloads. The results indicate that
in all cases an application can benefit from the HTR scheme.

A. Motivations and contributions

The motivations to conduct this research were threefold.
Firstly, as our previous work [9] showed that neither the
state-machine-based nor deferred-update replication scheme
was superior, we were eager to combine these two into a
single algorithm to bring together the best of both worlds.
Secondly, we are not aware of any prior research on apply-
ing transactional semantics to state machine replication for
increased expressiveness. Contrary to pure SM replication, we
achieve greater expressiveness by incorporating the rollback
and retry constructs—they enable revoking changes performed
by a request and restarting the execution of a transaction if
required. Thirdly, to our best knowledge our research is the
first on irrevocable actions in DTM.

The main contributions of the paper are as follows:
• We proposed hybrid transactional replication (HTR) and

designed a novel HTR algorithm which combines state-
machine–based and deferred-update replication schemes
for better performance, scalability, and improved code
expressiveness; the algorithm leverages transactional se-
mantics and provides opacity as a consistency criterion;

• We developed HTR-enabled Paxos STM, a tool for hybrid
transactional replication of services;

• We evaluated throughput and scalability of HTR-enabled
Paxos STM under various workloads using three bench-
marks: Bank, Distributed STMBench7, and Twitter
Clone—a custom implementation of the Twitter social
networking service. We examined extreme cases where
all updating requests were executed either in the SM or
DU modes, and the combination of these two (Hybrid
mode);

• We showed when a replicated service can benefit from
HTR and discussed some techniques on how to configure
the HTR algorithm for higher performance.

B. Paper structure

The paper has the following structure. Firstly, we present
related work in Section II. Next, we discuss the SM and TR
models in Section III. Then, in Section IV, we present the HTR
algorithm and discuss its characteristics. Next, in Section V,
we show the results of HTR-enabled Paxos STM evaluation
by comparing its performance and scalability under diverse
workloads and oracles. Finally, we conclude with Section VI.

II. RELATED WORK

The replicated state machine (SM) was originally proposed
in [12] (using the basic idea of logical clocks to order
events), and later elaborated in [1] (see also [13]). For replica
coordination, various fault-tolerant synchronization algorithms
for totally ordering events were proposed (see e.g., [14], [15]
among others). More recently, the atomic broadcast (abcast)
primitive is often used to reproduce requests at every service
replica and execute them sequentially (see [16] for a survey
of abcast algorithms and [2] for further references).

The transactional replication (TR) uses atomic transactions
which allows requests to be executed in parallel. The use of
transactions in general-purpose programming was researched
in the context of transactional memory (TM) [6], [7]. The
programming model of TR corresponds to distributed TM
(discussed below). The replication model of TR resembles
multi-primary passive replication based on “deferred update”
[2]. In this model, a transaction’s updates can be consistently
propagated to all service replicas using various synchroniza-
tion protocols. However, some protocols suffer from deadlocks
or instability [5]. In this paper, we consider TR that employs
the deferred-update (DU) optimistic replication scheme which
is based on abcast [4]. The advantages of abcast in database or
service replication have been demonstrated by many authors
(see e.g., [3], [4], [5], [17], [2] among others).

2

The concurrency control schemes in transactional systems
can be divided into two main groups: optimistic and pes-
simistic. In the former, all transactions are executed optimisti-
cally, in isolation, and undergo a certification procedure before
being allowed to commit [18]. “Deferred update” protocols fall
into this category. In the pessimistic approach, transactions
request an exclusive access to the shared data, which blocks
concurrent transactions that attempt to access the same data.
Such concurrency control schemes (e.g., two-phase-locking
[19]) are not deadlock-free, so transactions may need to abort.
However, the acquisition of all locks upfront guarantees abort-
free execution (as in [20] or [21] or the SM mode of HTR).

Our HTR algorithm guarantees (one-copy) serializability
[22] and opacity [11]—a stronger criterion which was specif-
ically defined for TM. Many other correctness criteria have
been defined, especially in the context of data replication (see
Chapter 4 in [23] for a survey).

We added the HTR functionality to Paxos STM [9] which
is an object-based DTM system that we developed to compare
the SM and TR replication schemes. It builds on JPaxos [24]—
a highly optimized implementation of the Paxos algorithm
[25]. Several other DTM systems were developed so far (e.g.,
DiSTM [26], Anaconda [27], and Cluster-STM [28]). Notably,
our system was designed from ground up as a fully distributed,
fault-tolerant system in which crashed replicas can recover.
Unlike DiSTM, there is no central coordinator which could
become a bottleneck under high workload. The closest design
to ours is the one represented by D2STM [29] which also
employs full replication and transaction certification based on
abcast. However, unlike us, D2STM does not allow replicas to
be recovered after crash nor transactions to contain irrevocable
operations (the latter feature will be discussed below).

Various protocol switching schemes were recently proposed
in the context of DTM. For example, PolyCert [30] features
three certification protocols that differ in the way the read-
sets of updating transactions are handled. Online and offline
machine learning techniques are applied for deciding which
certification protocol to use. Contrary to PolyCert, our ap-
proach aims at the ability to execute transactions using differ-
ent replication schemes. Additionally, our system considers a
much wider set of parameters and can be tuned by the pro-
grammer for the application-specific characteristics. StarTM
[31] uses static code analysis to select between the execution
satisfying snapshot isolation (SI) and one-copy serializability
(1SR). Serializability is ensured at all times, since the system
executes transactions in the SI mode only when it is guaranteed
that no write-skew anomalies can occur.

Approaches that combine locks and transactions are also rel-
evant. In [32], Java monitors can dynamically switch between
the lock-based and TM-based implementations. Similarly,
adaptive locks [21] enable critical sections that are protected
either by mutexes or executed as transactions. Like in HTR, the
system state is monitored to choose the best execution mode.
However, the above two approaches use a fixed policy. In our
approach, the HTR oracles implement a switching policy that
is application-specific, and gather statistics pertaining to the

distributed environment.
To our best knowledge, HTR-enabled Paxos STM is the first

distributed TM which enables transactions with irrevocable
operations. This is possible by executing such transactions
in the pessimistic SM mode (assuming that their code is
deterministic). Notably, the system performance is not com-
promised since a single transaction in the SM mode can run
in parallel with all transactions executed in the DU mode. The
problem of irrevocable operations has been researched in the
context of non-distributed TM (see e.g., [33], [34], [35], [10]
among other). These operations are typically either forbidden,
postponed until commit, or switched into an ad hoc pessimistic
mode [21]. However, the problem remained untackled in the
context of distributed TM where distribution (or replication),
partial failure, and communication delays must also be con-
sidered. Some solutions for starved transactions are relevant
here, e.g., based on a global lock [18] or leases [36] but the
former is not optimal and the latter does not guarantee abort-
free execution and requires a transaction to be first executed
fully optimistically at least once.

In database systems, there exists work on allowing nonde-
terministic operations, so also irrevocable operations. In [20],
a centralized preprocessor is used to split a transaction into
a sequence of subtransactions that are guaranteed to commit.
The next subtransaction to be executed is established after the
previous one commits. This, however, requires one broadcast
per subtransaction which significantly increases latency.

III. THE CONTEXT OF HTR

In this section, we define the context for the HTR algorithm.
We begin with the description of the system model. Then, we
present the SM and TR replication schemes. Finally, we briefly
discuss strengths and weaknesses of both approaches.

A. System model

The model consists of N service processes (replicas) run-
ning on independent machines (nodes) connected via a net-
work. The processes communicate only by means of messages.
Requests are concurrently executed on all replicas. A request
(also called a transaction) consists of a unique identifier id,
code to be executed or methods to be invoked, and data nec-
essary to execute the request. Some requests may be marked as
read-only (RO), i.e., they do not alter the system’s state. The
read-write (RW) requests usually modify the system’s state
but are not obligated to. We assume a crash-recovery failure
model, where crash of at most dN2 e − 1 nodes is tolerated.
After recovery a failed process can rejoin the system at any
time. The discussed algorithms are memory model agnostic,
i.e., they can be used in either the object– or memory-word–
based environments. To match our implementation, we assume
an object-oriented memory model.

B. State machine replication

In the replicated state machine (SM) [1], [37] all requests are
executed sequentially by all replicas. A pseudocode is given
in Algorithm 1. We assume that each request is handled by a

3

Algorithm 1 State Machine Replication
Thread T on request t (executed on one replica)

1: upon REQUEST
2: package p← (t.id, t.code, t.data)
3: abcast p
4: wait for outcome
5: stop executing request t and return

The main thread of SM (executed on all replicas)

6: upon ADELIVER(package p)
7: execute p.code with p.data
8: if thread T executes on this node then
9: outcome← success

10: pass outcome to thread T

designated thread. Upon a new request, it is distributed to all
replicas using the total order broadcast primitive (line 3) and
handled by each replica sequentially with other requests (lines
6-10). Since we demand the handler code to be deterministic,
the state of all replicas is consistent given the same initial
state. After the request’s code is processed (line 7), the replica
which broadcast this request returns the result of the request’s
execution (line 5).

C. Transactional replication

Transactional replication (TR) leverages the semantics of
atomic transactions to enable easy development of replicated
services. A shared state that must be consistent among replicas
should be accessed only by transactions (declared by the pro-
grammer). Any updates of this state performed by transactions
are consistently propagated to all replicas. We allow many
concurrent transactions on every replica. Concurrent execution
of transactions in a replicated system is one-copy-serializable
[22] (some stronger properties can also be supported, e.g.,
Paxos STM ensures opacity [11]). Programmers can use the
commit, rollback and retry constructs to respectively, commit,
rollback, or rollback and retry uncommitted transactions.

We consider TR based on deferred update (DU) relying
on abcast which avoids blocking and limits the number of
costly network communication steps [4]. The pseudocode for
the DU-based TR scheme is given in Algorithm 2. Each replica
maintains logical clock LC (line 1), a variable representing the
system’s current logical time. It is incremented every time after
a transaction is committed successfully, i.e., its updates are
applied (line 47). It means that each successfully committed
transaction has a unique value of LC that represents the end
moment in time of its whole execution; for a transaction t this
value is stored in the end variable (line 44). Additionally, each
transaction stores in the start variable the start moment of its
execution (line 25). The start and end values of a transaction
allow the system to reason about the precedence order between
transactions. We say that transaction t1 precedes transaction
t2 (denoted t1 → t2) iff t1.end < t2.start.

The TR system traces the accesses to objects independently
for each transaction. On every read or write, an object’s ID
is added to respectively, the readset (line 16) or writeset
(line 22) of the transaction that accessed the object. Moreover,

object modifications are recorded in the transaction’s updates
set (line 23). All the above sets are distributed to other replicas
on transaction commit.

To manage control flow of transactions, the TR system can
execute the following operations:
• rollback (line 36) stops the transaction’s execution and

revokes all the changes it performed so far;
• retry (line 38) forces a transaction to rollback and restart;
• commit (line 28) starts the certification phase for a

transaction which either finishes the transaction (with all
object modifications applied) or retries the transaction.

To commit a transaction t, t’s readsets, writesets and updates
are broadcast to all replicas with a global order (lines 29-
30). Then, the replicas independently certify the received sets
against already-committed transactions which do not precede
t (lines 9-14). If a conflict is detected, i.e., t reads data
modified by a concurrent but already-committed transaction
t′, and neither t→ t′ nor t′ → t holds, then t is aborted and
restarted (line 33). Otherwise, the system applies the updates
performed by transaction t and commits it (lines 44-47). The
consistency of replicated data is preserved since the process
of certifying transactions and updating the system’s state is
atomic, deterministic, and performed in the same order on
each replica by relying on the total order broadcast.

Note that the operations on LC (lines 25, 44, 47), log (lines
10 and 45) and the accesses to transactional objects (lines
7 and 46) have to be synchronized. For simplicity, in the
pseudocode a lock statement is used. For better performance,
the implementation can rely on fine-grained locks or it can
avoid locks altogether. In Paxos STM, we implemented a lock-
free version of this algorithm that builds on multiversioning
(explained in Section III-D).

The certification test (lines 9-14) detects if a transaction
does not conflict with other (older) transactions. In the pseu-
docode, this test is executed on every read. However, our im-
plementation uses an optimized algorithm in which objects are
associated with version numbers (value of LC at the time they
were last modified) that help to avoid repeating the certification
test for concurrent, already-committed transactions (details are
omitted due to lack of space).

D. SM vs TR comparison

The SM scheme in many cases proves to be highly efficient
although no parallelism in the request execution is allowed.
In the optimized version of SM, which we modeled in [9],
read-only requests can be executed in parallel but it is not
straightforward to implement this optimization in Paxos [38].
Since the service code is inherently single-threaded the SM
scheme is also relatively easy to implement since there is
no inter-thread synchronization. All the complexity is hidden
behind atomic broadcast (see [16] for a survey of algorithms).

Unfortunately, the replicated state machine model has nu-
merous drawbacks. In order to preserve consistency, a repli-
cated service has to be deterministic. Moreover, since requests
are executed sequentially on each node, the system does not
scale with the increasing number of nodes, nor can it take

4

Algorithm 2 Transactional Replication using Deferred Update
1: integer LC ← 0
2: set log ← ∅

3: function GETOBJECT(transaction t, objectId oid)
4: if (oid, v) ∈ t.updates then
5: value← v
6: else
7: lock { value← retrieve object oid }
8: return value

9: function CERTIFY(integer start, set of ids readset)
10: lock { L← {t ∈ log | t.end > start} }
11: for all t ∈ L do
12: if readset ∩ t.writeset 6= ∅ then
13: return failure

14: return success

15: function READ(transaction t, objectId oid)
16: t.readset← t.readset ∪ {oid}
17: if CERTIFY(t.start, t.readset) = failure then
18: raise RETRY
19: else
20: return GETOBJECT(t, oid)

21: procedure WRITE(transaction t, objectId oid, object v)
22: t.writeset← t.writeset ∪ {oid}
23: t.updates← t.updates ∪ {(oid, v)}

Thread T on request t (executed on one replica)

24: upon TRANSACTION
25: lock { t.start← LC }
26: execute t
27: raise COMMIT

28: upon COMMIT
29: package p← (t.id, t.start, t.readset, t.writeset, t.updates)
30: abcast p
31: wait for outcome
32: if outcome = failure then
33: raise RETRY
34: else // outcome = success
35: stop executing transaction t and return

36: upon ROLLBACK
37: stop executing transaction t and return

38: upon RETRY
39: t.readset← ∅, t.writeset← ∅, t.updates← ∅
40: raise TRANSACTION

The main thread of TR (executed on all replicas)

41: upon ADELIVER(package p)
42: outcome← CERTIFY(p.start, p.readset)
43: if outcome = success then
44: lock { p.end← LC
45: log ← log ∪ {p}
46: apply p.updates
47: LC ← LC + 1 }
48: if thread T executes on this node then
49: pass outcome to thread T

advantage of multicore architectures to parallelize requests’
execution. Therefore this scheme is very susceptible to CPU
intensive workloads, as we showed in [9]. This can be partially
alleviated by executing read-only requests on one node only
(the optimized SM replication scheme in [9]).

Contrary to SM, in TR parallelism is supported by de-
fault since transactions are executed (on the same node or
on different nodes) concurrently and in isolation. However,
workloads generating high contention may force transactions
to be aborted numerous times before committing, thus limit-
ing the performance. Aborting transactions in the execution
state as soon as they are known to be in conflict with a
transaction that had just recently committed may help to
some degree, i.e., after a transaction t had been successfully
certified, every concurrent transaction t′ is aborted when
t.writeset ∩ t′.readset 6= ∅ (see Algorithm 2, lines 17-18).

In TR, no synchronization (no communication step) is
required among replicas in case of RO transactions since they
do not change the system’s state. Additionally, they can be
provided with abort-free execution guarantee by introducing
multiversioning scheme [22]. Multiversioning allows multiple
versions of all transactional objects to be stored while being
transparent to the programmer, i.e., at any moment only one
version of any transactional object is accessible by a transac-
tion. Paxos STM implements both early conflict detection as
well as the multiversioning scheme.

Usually, there is a significant difference in the size of net-
work messages communicated between replicas in TR and SM.
In TR, abcast messages contain transaction readsets, writesets
and updates. The size of these messages can be significant even
for a medium sized transaction. Large messages cause strain
on the abcast mechanism and increase certification overhead.
On the other hand, the propagated requests in SM consist only
of an identifier of a method to be executed and data required
for its execution; these messages are often as small as 100B.

TR supports concurrency on multicore architectures. Con-
current programming is error-prone but atomic transactions
greatly help to write correct programs. Firstly, operations
defined within a transaction appear as a single logical oper-
ation whose results are seen entirely or not at all. Secondly,
concurrent execution of transactions is deadlock-free which
guarantees progress. Moreover, the commit, rollback and retry
constructs enhance expressiveness. However, irrevocable op-
erations—operations that cause side effects which cannot be
rolled back (such as system calls) are not permitted by fully
optimistic TR schemes where a transaction may be forced to
abort and restart due to conflicts with other transactions.

IV. THE HTR ALGORITHM

In this section, we define the hybrid transactional replication
(HTR) algorithm which extends transactional replication based
on deferred update (DU) with the state-machine-based (SM)
replication scheme. First, we discuss the transaction oracle—
the key new component of our algorithm. Next, we explain
the HTR algorithm by presenting its pseudocode, and also
sketch the proof of correctness. Finally, we briefly discuss the
strengths of HTR and tuning the HTR oracle.

A. Transaction oracle

Our aim was to seamlessly merge the SM and DU replica-
tion schemes, so that requests (transactions) can be executed in

5

either scheme depending on the desired performance consider-
ations and execution guarantees (e.g., support for irrevocable
operations). Transaction oracle (or oracle, in short) is a
mechanism that is able to assess the best execution mode for a
given transaction’s run, and dynamically switch between SM
and DU. It may rely on hints declared by the programmer as
well as on dynamically-collected statistics, i.e., data regarding
various aspects of system’s performance, such as:
• duration of various phases of transaction processing e.g.,

the execution time of a transaction code, abcast latency,
and the duration of transaction certification,

• the transaction abort rate, i.e., the ratio of the transaction’s
aborted runs to all execution attempts,

• sizes of abcast messages, readsets and writesets,
• system load,
• performance of garbage collector,
• saturation of the network.

Read-only transactions are always executed locally since they
do not alter the system’s state and thus do not require dis-
tributed certification. Hence decisions made by the oracle only
regard updating transactions.

Since the hardware and the workload can vary between the
replicas the system can use different oracles at different nodes
and independently change them at runtime when desired. For
brevity, in the description of the algorithm we abstract away
the details of the oracle implementation and treat it as a black
box with only two functions: feed(data) (used to update
the oracle with data collected over the last transaction’s run,
regardless of the outcome) and query (used to decide in
which mode a new transaction is to be executed). The problem
of constructing an oracle that matches the characteristics of
the application is discussed in Section IV-D. The oracles
used in the experimental evaluation of the HTR algorithm are
described in Section V-A.

B. The algorithm

Below we describe the HTR algorithm (see Algorithm 3).
Our algorithm is essentially TR (Algorithm 2), extended with
the SM replication scheme and the UPDATEORACLESTATIS-
TICS procedure (line 56) that feeds the oracle with the statistics
collected in a particular run of a transaction before the
transaction is committed, rolled back, or retried.

When the DU mode is chosen (lines 26-29), a transaction,
called DU transaction, is executed under the deferred-update
replication scheme. When the SM mode is chosen, a trans-
action, called SM transaction, is broadcast (lines 31-32), and
executed on all replicas by their main thread (lines 67-72)
which is the thread that also performs the certification test for
DU transactions and applies the updates. It means that at most
one SM transaction can be executed by a replica at a time.
However, the algorithm does not prevent concurrent execution
of a SM transaction and multiple DU transactions, but the
certification test and state update operations may be delayed
till the SM transaction is completed. Since the SM transaction
is executed by all replicas, its code has to be deterministic.
Note that for any SM transaction, the certify function (lines

9-14) always returns success. This is correct since no other
transaction can commit at the same time.

Lemma 1: The HTR algorithm ensures opacity.
Proof (sketch): Following the authors in [11], we need to

show that for every history H produced by HTR there exists
a sequential history S, such that (1) S is equivalent to some
history in the set Complete(H), and S preserves the real-time
order of H , and (2) every transaction t ∈ S is legal in S.

Informally, we have to prove that for every complete history
H produced by HTR, H is strictly serializable and every
transaction (either in executing, committing or committed
state) always observes a consistent state of the system, i.e.,
every read operation on each object x returns the value stored
by the most recent preceding write operation on the object x
of a locally committed transaction.

The correctness proof is constructed on a number of im-
portant observations: The first one is that (a) the same abcast
mechanism is used to broadcast with the total order a package
containing information about the execution of a DU transaction
(the DUpackage, lines 48-49) as well as a transaction to
be executed in the SM mode (the SMpackage, lines 31-32).
Additionally, each replica has one designated thread (the main
HTR thread in Algorithm 3), which sequentially executes all
DU- and SM-packages abcast by any replica. For that reason
(b) execution of any SM transaction tSM cannot be interleaved
with processing of any other package. This means that no two
SM transactions can be executed at the same time on one node.
Moreover, (c) updates to the system’s state are performed
atomically in the DU/SM package arrival order without any
reordering possible (lines 61-64 for DU and 74-77 for SM).
One can also notice that (d) all transactions execute updating
operations on copies of objects, i.e., they do not modify the
system’s state unless they are marked as committed (line 23).
Finally, (e) an executing DU transaction that is known to
conflict with other just committed transaction, is aborted as
soon as it performs a read operation on a shared object (it
never observes inconsistent state) (lines 17-18).

The proof is based on the above observations and uses
the formalism of [39]. Since SM transactions have to be
deterministic, the system’s state is consistent across all the
replicas and opacity is preserved.

The transactions in the executing state that are known
to conflict with the just-committed transactions have to be
aborted. This is necessary not only to provide opacity but also
to save on unnecessary computation. Multiversioning brings
the same benefits to HTR as in the case of TR—the RO
transactions are guaranteed abort-free execution.

C. The algorithm’s strengths

Below we present the advantages of the HTR algorithm
compared to the exclusive use of the schemes discussed in
Section III. We also discuss potential performance benefits
that will be evaluated experimentally in Section V.

1) Expressiveness: Implementing services using the orig-
inal SM replication scheme is straightforward since it does
not involve any changes to the service code. However, the

6

Algorithm 3 The Hybrid Transactional Replication (HTR) Algorithm

1: integer LC ← 0
2: set log ← ∅

3: function GETOBJECT(transaction t, objectId oid)
4: if (oid, v) ∈ t.updates then
5: value← v
6: else
7: lock { value← retrieve object oid }
8: return value

9: function CERTIFY(integer start, set of ids readset)
10: lock { L← {t ∈ log|t.end > start} }
11: for all t ∈ L do
12: if readset ∩ t.writeset 6= ∅ then
13: return failure

14: return success

15: function READ(transaction t, objectId oid)
16: t.readset← t.readset ∪ {oid}
17: if CERTIFY(t.start, t.readset) = failure then
18: raise RETRY
19: else
20: return GETOBJECT(t, oid)

21: procedure WRITE(transaction t, objectId oid, object v)
22: t.writeset← t.writeset ∪ {oid}
23: t.updates← t.updates ∪ {(oid, v)}

Thread T on request t (executed on one replica)

24: upon TRANSACTION
25: t.mode← TransactionOracle.query()
26: if t.mode = DU then
27: lock { t.start← LC }
28: execute t
29: raise COMMIT
30: else // t.mode = SM
31: SMpackage p← (t.id, t.start, t.code, t.data)
32: abcast p
33: wait for outcome
34: UPDATEORACLESTATISTICS(t)
35: if outcome = retry then
36: t.readset← t.writeset← t.updates← ∅, t.stats← ⊥
37: raise TRANSACTION
38: else
39: stop executing transaction t and return

40: upon RETRY // for DU transactions
41: UPDATEORACLESTATISTICS(t)
42: t.readset← t.writeset← t.updates← ∅, t.stats← ⊥
43: raise TRANSACTION

44: upon ROLLBACK // for DU transactions
45: UPDATEORACLESTATISTICS(t)
46: stop executing transaction t and return

47: upon COMMIT // for DU transactions
48: DUpackage p← (t.id, t.start, t.readset, t.writeset, t.updates)
49: abcast p
50: wait for outcome
51: if outcome = failure then
52: raise RETRY
53: else // outcome = success
54: UPDATEORACLESTATISTICS(t)
55: stop executing transaction t and return

56: procedure UPDATEORACLESTATISTICS(transaction t)
57: TransactionOracle.feed(t.stats)

The main thread of HTR

58: upon ADELIVER(DUpackage p)
59: outcome← CERTIFY(p.start, p.readset)
60: if outcome = success then
61: lock { p.end← LC
62: log ← log ∪ {p}
63: apply p.updates
64: LC ← LC + 1 }
65: if thread T executes on this node then
66: pass outcome to thread T

67: upon ADELIVER(SMpackage p)
68: p.start← LC
69: execute p.code with p.data
70: raise COMMIT
71: if thread T executes on this node then
72: pass outcome to thread T

73: upon COMMIT // for SM transactions
74: lock { p.end← LC
75: log ← log ∪ {p}
76: apply p.updates
77: LC ← LC + 1 }
78: outcome← committed
79: goto line 71

80: upon ROLLBACK // for SM transactions
81: outcome← rolledback
82: goto line 71

83: upon RETRY // for SM transactions
84: outcome← retry
85: goto line 71

programmer does not have any constructs to express control-
flow other than the execution of a request in its entirety.
In our HTR replication scheme, the programmer can use
expressive transactional primitives rollback and retry
to withdraw any changes made by transactions and to retry
transactions (possibly in a different replication mode). Upon
retry, the SM transaction is not immediately reexecuted on
each node. Instead, the control-flow returns to the thread
which is responsible for handling the original request. The
oracle is then queried again to determine in which mode the
transaction should be reexecuted. Similarly, reexecution of DU
transactions is also controlled by the oracle.

In the original SM scheme, suspending a request’s execution
until some event occurs or a condition is met is not advisable
since this would effectively block the whole system. This is
because all requests are executed serially in the order they are
received. On the contrary, when the retry is called from
within a SM transaction, the HTR algorithm rollbacks the
transaction and allows it to be restarted when the condition
is met.

2) Irrevocable operations: In the DU replication scheme,
transactions may be aborted and afterwards restarted due
to conflicts with other older transactions. Thus, they are
forbidden to perform irrevocable operations whose side ef-

7

fects cannot be rolled back (such as local system calls).
Irrevocable (or inevitable) transactions are transactions that
contain irrevocable operations. Support for such transactions
is problematic and has been subject of extensive research in
the context of non-distributed TM (see Section II). However,
the proposed methods and algorithms are not directly trans-
ferable to distributed TM systems where problems caused by
distribution, partial failures, and communication must also
be considered. Below we explain how the HTR algorithm
deals with irrevocable transactions which, to the best of
our knowledge, represents the first attempt to provide this
capability in distributed TM.

In the HTR algorithm, irrevocable transactions are executed
exclusively in the SM mode, thus guaranteeing abort-free
execution which is necessary for correctness. It also means
that only one irrevocable transaction is executed at a time.
This is also recommended since (in general) the kind of
side effects that the irrevocable (non-memory) operations may
cause are unknown prior to execution of the transaction.
However, our scheme does not prevent DU transactions to be
executed in parallel—just only certification and the subsequent
process of applying updates of DU transactions (in case of
successful certification) must be serialized with execution of
SM transactions. Since a SM transaction runs on every replica,
we only consider deterministic irrevocable transactions. Non-
deterministic transactions would require acquisition of a global
lock or a token to be executed exclusively on a single replica.
Alternatively, some partially centralized approaches could be
employed, as in [20]. However, they introduce additional com-
munication steps, increase latency, and may force concurrent
transactions to wait a significant amount of time to commit.

We forbid the rollback and retry primitives in irrevocable
transactions (as in [10] and other TM systems) since they may
leave the system in an inconsistent state.

3) Performance: As mentioned in Section III-D, it is not
straightforward to optimize the original state-machine-based
replication scheme to handle the read-only (RO) requests (or
transactions) in parallel with other (RO or RW) transactions.
However, in the HTR algorithm, RO transactions are executed
only by one replica, in parallel with any RW transactions—
there is no need for synchronization among replicas to handle
the RO transactions. Moreover, the RO transactions are guar-
anteed abort-free execution thanks to multiversioning.

Unless a RW transaction is irrevocable (thus executed in
the SM mode) or non-deterministic (thus executed in the DU
mode), it can be handled by HTR in either mode for increased
performance. The choice is made by the HTR oracle that
constantly gathers statistics during system execution and can
dynamically adapt to the changing workload (which may vary
between the replicas). In Section IV-D, we discuss the tuning
of the oracle.

D. Tuning the oracle

As pointed out in [40], DTM workloads are usually highly
diversified in regard to the execution times and to the number
of objects accessed by each transaction (this is also reflected

in our benchmark tests in Section V). However, the execution
times of the majority of transactions are way under 1 ms.
Therefore, the mechanisms that add to transaction execution
time should be lightweight, e.g., the oracle should be as
lightweight as possible in order to gain benefits of dynamic
adaptation.

In the HTR algorithm, the oracle is defined by only two
methods that have to be provided by the programmer. Com-
bined with multiple parameters collected by the system at
runtime, the oracle allows for a flexible solution that can be
tuned for a particular application. Our experience with testing
HTR-enabled Paxos STM using multiple benchmarks shows
that there are the two most important factors that should be
considered when implementing an oracle (in brackets we give
references to the evaluation section where we employ these
techniques):

• keeping abort rate low—a high abort rate means that
many transactions executed in the DU mode are rolled
back (multiple times) before they finally commit; this
undesirable behaviour can be prevented by executing
some (or all) of them in the SM mode (V-C1). The SM
mode can also be chosen for transactions consisting of
operations that are known to generate a lot of conflicts,
such as resizing a hashtable (V-C2,V-C3). On the con-
trary, the DU mode is good for transactions that do not
cause high contention, so can be executed in parallel
taking advantage of modern multicore hardware;

• choosing the SM mode for transactions that are known
to generate large messages when executed optimistically
in the DU mode. Large messages increase network con-
gestion and put strain on the abcast mechanism, thus
decreasing its performance. The execution of a SM trans-
action usually only requires broadcasting the name of the
method to be invoked; such messages are often shorter
than 100B (V-C2).

Note also that since the SM transactions are guaranteed
to commit, they do not require certification which eliminates
the certification overhead. This overhead (in the DU mode) is
proportional to the size of the readsets, writesets, and updates.

Devising lightweight oracles that adapt to changing work-
load constitutes an interesting research path that we plan to
investigate in the future. To increase the oracle’s accuracy
one may also consider offline methods such as static analysis.
In database systems, where transaction processing times are
significantly higher compared to DTM, oracles with higher
overhead are suitable for consideration. Such advanced solu-
tions could be based on the SQL query optimizer which is
already in place with most of the database engines.

V. EVALUATION

In this section, we present the results of the empirical study
of the HTR algorithm with various oracles. In our tests, we
used several benchmarks which produce varied workloads.

8

NumAtomicPerComp 100
NumConnPerAtomic 3

DocumentSize 20000
ManualSize 1000000

NumCompPerModule 500
NumAssmPerAssm 3

NumAssmLevels 5
NumCompPerAssm 3

NumModules 1

Fig. 1. The input parameters of Distributed STMBench7.

A. Benchmarks

We adopted three benchmarks that are commonly used to
evaluate TM systems: Bank, a distributed version of STM-
Bench7 (called Distributed STMBench7), and an implementa-
tion of a Twitter-like social networking service as an example
of a real-world application (called Twitter Clone).

1) Bank: A replicated array of accounts is concurrently
processed by several worker threads that execute two types
of transactions. The update transaction (RW) performs money
transfer between two accounts, and consists of two read and
two write operations executed on two distinct accounts. The
read-only transaction (RO) calculates the total balance, i.e.,
sums up the funds from all accounts. For the tests, we used a
scenario consisting of 95% of RW and 5% of RO transactions.
The number of accounts is 10000. The tests are performed
with 160 threads running on each node. In Section V-C1, we
explain precisely why such a high number of threads is used.

2) Distributed STMBench7: The STMBench7 benchmark
[41], proposed to simulate realistic workloads for TM, was
adapted to run in a distributed environment. The benchmark
consists of a large, tree-like data structure (containing roughly
1.5 million elements) which is queried or modified by a set of
operations of varying complexity. Each operation defined in
STMBench7 is executed as a separate transaction. The values
of the input parameters are given in Figure 1. The transactions
are performed by 4 worker threads running on each node (the
same as the number of the CPU cores).

3) Twitter Clone: Our implementation of the Twitter social
networking service offers the same core functionality as the
original Twitter service. A user can: (a) post 140-character-
long messages which are seen by the users following him (i.e.,
subscribed to the user’s posts feed), (b) reply to somebody’s
message, and (c) repost (“retweet”) it. With certain probabili-
ties specified by the input parameters, the users create tweets
that mention their friend, a star, or a hashtag. All mentions
are randomly chosen from a pool of values of an adjustable
size. In order to simulate various workloads, the system users
are divided in two classes: the ordinary users and the stars,
differentiated by the number of followers. Ordinary users tend
to create small subgroups called cliques in which all users
are connected to each other. Stars also have similar small
groups of friends, but additionally they are followed by a large
number of ordinary users. Scanning through the user’s home
page as well as browsing tweets posted by a given user is
performed as a RO transaction. Posting a tweet or retweeting

other user’s post is a lightweight RW transaction. The relative
number of executed RW and RO transactions is defined by
an input parameter. Conflicts between transactions may arise
while: (a) adding replies to somebody’s post (most noticeable
in the case of replies to a star’s tweet), (b) reposting, and
(c) mentioning the same hashtag or the same user. To limit
the number of tweets kept in the memory, the older ones are
discarded after a defined period of time. As in the case of the
previous benchmark, the number of worker threads matches
the number of CPU cores on each node.

To show gains provided by the HTR algorithm, each bench-
mark is tested with three different oracles:
• DU – all updating (RW) transactions are executed in the

deferred update mode,
• SM – all RW transactions are executed in the replicated

state machine mode,
• Hybrid – transactions are executed either in the DU or

the SM mode, according to a policy defined to match a
given benchmark; for each benchmark we describe how
the Hybrid oracle is constructed.

All RO transactions are always executed locally in the DU
mode and they never abort. Therefore, the differences in
performance for various oracles can only be attributed to the
way the RW transactions are handled.

B. Evaluation environment

In our tests, we used a cluster consisting of nine nodes
connected via a private 1 Gb Ethernet network. Each node is
equipped with a Xeon Quad-core X3230 2.66GHz, L2 cache
2x4MB CPU, 4GB RAM ECC DDR2, 800MHz, running
OpenSUSE 10.3 (kernel 2.6.22.19) with Sun JRE 1.6.0.

C. Results and analysis

1) Bank: This benchmark is characterized by very short
RW transactions (money transfer between two accounts) and
relatively long, time consuming RO transactions (the total
balance of all accounts). Since RW transactions dominate the
workload (95% RW transactions), one may expect the SM
oracle to exhibit very limited scalability, since all the RW
transactions have to be executed sequentially. On the contrary,
the system in this configuration scales all the way up to 9
nodes (see Figure 2). In the tested scenario, performance of
each node is not limited by its CPU power (the main HTR
thread which executes the SM transactions is underutilized),
but by the ability of each node to handle a high number of
incoming requests. To better utilize the main HTR thread more
concurrent transactions (requests) have to be allowed in. One
way to achieve it is to further increase the number of threads
running on each replica. However, this approach proved unsuc-
cessful due to very high inter-thread synchronization overhead
when more than 160 threads ran on each node. However, with
the higher number of replicas it is possible to handle more
concurrent requests, what explains why the system scales. On
the other hand, in the DU mode, short execution times limit
the possible performance gain due to parallel execution of
RW transactions. Short execution times of RW transactions

9

a) Bank

40

50

60

70

80

90

100

110

120

 2 3 4 5 6 7 8 9

T
h

ro
u

g
h

p
u

t
(x

1
0

0
0

 r
e

q
/s

)

DU
SM

Hyb

0%

5%

10%

15%

20%

25%

30%

35%

 2 3 4 5 6 7 8 9

A
b

o
rt

 r
a

te

DU
SM

Hyb

b) Distributed STMBench7

0

2

4

6

8

10

12

14

16

18

 2 3 4 5 6 7 8 9

T
h

ro
u

g
h

p
u

t
(x

1
0

0
0

 r
e

q
/s

)

DU
SM

Hyb

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

 2 3 4 5 6 7 8 9

A
b

o
rt

 r
a

te

DU
SM

Hyb

c) Twitter Clone

0

5

10

15

20

25

 2 3 4 5 6 7 8 9

T
h

ro
u

g
h

p
u

t
(x

1
0

0
0

 r
e

q
/s

)

Number of replicas

DU
SM

Hyb

0%

2%

4%

6%

8%

10%

12%

14%

 2 3 4 5 6 7 8 9

A
b

o
rt

 r
a

te

Number of replicas

DU
SM

Hyb

Fig. 2. Throughput and abort rate, where DU, SM, Hyb denote the oracle.

and similar sizes of messages for the DU and the SM modes
(63B and 47B, respectively) result in very similar performance
with both the oracles. Up to 6 nodes, the DU mode provides
slightly better performance compared to the SM oracle (10%
better on average). However, for the high number of nodes,
the performance in the DU oracle is diminished due to high
contention (the abort rate is as high as 34% for 9 nodes).

To counter the decrease of performance under high con-
tention in the case of the DU oracle, we used a simple
Hybrid oracle that does not allow the abort rate to exceed
25% threshold. Before each transaction’s run the oracle checks
whether the current value of abort rate (updated after each
transaction’s commit, rollback or retry) is greater than 25%.
If so, the SM mode is chosen. The SM mode guarantees abort
free execution, thus promises reduction of the abort rate. If the
current value of abort rate is below the threshold, the system
executes the transaction in the DU mode. The threshold value
of 25% was established empirically to give the best results.
The Hybrid oracle gives as good results as the DU oracle up
to 6 nodes and allows the system to scale further, giving better
results than when using either the DU or SM oracle alone.

2) Distributed STMBench7: STMBench7 was designed to
test non-distributed TM systems under complex workloads. In
the distributed environment, where network transmission time
is often an order of magnitude larger than the transaction’s ex-
ecution time, STMBench7 shows unstable performance when
operations such as structural modifications and long traversals
are enabled. They heavily modify (distort) the tree-like data

structure in a random manner and are never able to restore its
intended properties. Regardless of the duration of the tests, the
data structure is never balanced and highly varies in size, when
comparing results from many rounds of tests. For this reason,
we decided to conduct tests with long traversals and structural
modifications disabled (an option in the original STMBench7).

The results, given in Figure 2b, show that the performance
of Paxos STM in the DU mode is limited by high contention
(up to 18% for 9 nodes). Detailed results reveal that for some
transactions, such as the one executing Operation11, the abort
rate is as high as 96% (on average, the transaction is aborted 24
times before finally committing). The SM oracle outperforms
the DU oracle in all cases and scales due to no contention,
giving the overall throughput over 4 times as high as the DU
oracle for 9 nodes.

With such a significant difference in performances of the
DU and SM oracles, it is very difficult to find a Hybrid oracle
which performs better than the SM oracle. The Hybrid oracle
used in this test always executes ShortTraversal8, Operation9,
Operation13 and Operation14 optimistically in the DU mode.
Other operations are always executed in the SM mode for
low contention. This way the abort rate does not exceed 1%.
The Hybrid oracle performs very similarly to the SM oracle,
outperforming it by up to 3.5% for higher number of nodes.

3) Twitter Clone: The benchmark’s parameters allow us to
simulate a wide range of real workloads. In the benchmark’s
default configuration, the obtained results were surprisingly
similar for both the DU and SM oracles. Compared to the SM
mode, Paxos STM in the DU mode executes the transactions
faster. However, this gain is mitigated by larger messages
because readsets and writesets need to be broadcast. Therefore,
for the test discussed here, we have chosen workload that has
a nontrivial characteristics. The results of the test are given in
Figure 2c. Up to 5 nodes the performance of the DU and the
SM oracles is the same, but later all oracles give throughput
that varies significantly. In case of the DU oracle, contention
raises rapidly up to 14% for 9 nodes, thus decreasing system
performance. On the other hand, the SM oracle does not scale
at all. This behavior is caused by the multitude of the RW
transactions, overloading the main thread. Since they have to
be executed sequentially, there is only a limited number of
transactions that can be handled in a given amount of time.

The Hybrid oracle counters the negative aspects of the DU
and SM oracles. By default, it chooses the DU mode, thus
allowing for scalable behavior. The most conflicting transac-
tions (all those referring to a star) are executed conservatively
in the SM mode. This results in low contention (less than 1%
for 9 nodes). When using the Hybrid oracle, the system scales,
reaching 23000 transactions per second for 9 nodes (which is
over 16% faster than when using the SM oracle).

D. Summary

The results of the experimental evaluation confirmed our
predictions—the Hybrid oracle was never worse than the DU
and SM oracles, and even outperforms them when the number
of replicas grows. Paxos STM with the SM oracle performed

10

really well in all our tests, even though the SM mode prevents
parallel execution of RW transactions. The good performance
can be attributed to the lack of contention (all RW transactions
are executed sequentially) and small messages (no read/write-
sets or updates need to be broadcast).

VI. CONCLUSIONS

In this paper, we presented and evaluated the hybrid trans-
actional replication (HTR), a novel model and algorithm
for replication of services. The two transaction execution
modes that are used in HTR (deferred update (DU) and
state machine (SM)) complement each other. The DU mode
allows for parallelism in transaction execution, while the SM
mode provides abort-free transactions which are useful to deal
with irrevocable operations and transactions generating high
contention. Dynamic switching between the modes enables
HTR to perform well under a wide range of workloads, which
is not possible for either of the schemes independently. In
the future, we plan to investigate automatic machine learning
techniques to make the oracle mechanism more robust.

Surprisingly, in all tests that we conducted, the SM oracle
performs very well (all updating transactions are executed
on all nodes sequentially, and all read-only transactions are
executed locally without any replica coordination). This proves
viability of the state-machine-based replication scheme. How-
ever, combining the SM with the DU scheme and transactional
primitives, not only increases performance but also greatly im-
proves expressiveness, making the HTR approach a promising,
versatile solution.

Acknowledgements We thank anonymous reviewers for
their useful comments and suggestions. T. Kobus and M.
Kokociński were supported by the Polish Ministry of Sci-
ence and Higher Education within the NCN Grant No.
2011/01/N/ST6/06762.

REFERENCES

[1] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: a tutorial,” ACM Comput. Surv., vol. 22, no. 4, pp.
299–319, Dec. 1990.

[2] B. Charron-Bost, F. Pedone, and A. Schiper, Eds., Replication: Theory
and Practice, ser. LNCS, vol. 5959. Springer, 2010.

[3] F. Pedone, R. Guerraoui, and A. Schiper, “Exploiting atomic broadcast
in replicated databases,” in Proc. of Euro-Par ’98, Sep. 1998.

[4] F. Pedone, R. Guerraoui, and A.Schiper, “The database state machine
approach,” Distributed and Parallel Databases, vol. 14, no. 1, Jul. 2003.

[5] D. Agrawal, G. Alonso, A. E. Abbadi, and I. Stanoi, “Exploiting atomic
broadcast in replicated databases,” in Proc. of Euro-Par ’97, Aug. 1997.

[6] M. Herlihy and J. E. B. Moss, “Transactional memory: architectural
support for lock-free data structures,” in Proc. of ISCA’93, 1993.

[7] N. Shavit and D. Touitou, “Software transactional memory,” in Proc. of
PODCS ’95, Aug. 1995.

[8] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition
for concurrent objects,” ACM TOPLAS, vol. 12, no. 3, 1990.

[9] P. T. Wojciechowski, T. Kobus, and M. Kokociński, “Model-driven
comparison of state-machine-based and deferred-update replication
schemes,” in Proc. of SRDS ’12, Oct. 2012.

[10] A. Welc, B. Saha, and A.-R. Adl-Tabatabai, “Irrevocable transactions
and their applications,” in Proc. of SPAA ’08, Jun. 2008.

[11] R. Guerraoui and M. Kapalka, “On the correctness of transactional
memory,” in Proc. of PPoPP ’08, Feb. 2008.

[12] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[13] F. B. Schneider, “Synchronization in distributed programs,” ACM Trans.
Program. Lang. Syst., vol. 4, no. 2, pp. 125–148, Apr. 1982.

[14] L. Lamport, “The implementation of reliable distributed multiprocess
systems,” Computer Networks, vol. 2, pp. 95–114, 1978.

[15] L. Lamport, “Using time instead of timeout for fault-tolerant distributed
systems,” ACM TOPLAS, vol. 6, no. 2, pp. 254–280, Apr. 1984.

[16] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and mul-
ticast algorithms: Taxonomy and survey,” ACM Comput. Surv., vol. 36,
no. 4, pp. 372–421, Dec. 2004.

[17] B. Kemme, F. Pedone, G. Alonso, and A. Schiper, “Processing transac-
tions over optimistic atomic broadcast protocols,” in Proc. ICDCS’99,
1999.

[18] H. T. Kung and J. T. Robinson, “On optimistic methods for concurrency
control,” ACM TODS, vol. 6, no. 2, pp. 213–226, Jun. 1981.

[19] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger, “Granularity of
locks and degrees of consistency in a shared data base,” in Proc. of IFIP
Working Conference on Modelling in Data Base Management Systems,
Jan. 1976, pp. 365–394.

[20] A. Thomson and D. J. Abadi, “The case for determinism in database
systems,” Proc. VLDB Endow., vol. 3, no. 1-2, pp. 70–80, Sep. 2010.

[21] T. Usui, R. Behrends, J. Evans, and Y. Smaragdakis, “Adaptive locks:
Combining transactions and locks for efficient concurrency,” J. Parallel
Distrib. Comput., vol. 70, no. 10, pp. 1009–1023, 2010.

[22] P. A. Bernstein and N. Goodman, “Multiversion concurrency control—
theory and algorithms,” ACM TODS, vol. 8, no. 4, pp. 465–483, 1983.

[23] A. Adya, “Weak consistency: A generalized theory and optimistic
implementations for distributed transactions,” Ph.D., MIT, MA, USA,
Mar. 1999, also as Technical Report MIT/LCS/TR-786.

[24] J. Kończak, N. Santos, T. Żurkowski, P. T. Wojciechowski, and
A. Schiper, “JPaxos: State machine replication based on the Paxos
protocol,” Faculté I&C, EPFL, Tech. Rep. 167765, Jul. 2011.

[25] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133–169, May 1998.

[26] C. Kotselidis, M. Ansari, K. Jarvis, M. Luján, C. C. Kirkham, and
I. Watson, “DiSTM: A software transactional memory framework for
clusters,” in Proc. of ICPP ’08, Sep. 2008.

[27] C. Kotselidis, M. Lujan, M. Ansari, K. Malakasis, B. Kahn, C. Kirkham,
and I. Watson, “Clustering JVMs with software transactional memory
support,” in Proc. of IPDPS ’10, Apr. 2010.

[28] R. L. Bocchino, V. S. Adve, and B. L. Chamberlain, “Software transac-
tional memory for large scale clusters,” in Proc. PPoPP ’08, Feb. 2008.

[29] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues, “D2STM:
Dependable distributed software transactional memory,” in Proc. of
PRDC ’09, Nov. 2009.

[30] M. Couceiro, P. Romano, and L. Rodrigues, “Polycert: polymorphic
self-optimizing replication for in-memory transactional grids,” in Proc.
of ACM/IFIP/USENIX Middleware ’11, 2011, pp. 309–328.

[31] R. J. Dias, D. Distefano, J. C. Seco, and J. Lourenço, “Verification of
snapshot isolation in transactional memory Java programs,” in Proc. of
ECOOP ’12, Jun. 2012.

[32] A. Welc, A. L. Hosking, and S. Jagannathan, “Transparently reconciling
transactions with locking for Java synchronization,” in In ECOOP’06
(2006, 2006, pp. 148–173.

[33] C. Blundell, J. Devietti, E. C. Lewis, and M. M. K. Martin, “Making
the fast case common and the uncommon case simple in unbounded
transactional memory,” in Proc. of ISCA ’07, 2007.

[34] M. Olszewski, J. Cutler, and J. G. Steffan, “JudoSTM: A dynamic
binary-rewriting approach to software transactional memory,” in Proc.
of PACT ’07, Sep. 2007.

[35] M. F. Spear, M. Michael, and M. L. Scott, “Inevitability mechanisms for
software transactional memory,” in Proc. of TRANSACT ’08, feb 2008.

[36] N. Carvalho, P. Romano, and L. Rodrigues, “Asynchronous lease-based
replication of software transactional memory,” in Proc. of Middleware
’10, ser. LNCS, vol. 6452, 2010.

[37] F. B. Schneider, Replication management using the state-machine ap-
proach. ACM Press/Addison-Wesley, 1993, pp. 169–197.

[38] R. van Renesse, “Paxos made moderately complex,” 2012, online: http://
www.cs.cornell.edu/courses/CS6452/2012sp/papers/paxos-complex.pdf.

[39] P. A., Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control
and recovery in database systems. Addison-Wesley, 1987.

[40] P. Romano, N. Carvalho, and L. Rodrigues, “Towards distributed soft-
ware transactional memory systems,” in Proc. of LADIS ’08, Sep. 2008.

[41] R. Guerraoui, M. Kapałka, and J. Vitek, “STMBench7: A benchmark
for software transactional memory,” in Proc. of EuroSys ’07, Mar. 2007.

11

