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Ecole Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland

{Pawel.Wojciechowski,Olivier.Rutti}@epfl.ch

Abstract. Replacing or adding network protocols at runtime is prob-
lematic – it must involve synchronization of the protocol switch with
ongoing local and network communication. We define a formal math-
ematical model of dynamic protocol update (DPU) and use it to define
two DPU algorithms. The algorithms are based on fully-synchronized and
lazy strategies. The two strategies implement updates with respectively,
strong and weak safety properties. Our model allowed us to express the
properties and the DPU algorithms clearly and abstractly, aiding algo-
rithm design and correctness proofs.

1 Introduction

There is an important class of distributed applications that must run “non-stop”.
This is especially true of time-critical services, such as financial transactions,
telephone switch systems, flight reservations and air traffic control systems. The
service providers must be able to update their software, e.g. to fix program
bugs, improve performance, and expand functionality. Unfortunately, stopping
the system results in loss of service and revenue; it may also compromise safety.
Moreover, systems that modify their behavior based on changes in the environ-
ment, require the ability to update their functionality dynamically, with minimal
service interruption. There are quite a number of relevant implementations and
techniques (e.g. [4, 1, 6, 9]). Software components can be rebound on-the-fly, us-
ing a mechanism of dynamic class loading and linking [10, 15].

In this paper, we focus on global update of network components that assumes
modification of a network protocol implemented by the components. Such type
of update introduces a new problem, however. Replacement of network compo-
nents involves delicate synchronization (or coordination) of local updates which,
if not handled appropriately, could easily prove so disruptive as to, at best, shut
the system down, and, at worst, introduce malicious behaviour. Synchronizing
local updates so that all software components in the distributed system end up
updated in a consistent manner, and doing this while the system continuously
provides service, represent serious challenges. It is therefore important to un-
derstand what are the minimal properties which must be satisfied by dynamic
protocol update (DPU), and what is the range of possible DPU strategies?
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Most of software update implementations concentrate on bug-fixes or soft-
ware upgrades that do not alter the communication protocol. Thus, coordinating
the protocol switch with ongoing communication can be done locally. Few imple-
mentations provide solutions to the problem described in this paper. Examples
are implementations of dynamic protocol adaptation using Ensemble [21] and
Cactus [6] protocol frameworks. They implement complex DPU algorithms for
global synchronization of local updates. However, they lack both simplicity and
generality and it is not clear what properties are actually guaranteed. Therefore,
we believe a formal, mathematical model of DPU should be developed, in order
to understand by both users and implementors of DPU technology what design
choices can be considered, and what impact they have on DPU complexity and
scalability. Unfortunately, little formalization work has been carried out to date
(e.g. [8, 3, 19]; we discuss this work in §8). However, we are not aware of past ef-
forts that have formalized the algorithms for global coordination of local updates
or the DPU correctness properties.

A critical safety property of many network services is message order preserva-
tion. Consider group communication middleware [14] that can be used for repli-
cating servers in order to make them tolerant to server crashes. Each replica in
the system is guaranteed to receive all messages in the same order. Any update
of middleware protocols must not affect this semantics. In this paper, we explain
what it really means in case of updating any kind of protocols. For this, we con-
struct a model of DPU and use it to define two synchronization-extreme DPU
algorithms: a fully-synchronized algorithm that satisfies the message order prop-
erty but seems impractical for Internet-wide update, and a synchronization-free,
lazy algorithm that is scalable but does not guarantee this property.

What are the significant results of our work? Firstly, the lazy DPU strategy
does not require any distributed infrastructure, which means that update with
weak semantics is no more difficult than a local update. Secondly, the fully-
synchronized and lazy strategies define the design space for more practical DPU
algorithms that use only as much synchrony as required in a given case. We have
actually designed and implemented such algorithms for updating protocols of the
group communication middleware. In the end of this paper, we summarize results
of this experiment; a complete report is also available [16]. It was somewhat
surprising to us that the design space can be indeed usefully explored, leading to
specialized DPU algorithms that are more efficient than the fully-synchronized
strategy but preserving properties required by correct global update.

Our model abstracts away from any concrete implementation of modular
protocols and of the DPU technology. We only make sure that our network com-
munication is directly implementable above standard networks, such as Internet.
For this, we assume that protocols use asynchronous, unordered, point-to-point
messages; this is a realistic assumption about wide-area networks and common
middleware services, where communication delays are not predictable. Our model
abstracts away however from any unnecessary details of this communication. For
instance, message addressing and message routing are the details of protocols
themselves that we do not model here.



Symbols

Service names x, y ∈ Mvar

Required services R ∈ 2Mvar

Messages m

Protocol modules a, b, c

Module types t ::= (x, R) x /∈ R

Module bindings w ::= l | ↑
Terms

Protocol stacks P = {a w, ..., b w′}
Module a in stack P P.a

Peer modules of a δ(a) = {P.a′ w for any P | a′ : (x, R)} where a : (x, R)

Distributed protocols D = {P1, ..., Pn} or D = {δ(a), ..., δ(b)}
Messages sent to a, .., b SS = (mP.a, ..., m′P ′.b)
Messages delivered by a, .., b SD = (mP.a, ..., m′P ′.b)
Message history S = (SS , SD)

Sub-histories (i = S, D) Si|a = {mP.a′ for any P | mP.a′ ∈ set(Si), a′ : (x, R)}
where a : (x, R)

Si|P.a = {mP.a | mP.a ∈ set(Si)}
Protocol states D, S

Call service x in P P.x(m)

Deliver m using a in P [m]P.a

Fig. 1. The DPU model: Symbols and terms.

The paper is organized as follows. §2 and §3 define our model. §4 specifies
DPU, and §5 defines its correctness properties. §6 defines two DPU algorithms.
§7 sketches our implementation work, §8 contains related work, and §9 concludes.

2 Model

In this section, we define basic notions of protocol modules and protocol stacks
in our DPU model. All symbols and terms are in Fig. 1.

Protocol stacks Protocol services (or services in short), denoted by metavari-
ables x, y, are programming abstractions implemented by network protocols. Ex-
ample services are “send a message reliably”, “broadcast a message with FIFO
guarantee”, etc. Services can be called as functions, as in x(m), where m is a
message. No protocol data persist after the call returns.

We assume that protocols are modular, i.e. they can be composed from com-
municating protocol modules (or modules in short), denoted a, b. Modules are
typed using pairs (x,R), where x is the name of a single service provided by the
module, and R is a set of names of services that are required by the module in
order to handle a call of x (x /∈ R). We say that x is a module’s interface.



Protocol stacks (or stacks), denoted P , are sets of modules accompanied by
module bindings w, as in P = {a w, ..., b w′}; two kinds of bindings (l and ↑)
will be explained in §3. We write P.a w to denote a module a in stack P with
binding w. We often omit bindings or stack names if we mean any binding or any
stack, or the stack is known from the context. We abstract away in the model
from physical machines – intuitively, stacks are located on machines that are
interconnected via network.

Distributed protocols Distributed protocols, denoted D, can be defined ver-
tically or horizontally, i.e. either as sets of stacks {P1, ..., Pn}, or as sets of logical
protocols {δ(a), ..., δ(b)}, where a logical protocol δ(a) is a set of peers of mod-
ule a, i.e. all modules in the system that have the same type as a. Each logical
protocol defines a level of abstraction in a stack. Unless a distributed protocol
is being updated, any two stacks are exactly the same.

For clarity, we assume in this paper a system model with no failures, where
messages are not lost nor duplicated, and stacks are basically reliable. In our
implementation of DPU, however, stacks may crash while a protocol is being
updated, with a guarantee that all non-crashed stacks get updated.

3 Operational Semantics

Actions Interaction between protocol modules (and stacks) is by means of
asynchronous messages. We use two kinds of actions to express the communica-
tion: a service call and a message delivery.

Service call P.x(m) requests a service x of a stack P to deliver a fresh message
m in one or many stacks, depending on if the communication is point-to-point
or multicast. The call therefore appends to a global list of sent messages SS ,
a list (mP ′.a′ , ..., mP ′′.a′′) of duplicated messages m decorated with all modules
a′, ..., a′′ of type (x,R) for some R, that should be used to deliver m in stacks
P ′, ..., P ′′. Note that our stacks are symmetric: modules that are used to output
and to deliver a message have the same type.

Message delivery [m]P.a denotes delivery of a message m in a stack P using
a module a. The intended semantics is that m is delivered by a to some other
module in the local stack that can use m. We assume that the name of this
module has been encoded in the message itself. We do not model it explicitly,
however, as we only need to know who delivers a message. The delivery adds
(using a Lisp-like constructor “::”) an element mP.a to a global list of delivered
messages SD; the list has the same structure as SS .

Protocol states are denoted as D, S, where D is a distributed protocol and
S = (SS , SD) is a pair of the (initially empty) lists of the sent and delivered
messages. We define the execution (or evaluation) of a protocol D as a state
transition relation −→, which transforms a state D, S to (D, S)′ as a result of
a single action e, denoted e−→; we sometimes omit the label e. The notation
(D, S)′ means D′, S or D, S′ or D′, S′, depending on the context. We also use
=⇒ to denote a possibly empty sequence of small step transitions.



Communication and freedom

a : (x, R)
mP.a /∈ set(SS) mP.a /∈ set(SD)

mP.a ∈ set(S′S)
S′′′ = (S′′S , mP.a :: S′′D)

a w ∈ P w ∈ {l, ↑} P ∈ D′

D, (SS , SD)
x(m)−→ D, (S′S , SD) =⇒ D′, (S′′S , S′′D)

[m]P.a−→ D′, S′′′
(Comm)

S = (SS , SD) SS |a = SD|a
(a, (D, S)) Free

(Freedom)

Module bindings

a w ∈ P w 6= w′

a w′ /∈ P
(Sanity-1)

a : (x, R) b : (x, R′) a 6= b
a l ∈ P b w ∈ P

w = ↑ (Sanity-2)

Fig. 2. The DPU model: Operational semantics.

Communication We write set(Si) to denote a set of all elements in list Si.
The rule (Comm) in Fig. 2 says that each delivery action [m]P.a in a stack P
must be preceded in the execution trace by a corresponding call x(m), where
module a provides x (remember that our stacks are symmetric). There can be
an arbitrary number of evaluation steps in-between since different protocol (or
update) actions can be interleaved. The sets of sent, SS , and delivered messages,
SD, are modified accordingly.

The details of message routing within a stack and between stacks are omitted
here, as they are not useful in this paper. Example approaches can be found
in [23], where we describe the semantics of module interaction and binding in
Cactus and Appia – two example protocol frameworks that can be used to encode
modular protocols in Java.

In network protocols, we can usually identify different levels of abstraction
at which communication takes place. Consider delivery [m]P.a of message m in
stack P by module a, as the result of a service call P ′.x(m) in some other stack
P ′. The call may trigger several calls of services that x depends on (all that
services are known from module type). In protocol frameworks, each of these
calls gets as its argument a message m′, that contains m and any additional
data that are required in order to complete the call and to deliver the message
using corresponding modules in stack P ′.

Freedom In this paper, we consider network protocols that execute in terminat-
ing rounds, where a round is a sequence of reduction steps that has commenced
with a service call P.x(m) for some stack P , where message m must be fresh.
The round terminates with delivery of message m for the last time. Or, more
precisely, a round spawned with a fresh message m terminates (or completes)



in a state D, (SS , SD) if SS |m = SD|m, where Si|m (i = S,D) is a list that is
constructed from Si by removing from it all messages other than m.

There can be many rounds executed concurrently. A distributed protocol D
does not get stuck if all its rounds eventually complete.

A module a of a protocol D is free in a state D, S, denoted (a, (D, S)) Free,
if there is currently no active round of the protocol that would deliver a message
using either module a or any module (in any stack) that has the same type as a.
We can define this property formally using sub-histories Si|a of messages that
were sent (i = S) and delivered (i = D) by all modules of type of module a; see
rule (Freedom) in Fig. 2 and the definition of Si|a in Fig. 1.

Bindings We assume that modules can be added and removed from stacks
at runtime. This means that modules can be dynamically bound and rebound.
Consider a module a of type (x,R) for some x and R. We write a l to denote the
module a which has been bound, i.e. calls of service x to deliver a fresh message
can use a, and messages can be also delivered by a.

We write a ↑ to denote a module a which is passive, i.e. calls of a service
x provided by a are not allowed, unless there is another module b in the same
stack that provides service x, and b is bound. A passive module can however
deliver messages. Therefore, any round of a protocol δ(a) can complete using
passive modules in δ(a), assuming that any services that are required by δ(a) to
complete the round in a given stack, have bound modules in the stack.

Each module in a stack is either bound or passive. We also assume that for
a given service in each stack, there can be at most one bound module at a time
providing the service; these sanity conditions are defined formally in the bottom
of Fig. 2.

4 Dynamic Protocol Update

We define dynamic protocol update (DPU) as a dynamic change of a distributed
protocol, i.e. replacement or addition of its modules. We require that the change
must eventually occur in all protocol stacks within, say, a cluster of servers or a
large LAN. Below we use our model to formalize this definition.

Replaceability We can replace a module a by a module b in a protocol stack
P only if b has the interface of a (or at least of a, if we had a notion of interface
subtyping). This is motivated by requirements of real systems. If module b does
not provide the service of a, then it means that the distributed protocol updated
with b may get stuck since not all service calls can be effectuated, thus violating
the (desirable) termination property of protocol rounds. We must also require
that stack P provides all services that are required by b. These two requirements
are expressed in Fig. 3 as a replaceability property P{b/a}, read “a replaceable
by b in P”. The property can be verified statically by checking module types.

Global update A global update GU(D, a, b) in Fig. 3, updates all stacks of
a distributed protocol D with a module b, yielding an updated protocol D′. To
update a stack locally, GU calls a local update function LU (explained below).



a : (x, R) a ∈ P
b : (x, R′) R′ = {y | ∃c : (y, ..) c ∈ P}

P{b/a} (Replaceable)

P{b/a} w ∈ {l, ↑}
LU : (P, a, b) → (P \ {a w}) ∪ {a ↑} ∪ {b l} (Local-Update)

D = {P1, ..., Pn} D′ = {LU(P1, a, b), ..., LU(Pn, a, b)}
GU : (D, a, b) → D′ (Global-Update)

Fig. 3. The DPU specifications.

For practical reasons, global update should be concurrent with the execution
of system services whenever possible. Blocking the whole system during update
is unrealistic for large systems, and also not acceptable for non-stop systems.

Thus, the transition D, S
GU(D,a,b)

=⇒ D′, S′ consists of many evaluation steps that
may be interleaved (under control of GU) with actions of the protocol that gets
updated. Moreover, several global updates can occur concurrently.

Local update A local update function LU in Fig. 3 takes as arguments a stack
P , an old module a, and a new module b, and yields a new stack in which the
new module is bound and the old one is passive. This has the effect of replacing
a by b in stack P in one atomic action. After a call of LU returns, any calls of
the service provided by a and b will use the new implementation b instead of a.
However, any pending rounds can still complete using the old module.

The definition of global update does not specify when a function LU is actu-
ally called. Updating some protocols at “wrong” moment may invalidate safety
properties of these protocols. In §5, we identify two safety properties (strong and
weak) that cover a broad range of distributed protocols. Then we describe in §6
two implementations of GU ; the first one satisfies strong safety, while the second
one satisfies weak safety (but not strong safety).

5 Dynamic Update Correctness

The static replaceability property is necessary but not sufficient for DPU cor-
rectness. In this section, we define some safety properties that formalize what
we regard to be correct DPU.

Correctness Intuitively, global update GU is correct if updating a distributed
protocol does not interfere with the concurrent execution of the protocol, i.e. the
update cannot be observed by any services of the protocol. In our model, the only
observable actions of the distributed protocol are message outputs and deliveries
(since they can modify state S). Obviously, correct global update must not cause
the updateable protocol to loose nor duplicate messages. Some applications may
also require that GU does not change the order of message delivery.



Judgments
x `h S S is a correct message history of service x
`dpu GU GU is a correct DPU algorithm

DPU correctness

D, S
GU(D,a,b)

=⇒ D′, S′

a : (x, R)
x `h S x `h S′

`dpu GU
(Correct-Update)

S = (nil, nil)

x `h S
(Null-History)

x `h (S′S , S′D)
x `h (S′′S , S′′D)

S = (S′S@S′′S , S′D@S′′D)

x `h S
(Consistent-Cut)

DPU properties

D, S
GU(D,a,b)

=⇒ D′, (S′S , S′D)
D, S =⇒ D, (S′′S , S′′D)

set(S′S) = set(S′′S)

set(S′D) = set(S′′D)
(Weak-Update)

D, S
GU(D,a,b)

=⇒ D′, S′

D, S =⇒[m]P.b−→ =⇒ D′′, S′′

S′′ = (S′′S , S′′D)

S′′S |a = S′′D|a
(Strong-Update)

Fig. 4. Judgments and DPU properties.

We define DPU correctness using two judgments, one for message histories,
and one for the GU algorithm; the judgments and the rules for reasoning about
the judgments are given in Fig. 4. The message history judgment has the form
x `h S, read “S is a correct message history of service x”. The algorithm correct-
ness judgment has the form `dpu GU , read “GU is a correct DPU algorithm”.

The rule (Correct-Update) says that global update of a service x with a DPU
algorithm GU is correct, if given a distributed protocol D and a correct history of
messages S, the algorithm would transform the system D, S into system D′, S′

where S′ describes a correct message history from the point of view of x.

The rule (Consistent-Cut) is a core rule for reasoning about message histories.
It states that a message history constructed by appending two (possibly empty)
histories that are themselves correct is also correct. The Lisp-like append opera-
tion Si@S′i returns a new list whose elements are the elements in the given lists
Si and S′i, in the order that they appear in the argument lists.

Properties We can identify at least two update safety properties: strong and
weak; they specify some desirable guarantees on a message history. We can then
say that global update GU is correct for updating a service x, if it satisfies
safety properties that are required by the correct execution of x. It depends
on the semantics of x which property the implementation of GU should hold.
(Obviously, we assert that updateable services must be themselves correct.)

Below are the two safety properties defined informally; a precise semantics is
given in the bottom half of Fig. 4.



Property 1 (Weak Update) A global update GU of a distributed protocol D
has the weak update property if: (i) GU eventually terminates, (ii) if D does
not get stuck, then the updated D will deliver exactly the same set of messages
as the non-updated D would.

The DPU algorithms that only satisfy the weak safety property cannot be
used to update services that order messages. Below we define a stronger property.

Property 2 (Strong Update) A global update GU replacing old modules by
new modules in a protocol D has the strong update property if: (i) GU eventually
terminates, (ii) after a new module has been used to deliver a message in some
stack, the old module will never be used to deliver messages in any stack.

Theorem 1 (Strong Update Correctness). Global update that ensures the
strong update property is correct.

Proof. Consider update D, S
GU(D,a,b)

=⇒ D′, S′, where a, b provide x and x `h S.

Take any state D′′, S′′ such that D, S =⇒ .., X
[m]P.b−→ .., Y =⇒ D′′, S′′ and b is

used a first time. Then

1. x `h X by x `h S and premise that up to this state x can only use δ(a),
2. x `h Y \X 1 by premise that b can replace a,
3. x `h S′′ \X by 2. and S′′S |a = S′′D|a (from definition of (Strong-Update)),
4. x `h S′′ by 1. and 3. and (Consistent-Cut),
5. `dpu GU by premise x `h S and 4. and (Correct-Update). ¤

Below are two examples of services that can be updated with a DPU algo-
rithm that has the strong update property.

Consider a bug-fix of a security protocol that is used by a distributed transac-
tions service to encrypt transaction-related communication. After a local update
action terminated in a stack, and the newly added change has been applied to
the security protocol, the strong update property guarantees that no transaction
(on any node) will commit using the old erroneous security protocol.

Consider services that must deliver messages in a certain order. The strong
update property guarantees that the old module is used only until the new mod-
ule is used (somewhere) for the first time. Up to this (global) time, all messages
are delivered (with order) by the old protocol, after this time all messages will
be delivered (also with order) using only the new protocol.

Theorem 2 says that weak update can be always replaced by strong update
(the opposite is obviously not true); the proof is straightforward.

Theorem 2 (Strong Update implies Weak Update). Any implementation
of global update satisfying strong update, also satisfies weak update.

1 We write Y \X to denote a prefix of list Y obtained by removing sublist X.



Synchronized DPU
a l ∈ P P{b/a}

P, S
P.ABcast(S1,a,b)−→ P, S

(S1)

[S1, a, b] P.abcast abcast : (ABcast, ..)
P ′ = (P \ {a l}) ∪ {a ↑} ∪ {b ↑}

P, S −→ P ′, S
P.ABcast(S2,a,b)−→ P ′, S

(S2)

S = (SS , SD) SS |P.a = SD|P.a

(a, P S) Idle
(Idle)

[S2, a, b] P.abcast from all P ′ ∈ D
(a, P S) Idle

P, S
P.ABcast(S3,a,b,Idle)−→ P, S

(S3)

[S3, a, b, Idle] P.abcast from all P ′ ∈ D
P, S −→ (P \ {a ↑} \ {b ↑}) ∪ {b l}, S

(S4)

Lazy DPU

[m, b] P.c for some c ∈ P
b /∈ P a l ∈ P P{b/a}

P ′ = (P \ {a l}) ∪ {a ↑} ∪ {b l}
S = (SS , SD)

P, S −→ P ′, S
[m]P.b−→ P ′, (SS , mP.b :: SD)

(L1)

[m, b] P.c for some c ∈ P
b ∈ P

S = (SS , SD)

P, S
[m]P.b−→ P, (SS , mP.b :: SD)

(L2)

Fig. 5. Synchronized and lazy DPU algorithms.

6 Dynamic Update Algorithms

Consider updating a distributed protocol D = {P | P = {a l, b l, ..}} with a new
module b 1. Below we describe two example DPU algorithms. They are defined
using a set of transition rules, each rule describing a single or double (atomic)
evaluation step. The rules are expressed using the syntax in Fig. 1, extended
with polyadic messages, i.e. a message is a sequence of names. For readability,
we give in each rule only part of the state, i.e. the name of a local protocol stack
in which a given action occurs (instead of D). The steps of the algorithms can
be freely interleaved with the steps of the protocol D being updated.

Synchronized update The Synchronized Dynamic Protocol Update (S-DPU)
algorithm in the upper part of Fig. 5, updates a distributed protocol by replacing
old modules by new ones. Firstly, it “passivate” bindings of the old and new
modules in each stack so that the modules are passive. Then, the old module is

1 Updating D with b may involve adding new modules to each stack, so that all services
required by b are eventually provided; the algorithm is similar to L-DPU in §6.



removed and the new module is bound in every stack; this takes place locally
only after it can be guaranteed that the old module is not needed anymore to
complete any round of the distributed protocol.

To support concurrent global updates and termination under stack crashes,
our algorithm communicates control messages using a totally ordered broadcast
[7, 14] service ABcast. We assume abcast to be some implementation of ABcast.
Execution of ABcast(m), where m is a fresh message, broadcasts m to all stacks
with a guarantee that the round of ABcast terminates and if some stack delivers
m before another broadcast message m′, then every stack delivers m before m′.

Formally, if we take any two stacks P, P ′ ∈ D and modules a ∈ P and a′ ∈ P ′

of type (ABcast, R) for some R, then for any state D, S and S = (SS , SD) such
that (a, (D, S)) Free and (a′, (D, S)) Free, we have SD|P.a = SD|P ′.a′, where
the Free property is defined in Fig. 2.

Below are steps of the S-DPU algorithm. Note that the output and delivery
of update-related control messages do not modify message histories!

S1. Broadcast a fresh message (S1, a, b) to all stacks, where module a is bound
in the local stack P and replaceable in P by module b. (We assume that
initially, i.e. when a message history is (nil, nil), all stacks are identical.)

S2. Upon receipt of (S1, a, b), passivate module a in the local stack P and extend
P with passive module b. Then, broadcast a fresh message (S2, a, b).

S3. A module a of stack P is idle, denoted (a, P S) Idle where S is a message
history, if all messages sent to a (by any stack) have been delivered by a 1.
Upon receipt of (S2, a, b) from all stacks, wait until module a is idle in the
local stack P , then broadcast a fresh message (S3, a, b, Idle).

S4. Upon receipt of (S3, a, b, Idle) from all stacks, remove module a from the
local stack P and bind module b.

Lemma 1 (Safe Rebinding) If S-DPU algorithm binds a new module in some
state, then a module being replaced with the new module is free in this state.

Proof. Consider binding of some module a in step (S4) of S-DPU. Then

1. by premise of (S4) and ABcast, each stack P ∈ D has executed (S3)

2. by 1. and (S3) and definition of (a, (P, S)) Idle, each stack P ∈ D has been
in a state D, S, such that SS |P.a = SD|P.a,

3. by premise of (S3) and ABcast, each stack has executed (S2),
4. by 3. and (S2), each stack has unbound a in (S3), so SS |P.a = SD|P.a is

true not only in (S3) but also in (S4),
5. by 4. and premise of (S4) and ABcast, SS |P.a = SD|P.a for all stacks P ∈ D,
6. by 5. and definition of Si|a (i = S, D) in Fig. 1, SS |a = SD|a,
7. by 6. and (Freedom), (a, (D, S)) Free. ¤

We conclude that the S-DPU algorithm satisfies strong update.
1 We assume the existence of a global snapshot algorithm [11] to determine this pred-

icate.



Theorem 3 (S-DPU Strong Safety). Updating a distributed protocol with
the S-DPU algorithm satisfies strong update.
Proof. By Lemma 1 and (S4), when a new module is bound in D, S, the old
module a is free. By (S2), a is unbound in D, S, i.e. for any state D′, S′ following
D, S, we have S′S |a = S′D|a. By (Strong-Update) this completes the proof. ¤

Lazy update The Lazy Dynamic Protocol Update (L-DPU) algorithm in the
bottom of Fig. 5, updates a distributed protocol lazily, by extending stacks with
a new module whenever needed.

We associate messages with modules that are used to deliver the messages. If
a module required to deliver a message is not in a local stack, then it is added to
the stack, bound, and the binding of the old module providing the same service
is “passivated”, so that any new protocol round in this stack can use the new
module. The algorithm allows however the old and new modules to coexist in
the distributed protocol, i.e. they can deliver their messages concurrently.

The L-DPU algorithm does not require any distributed infrastructure, except
the one used by protocol D to communicate messages via network. Thus, it scales
to large networks. Below are actions of the L-DPU algorithm.

L1. Upon delivery of a message (m, b) by some module c in the local stack P ,
if module b is not in P , then take any module a in P that is bound and
replaceable by b, passivate a and bind b. Finally, deliver m using b.

L2. Upon delivery of a message (m, b) by some module c, if module b is available
locally, then deliver m using b.

To guarantee termination of the global update, we could require that stacks
periodically broadcast and deliver an “update” message containing new modules.

According to Theorem 4, the Lazy DPU algorithm guarantees that all pro-
tocol messages are delivered but message ordering is not preserved.

Theorem 4 (L-DPU Weak Safety).Updating a distributed protocol with the
L-DPU algorithm satisfies weak update.
Proof. Straightforward by (Weak-Update) and atomicity of rebinding in (L1). ¤

7 Practical Experiment

To facilitate experimentation, we have designed and implemented DPU sup-
port for Fortika [13, 14] – a group communication middleware that is developed
within our project. We have encoded middleware components using the SAMOA
library [24]. The most complex components that Fortika uses are two agreement
services: distributed consensus and totally ordered broadcast (ABcast). We have
proposed DPU algorithms that can switch between different implementations
of these services dynamically, while preserving safety properties of each service.
By exploring the semantics of consensus and ABcast, the DPU algorithms can
be less synchronous than the S-DPU algorithm in §6. In effect, the service is
available almost continuously while it is updated.



Consider update of the consensus service [5]. The service ensures that given
a group of distributed processes, after a round of consensus, all processes would
agree on the same value, which has been chosen from values proposed individ-
ually by each process. Our DPU algorithm uses the semantics of consensus for
replacement of the consensus implementation; it has three steps. Firstly, an in-
tend to replace a consensus protocol δ(a) by δ(b) is broadcast. Then, all processes
must decide when b can be bound locally. For this, b could be piggybacked on
any message that must be also processed by the consensus service. Finally, when
the decision about b has been delivered (that means all stacks reached consensus
about binding b), a is passivated and b is bound. The time between binding a
new module and making the old one passive is therefore maximally reduced.

The results of our practical experiment demonstrate that dynamic replace-
ment of network protocols in a group communication system can be done effi-
ciently. Description of the DPU algorithms for agreement protocols and perfor-
mance measurements are in our companion paper [16].

8 Related Work

In this section, we describe some of the work most closely related to ours.
There are quite a number of implementations that support dynamic updat-

ing of software components. For example, the Erlang programming language [1]
allows software modules to be replaced at runtime, however with no safety guar-
antees. A Java HotSpot VM [20] allows a class instance to be replaced with the
new instance in a running application through the debugger APIs.

There have been work on safe dynamic software updating by construction, en-
suring that if an update is accepted by the system, then the resulting program
will be type-correct. Dynamic ML [22] enables type-safe module replacement
at runtime; changes can include the alternation of abstract types at update-
time, and the addition (and possibly removal) of module definitions via garbage-
collection. Dynamic Java classes [12] offer type safety preservation but compro-
mise portability by modifying the Java Virtual Machine; also, class replacement
is not synchronized with threads using old code.

Duggan [8] describes a type-safe approach that allows a new module to change
the types exported by the original module; it however does not discuss the re-
binding facility. Bierman et al. [3] study dynamic software updating with a small
extension of a lambda calculus that supports an Erlang-like updating features.
A preliminary discussion of safety properties is included, however without con-
sidering the use of concurrency and coordinated updates. Stoyle et al. [19] inves-
tigate type-safe dynamic updating in C-like languages. However, this work does
not address the issues of global coordination of local updates.

Few systems offer support for coordinating local updates. For example, Van
Renesse et al. [21] describe a switching protocol, which synchronizes dynamic
replacement of protocols in the Ensemble protocol framework, however it does
so only for whole stacks, thus blocking applications on top of the stack during
update. Chen et al. [6] describe switching between network components within



the Cactus protocol framework. A replacement manager on each host interacts
explicitly with replaceable network components; it uses barrier synchronization
for coordinating the beginning of the replacement across different hosts. A similar
solution has been proposed in [18], but it uses a centralized manager, which limits
its scope of applicability. However, in none of the above systems is there any well
developed evidence as to what conditions are needed to guarantee the correctness
of updating distributed protocols on-the-fly.

To date relatively little work has been carried out on formalization of dynamic
protocol update. The previous work closest to our own is by Bickford at al. [2]
on designing a generic switching protocol for Ensemble using the Nupr logical
programming environment. They have formally defined several communication
(not structural, though) meta properties on traces of send and deliver events,
that should be preserved by updateable protocols. While we have identified space
between lazy and synchronized updates, they only describe one example switch-
ing protocol. The algorithm is correct only for replacement of protocols that
must exhibit all their (six) meta-properties; it cannot be applied for arbitrary
protocols, contrary to the S-DPU algorithm presented in this paper.

Methods of distributed versioning, such as Sewell’s [17] fine-grain versioning
control of values of abstract types, could be used to support interoperation of
old and new modules, and e.g. verify statically the replaceability property.

9 Conclusions and Future Work

In this paper we make several contributions. We have defined a simple but ex-
pressive model of dynamic protocol update (DPU). We use our model to define
static and dynamic requirements that, we believe, should be considered by any
valid dynamic protocol update support:

– The replaceability property specifies minimal structural, static requirements
on module replacement;

– The strong and weak update safety properties specify that updating a dis-
tributed protocol must not cause message loss; the strong property addition-
ally requires that message order is always preserved.

Based on the above requirements, we have constructed two DPU algorithms
which are based on synchronized and lazy updating strategies. The former al-
gorithm exhibits strong safety guarantees but requires a subtle distributed in-
frastructure (totally ordered broadcast) which does not scale to large networks.
The latter algorithm scales well but the order of message delivery by updateable
service is not respected that limits its applicability.

Our DPU algorithms work correctly also in the presence of stack crashes, in
the sense that all non-crashed stacks are guaranteed to get eventually updated.

In the future work, it may be worthwhile to extend the model presented in
this paper with system failures and message omissions; this would allow us to
reason about such cases formally.
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16. O. Rütti, P. T. Wojciechowski, and A. Schiper. Dynamic update of distributed

agreement protocols. Tech. Report IC-2005-012, I&C, EPFL, Mar. 2005.
17. P. Sewell. Modules, abstract types, and distributed versioning. In POPL ’01, 2001.
18. N. Sridhar, S. M. Pike, and B. W. Weide. Dynamic module replacement in dis-

tributed protocols. In Proc. ICDCS ’03, May 2003.
19. G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu. Mutatis Mutandis:

Safe and predictable dynamic software updating. In POPL ’05, Jan. 2005.
20. Sun Microsystems, Inc. Java HotSpot. http://java.sun.com/products/hotspot/.
21. R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, and D. Karr. Building

adaptive systems using Ensemble. Software Practice & Experience, 28(9), 1998.
22. C. Walton, D. Kirli, and S. Gilmore. An abstract machine model of dynamic

module replacement. Future Generation Computer Systems, 16:793–808, May 2000.
23. P. T. Wojciechowski, S. Mena, and A. Schiper. Semantics of protocol modules

composition and interaction. In Proc. Coordination ’02, LNCS 2315, Apr. 2002.
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