
Introduction to Transactional Replication
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Abstract. Transactional replication is a new enabling technology for service
replication. Service replication means that a service runs on a group of processes
(service replicas) that work together to execute requests issued by external clients.
The characteristic feature of transactional replication is that client requests can
be processed on a single replica concurrently as atomic transactions that can read
or modify local state. Our goal is to provide an introduction to the transactional
replication algorithms. We begin by discussing state machine replication and then
present several algorithms that provide full transactional semantics such as de-
ferred update replication and many variants of thereof. Finally, we compare their
properties and performance as well as show their strong and weak points.

1 Introduction

Replication is a popular method to increase service reliability and accessibility. It means
deployment of a service on several interconnected server machines, each of which may
fail independently, and coordination of the service replicas, so that each replica main-
tains a consistent state view despite failures of communication links or crashes of other
replicas. The state is kept by every replica in its local store (the main memory and,
optionally, nonvolatile memory).

In this chapter, we survey distributed algorithms that can be used for full replication
of services with strong consistency guarantees, without resorting to any central coor-
dinator. An example application is a geo-replicated storage system that ensures strong
consistency among all service replicas. Distribution and replication can improve local-
ity and availability of a service by, respectively, moving data closer to the users and
processing many requests in parallel. The common feature of the presented algorithms
is that they all rely on the fault-tolerant total order (atomic) broadcast primitive (defined
in Section 3) that is used to make the state updates consistent among all the replicas de-
spite any crashes. We begin with a simple algorithm of this sort that implements the
classical replication scheme relying on atomic broadcast, called state machine replica-
tion (SMR) [34]. In this approach, a stream of client requests is agreed among all service
replicas (that must be deterministic state machines) and processed sequentially by each
replica.

Next, we describe example replication algorithms that fall into a different category
which we call transactional replication (TR) [37]. They can be used to implement a
replicated storage system which is then used by replicated services (processes) to pro-
cess multiple client requests as concurrent transactions. Transactions can read or mod-
ify local state and they are executed atomically—completely and successfully or not
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at all, much like in transactional memory systems, but the local state is replicated and
kept consistent on many servers. We only focus on one TR scheme relying on atomic
broadcast, which is called deferred update replication (DUR) [7], and present several
algorithms that optimize DUR in various ways. In this approach, a client request can be
processed optimistically by any one replica using an atomic transaction, in parallel with
other requests (transactions) processed on the same or other replicas. Any state updates
are deferred and consistently applied on all replicas on transaction commit.

In the TR systems that provide transactional memory and support full transactional
semantics, many transactions can be executed on a single node in parallel. They can
perform arbitrary operations (with possible restrictions, such as the use of irrevocable
operations) and may also commit or abort (and possibly restart) on demand. On the
other hand, pure SMR does not offer full transactional semantics—on each node there
is only one transaction executed at a time (spawned for processing a client request)
that is only allowed to commit and its code must be deterministic. However, we largely
ignore the semantic differences and give, in Section 3, a common specification of the
SMR and TR schemes in terms of properties describing the inter-replica and client-
replica interactions.

In the chapter, we discuss the following replication algorithms:

1. SMR – state machine replication based on total order broadcast; the algorithm re-
sembles the original idea proposed in [17,33] but was modified to optimize the
read-only transactions, as in [29];

2. DUR – deferred update replication that follows the idea presented in [7];
3. MvDUR – deferred update replication with multiversioning; it extends the previous

algorithm with an optimization technique that dates back to first database systems
[4];

4. HTR – a hybrid state-machine-based and deferred-update replication scheme pro-
posed in [14], which seamlessly combines SMR and DUR with multiversioning
into one replication scheme;

5. Postgres-R – an algorithm proposed in [12] that aims at improving DUR by reduc-
ing the amount of data transmitted via a network;

6. EDUR – executive deferred update replication proposed in [15], which uses a leader
of the broadcast protocol to streamline transaction certification.

Interestingly, replication schemes designed for database systems often are not suit-
able for replication of services (processes) or software transactional memory (see e.g.,
[30,25]). This is because typical workloads in TR systems are much different than
those in SQL database systems, in which transactions are relatively long, require time-
consuming optimizations of queries, and perform costly I/O operations. On the contrary,
transactions performed by a replicated service are usually very short (take a fraction of
a millisecond to execute) and access few shared objects. The crucial observation here is
that, usually, the transaction execution times are much shorter than the latency caused
by the network communication. Hence, the main design aspect of TR systems is mini-
mizing the inter-replica synchronization footprint, both in terms of the communication
steps as well as the amount of data that need to be communicated between replicas.

We aim our chapter at developers of replication frameworks and all those who would
like to learn about transactional replication. We therefore explain the algorithms and
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their properties in detail. Each algorithm is presented by giving its pseudocode. We
then compare the algorithms taking into account their semantics, the overhead due to
concurrency control and transaction certification, the number of communication steps,
the number and volume of network transmissions, and the expected performace under
different workload types.

The structure of the chapter is as follows. We begin by defining the system model
and transactional replication properties in Section 2 and discuss problems that face
the designers of such systems in Section 3. Then, we present the SMR algorithm in
Section 4. Next, we describe DUR in Section 5 and various ways this scheme can be
optimized (the MvDUR, HTR, Postgres-R, and EDUR algorithms) in Sections 6–9.
Then, we compare the presented algorithms in Section 10, and finally conclude and
give references to related work in Section 11.

2 System Model and Properties

In this section, we describe the system model and properties. A replicated process
P = {P1, ...,Pn} consists of n service processes (replicas) Pi (i = 1..n) running on in-
dependent machines (nodes) connected via a network. Each process Pi has access to its
own volatile memory and stable storage; the combined content of the two constitutes
local state. S = {S1, ...,Sn} is a replicated state, where Si is a local state of process Pi

(i = 1..n). A transaction executed by process Pi can only access objects that belong to
local state Si.

We assume a crash-recovery failure model in which processes may crash indepen-
dently and later on recover and rejoin computation. Processes can recover its local state
either from stable storage or other replicas (as in e.g. JPaxos [16]). However, the re-
covery algorithms are beyond the scope of this chapter. A process is said to be up if
it correctly executes its program. Upon crash, a process fails by ceasing communica-
tion with any other processes and becomes a down process. It can rejoin distributed
computation upon a recovery event which requires executing a recovery procedure. A
process is said to be unstable if it crashes and recovers infinitely many times. A pro-
cess is correct if it is eventually permanently up (there is a time after which it never
crashes). Otherwise, it is faulty, i.e. unstable or eventually permanently down (there is
a time when it crashes and later never recovers).

Our replication algorithms are aimed at distributed asynchronous systems which can
be characterized as follows. There is no central coordinator and the processes communi-
cate solely by exchanging messages using bidirectional fair-loss links [2]. For simplicity,
however, all presented algorithms use perfect links (no messages are lost) since they can
be easily implemented on top of fair-loss links (see e.g., [5]). Messages may be lost and
no upper bound on message transmission is known. The failure pattern of messages is
independent from the one of processes. No assumption is also made on the relative com-
putation speeds of the processes. However, we assume availability of a failure detector
Ω [6], which is the weakest failure detector capable of solving consensus in a distributed
asynchronous system in which processes or communication links may fail.

In addition to service processes we consider an unspecified number of external client
processes. We assume that the clients are independent and they do not communicate
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Properties of a replicated process P:

R1: Validity: If a process Pj modifies object o with v during state update, then w(ok)v was exe-
cuted by some process Pi (i = j or i �= j) as part of some transaction that commits.

R2: Termination: On commit of a transaction T , every correct process Pi eventually applies T ′s
updates (modified objects) to its local state Si.

R3: Integrity: No process updates its state twice as the result of executing a transaction T .

R4: Agreement: No two correct processes update their state differently as the result of executing
a transaction T .

R5: Atomicity: Operations of a transaction T and any T ’s updates to S are performed atomically.

R6: Causal order: No process Pi updates state Si as the result of request r2 unless Pi has already
updated Si as the result of any update request r1, such that r1

c−→ r2.

R7: Total order: Let r1 and r2 be any two requests. Let Pi and Pj be any two processes that update
state as the result of r2. If Pi updates state on r1 before r2 then Pj updates state on r1 before r2.

Properties of client-P interaction:

C1: Validity: If a client sends a request r to a correct process Pi then replicated process P executes
T and eventually returns the response to r to the client.

C2: No creation: If a request r is handled by some process Pi, then r was previously sent by some
client.

C3: No duplication: No response is delivered more than once.

C4: Causal order: Let r1 and r2 be any two requests such that r1
c−→ r2. If res1 and res2 are

responses to these requests (r1 and r2, respectively) delivered to the client, then res1 is delivered
before res2.

Fig. 1. Properties of transactional replication

with each other directly. The only possible client interaction is through the replicated
service. They can submit requests to any of the service processes and await responses.
A client may submit only one request at a time. If a client does not receive any response
after submitting a request, it can choose a different replica and issue the request again.
Such a situation can occur if a replica is down or a timeout was reached due to high
communication latency. Each request is processed by an atomic transaction. In case
of optimistic replication schemes, such as DUR, transactions are executed in parallel
and some of them may conflict. The conflicting transactions are reexecuted until they
finally commit (or explicitly abort). However, the clients are not aware of transaction
reexecutions.

We assume a simple communication interface: to communicate with a replicated
service, a client sends a request message 〈Request | (id, LC, code, args)〉, denoted r,
which is then handled by a replicated process P by executing an atomic transaction T
identified by r.code, where T can use arguments args; id is the message identifier and
LC will be explaned in Section 3. Then, replicated process P will return to the client
a response to request r using a message 〈Response | (r.id,LC,res)〉, where result res
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depends on the local state read by transaction T . We use a notation r.a to denote a record
field a of message r.

In general, transactions can execute any legal program containing operations r(ok)v,
w(ok)v, abort, and retry, which respectively, read or write a value v to object o in
version k, and abort or retry T . Writes of transaction T to object versions on replica Pi

can be seen by other transactions on Pi only after Pi updates state Si with the modified
objects. All transactions (including retried) eventually commit or abort. On commit, T
updates a replicated state S (with modified objects) and returns result res. On abort, T
returns /0.

In Figure 1, we define the properties of a transactional replication system, taking
into account the handling of requests by a replicated process P (rules R1-R7) and the
interaction between the clients and P (rules C1-C4). All algorithms described in this
chapter guarantee these properties. In the specification, we use the symbol

c−→ to denote
a causal order relation defined as follows: if r1

c−→ r2, then request r2 depends on result
res returned by r1.

3 Replicated Algorithm Design Problems

Replication of a service means maintaining the service’s code and state on a number of
machines, so when some of them fail, others can continue to provide the service and
process clients’ requests. The service’s state consists of all data which the service and
the replication protocol operate on and their current status of execution. Developing
replication frameworks is challenging due to some known fundamental problems in
distributed systems. Below we discuss the problems which are related to inter-replica
and client-replicas synchronization, and fault-tolerance.

Inter-replica synchronization. In order to guarantee consistency of state updates,
replicas must synchronize, which is inherently difficult in a distributed system. For-
mally, many such problems can be reduced to the problem of consensus, i.e. reaching
agreement among a group of distributed processes on a single value proposed by one
of them. It has been proven that this problem is impossible to solve in a fully asyn-
chronous distributed system [10]. However, some additional assumptions can be made
about the system (e.g., the existence of partial synchrony and failure detectors) which
make this problem solvable. Solving the consensus problem efficiently is essential for
performance of TR schemes described in this chapter. The best known algorithm of this
sort is Paxos [18], which solves the consensus problem assuming that the majority of
processes is not faulty (meaning not down). If a “faulty process” is as defined in Sec-
tion 2, then also some additional mechanism is required to support process recovery (see
e.g., [16]). In fact, Paxos can solve an infinite sequence of consensus instances. Thus,
distributed processes can use this protocol to propose (in multiple consensus instances)
and agree upon a common set and order of messages. This semantics is captured by To-
tal Order Broadcast (TOB) [5,9]. This primitive enables reliable broadcast of messages
with a guarantee that all messages are delivered by all non-faulty processes in the same
order. All algorithms discussed in this chapter rely on TOB or protocols derived from
it. This, in turn, allowed us to directly compare them.

Client-replicas synchronization. The interaction between the external clients and
the replicated service is not trivial. Imagine a client who issues a request r1 to one of
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the replicas, say Pi. Pi handles r1 and sends a response back to the client. The response
to request r1 can only be sent after the request is stable in the system, which means
that Pi has updated its local state and it is sure that all other non-faulty replicas will
also eventually update state. Therefore, some of the replicas may lag behind others. It is
possible, then, that upon receiving a response to r1, the client issues a new request r2 to a
replica Pj that lags behind Pi. If Pj subsequently executes r2 and r2 is causally dependent
on r1 (which is typical), then inconsistencies may be introduced to the system.

Fortunately, this problem can be easily solved using logical clocks LCi that are main-
tained by replicas Pi (i = 1..n). Every replica Pi will increment LCi each time it has
updated local state Si. A replica Pi which is handling a client request r1 will return to
the client the current value of LCi in response to r1 just after r1 is stable. The client can
attach the obtained clock value to a subsequent request r2 (in a field r2.clock). Since
the clock values are monotonically increased, a replica handling r2 can check whether
its state is up-to-date and so it can execute the request, or it has to postpone its process-
ing until it synchronizes with the rest of the replicas. All algorithms presented in this
chapter feature this mechanism.

Consider yet another troublesome scenario. A client sends a request r to a replica Pi

and awaits the response. Pi crashes before sending reply to the client, or it takes excep-
tionally long time for the replica to reply to the client. The client may become impatient
and issue request r again, but this time to another replica. In effect, the request may be
executed twice. To prevent this undesirable behavior, a history could be maintained (and
garbage collected after some time) of all requests sent by each client, which will allow
detection of duplicates. However, for brevity, we omit this code in the presentation of
the algorithms.

Fault-tolerance. The transactional replication systems must be robust against fail-
ures. Ideally, a replicated service should be operational when all machines except one
crash. However, this requirement is usually too strong since systems fulfilling it cannot
be implemented efficiently. It is because the replicas would have to extensively use sta-
ble storage in order to be able to recover in the event of failures. On the other hand, if
majority of processes is up and running at any time, recovery of failed processes can be
very efficient and does not require replicas to access stable storage during the normal
(non-faulty) operation. All of the replication schemes discussed in this chapter fall into
the latter category.

4 State Machine Replication

State Machine Replication (SMR) [17,33] is one of the simplest replication schemes. It
does not support full transactional semantics, but we included SMR in our discussion
as it serves as a base for some optimized TR schemes. In this replication scheme, a
service replica (process) begins execution on every server from the same initial state
and advances by processing all client requests sequentially. Note that each process has
to be deterministic. Otherwise, consistency among replicas could not be preserved as
the replicas might diverge. Then, the crucial element of SMR is the protocol which is
used for dissemination of requests to be executed by all processes in the same order. The
required semantics is provided by the Total Order Broadcast (TOB) protocol defined in
Section 3.
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Algorithm 1. State Machine Replication for process pi

1: integer LC ← 0

Thread q on request r from client c (executed on one replica)
2: response res ←⊥
3: upon INIT

4: if r.code is read-only then
5: wait until LC ≥ r.clock
6: lock { res ← execute r.code with r.args }
7: else
8: TO-BROADCAST r
9: wait for res
10: return (r.id,LC,res) to client c

The main thread of SMR (executed on all replicas)
11: response res ←⊥
12: upon TO-DELIVER (request r)
13: lock { res ← execute r.code with r.args
14: LC ← LC+1 }
15: if request with r.id handled locally by thread q then
16: pass res to thread q

Algorithm. In Algorithm 1, we show an optimized version of SMR which differen-
tiates between updating and read-only requests [29], thus allowing for some level of
parallelism in the execution of requests. For simplicity, we assume that each incoming
request is handled in a separate thread. Depending on whether the request is read-only
or not, the replica either executes it locally, or broadcasts it to all processes. As for
broadcast, a replica uses the TO-Broadcast primitive of TOB (line 8). The request is de-
livered by each replica (through the TO-Deliver event) and independently executed by
the replica’s main thread (line 13). Finally, the replica that received the request, sends
the response back to the client (line 10).

On the other hand, if the request is read-only, the replica has to first make sure that
it is aware of the changes performed by all requests issued by the same client earlier
(this procedure pertains to the problem described in Section 3). For this purpose, each
replica stores a logical clock variable LC and attaches its current value to every re-
sponse message that is sent to the client. This value is then enclosed in the subsequent
request message issued by the client (in the field clock) and is used to check whether
the replica that handles the request is up-to-date, so that its execution will not result in
any inconsistencies (line 5).

In the presented algorithm, replicas do not perform the above check for updating
requests since the execution order of the updating requests is determined in SMR by
TOB and so it is the same at every replica. In effect, if r1 and r2 are any two requests,
such that r2 causally depends on r1, then r2 can be executed at each replica only after
the replica executed r1.

In our SMR algorithm, the execution of requests is performed within a critical sec-
tion, guarded by a lock (lines 6 and 13). It is because read-only requests cannot be
processed concurrently with updating requests. Otherwise, they could encounter incon-
sistencies, since the updating requests do not operate on copies of objects they modify,
as it is in other schemes described in this chapter, but instead they perform write oper-
ations in place of the old values. It would be possible to run several read-only requests
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in parallel, but this optimization would require using readers-writers locks to protect
critical sections of lines 6 and 13, respectively.

Discussion. The advantages of SMR are obvious. This replication scheme is simple
and can handle machine failures well. However, the performance of SMR is limited by
the capacity of any replica to process the updating requests sequentially. It can there-
fore neither benefit from modern multicore architectures nor scale with the increasing
number of replicas. Furthermore, the semantics of SMR is not as rich as the one avail-
able in the TR scheme, e.g., processing of requests cannot be rolled back or wait for a
condition to be met.

5 Deferred Update Replication

In the rest of the chapter, we focus on multi primary-backup replication [7] (also called
multi-master replication), where each request is executed by only one single replica that
processes the request and issues updates to other replicas, but all replicas can process
requests in parallel. In this approach, we have to be able to resolve any conflicts which
take place between concurrent threads that access the same set of objects and at least
one of the threads modifies the shared object. Here is where the transaction abstrac-
tion comes into play. Then each request is executed as an atomic transaction whose
operations logically occur at a single instant in time, so the intermediate states are not
visible to other transactions. Furthermore, atomicity prevents updates to the state from
occurring only partially.

For efficiency, it is important to limit the amount of synchronization among threads
and replicas. Hence, we focus on replication schemes featuring optimistic concurrency
control. They require much less synchronization than those relying on the pessimistic
one. It is because transactions are executed without upfront locking of objects that are to
be accessed by these transactions but, instead, they operate on their own local copies of
the objects. Any object modifications are then applied to the replica state on transaction
commit.

Deferred Update Replication (DUR) [7] is the simplest transactional replication
scheme of this sort. Typically, DUR supports full replication, and each replica can
handle multiple requests in separate threads using optimistic transactions. The trans-
actional semantics ensures that the requests are processed atomically and in isolation.
The transaction’s execution phase is followed by the committing phase in which the
replicas synchronize and certify transactions.

Transaction certification means checking if a committing transaction does not con-
flict with concurrent transactions. It is the only moment in a transaction’s lifetime
that requires replica and thread synchronization. Upon successful certification, repli-
cas update their state. Otherwise, the transaction is rolled back and restarted. Many
different protocols can be used for transaction certification. In this chapter, we discuss
DUR relying on Total Order Broadcast (see e.g., [27,26,1] among others). Using TOB
avoids blocking and limits the number of costly synchronization steps [1,13,26] (see
also [32,11]).

Algorithm. In Algorithm 2, we give pseudocode for DUR that builds on [14]. Each
replica maintains two global variables. The first one, LC, represents the logical clock
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Algorithm 2. Deferred Update Replication for process pi

1: integer LC ← 0
2: set Log ← /0
3: function GETOBJECT(txDescriptor t, objectId oid)
4: if (oid,ob j) ∈ t.updates then
5: value ← ob j
6: else
7: lock { value ← retrieve object oid }
8: return value
9: function CERTIFY(integer start, set readset)
10: lock { L ←{t ∈ Log : t.end > start} }
11: for all t ∈ L do
12: writeset ←{oid : ∃(oid,ob j) ∈ t.updates}
13: if readset∩writeset �= /0 then
14: return f ailure
15: return success

Thread q on request r from client c (executed on one replica)
16: txDescriptor t ←⊥ // type: record (id, start, end, readset, updates)
17: response res ←⊥
18: upon INIT

19: wait until LC ≥ r.clock
20: raise TRANSACTION

21: return (r.id,LC,res) to client c

22: upon TRANSACTION

23: t ← (a new unique id,0,0, /0, /0)
24: lock { t.start ← LC }
25: res ← execute r.code with r.args
26: COMMIT()
27: upon READ(objectId oid)
28: t.readset ← t.readset∪{oid}
29: if CERTIFY(t.start,{oid}) = f ailure then
30: raise RETRY

31: else
32: return GETOBJECT(t, oid)
33: upon WRITE(objectId oid, object ob j)
34: t.updates ←{(oid′,ob j′) ∈ t.updates : oid′ �= oid}∪{(oid, ob j)}
35: procedure COMMIT

36: if t.updates = /0 then
37: return to INIT

38: if CERTIFY(t.start, t.readset) = f ailure then
39: raise RETRY

40: TO-BROADCAST t
41: wait for outcome
42: if outcome = f ailure then
43: raise RETRY

44: else // outcome = success
45: return to INIT

46: upon ROLLBACK

47: stop executing r.code and return to INIT

48: upon RETRY

49: stop executing r.code
50: raise TRANSACTION

The main thread of DUR (executed on all replicas)
51: upon TO-DELIVER (txDescriptor t)
52: outcome ← CERTIFY(t.start, t.readset)
53: if outcome = success then
54: lock { t.end ← LC
55: Log ← Log∪{t}
56: apply t.updates
57: LC ← LC+1 }
58: if transaction with t.id executed locally by thread q then
59: pass outcome to thread q
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which is used in a similar way as in SMR, i.e., LC is incremented every time a replica
changes its state (line 57) and enables the replica to track whether its state is recent
enough to execute the client’s request (line 19). Additionally, LC is used to mark the
start and the end of the transaction execution (lines 24 and 54). The transaction’s start
and end timestamps, stored in the transaction descriptor (line 16), allow us to reason
about the precedence order between transactions. Let t1 and t2 be transaction descrip-
tors of two transactions T1 and T2. We say that transaction T1 precedes transaction T2

(denoted T1 → T2) iff t1.end < t2.start. If neither T1 → T2 nor T2 → T1, we say that
T1 and T2 are concurrent. The second variable, Log, is a set used to store the transac-
tion descriptors of committed transactions. Maintaining this set is necessary to perform
transaction certification.

The DUR algorithm detects any conflicts among transactions by checking whether a
given transaction T that is being certified read any stale data. The latter occurs when T
read any shared objects that have been modified by a concurrent but already committed
transaction. For this purpose, DUR traces the accesses to shared objects independently
for each transaction. The identifiers of objects that were read and the modified objects
themselves are stored in private, per transaction, memory spaces: readset and updates.
On every read, an object’s identifier is added to the readset (line 28). Similarly, on
every write a pair of the object’s identifier and the corresponding object is recorded
in the updates set (line 34). Then, the CERTIFY function compares the given readset
against the updates of all the committed transactions in Log that are concurrent with
the tested transaction. If it finds any non-empty intersection of the sets, the outcome
is negative. Otherwise, it is positive (no conflicts detected, the transaction is certified
successfully). Note that every time a transaction reads some shared object, a check
against conflicts is performed (line 29). This way T is guaranteed to always read from
a consistent snapshot. When a conflict is detected, T is forced to retry.

When a transaction’s code completes, the COMMIT operation (line 35) is used to end
the transaction and initiate the committing phase, which can be explained as follows. If
T is a read-only transaction (T did not modify any objects), it can commit straight away,
without performing any further conflict checks or replica synchronization, similarly as
in SMR (lines 36–37). A read-only transaction does not need to perform certification as
the possible conflicts would have been detected earlier, upon read operations (line 29).
For update transactions, first, the local certification takes place (line 38), which is not
mandatory but allows the replica to detect conflicts earlier, and thus sometimes avoid
costly network communication. Next, the transaction’s descriptor containing readset
and updates is broadcast to all processes using TO-BROADCAST (line 40). The mes-
sage is delivered in the main thread, where the final certification takes place (line 52).
Upon successful certification of transaction T , replicas apply the updates performed by
T and commit it (lines 54–57). Otherwise, T is rolled back and reexecuted by the same
replica.

To manage the control flow of a transaction, the programmer can use two additional
operations: ROLLBACK and RETRY, whose semantics is similar as in transactional mem-
ory systems. The ROLLBACK operation (line 46) stops the execution of a transaction
and revokes all the changes it performed so far. The RETRY operation (line 48) forces a
transaction to rollback and restart.
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For clarity, we made several simplifications. Firstly, note that the operations on LC
(lines 24, 54, 57), Log (lines 10 and 55) and the accesses to transactional objects (lines
7 and 56) have to be synchronized. For simplicity, a single global lock is used. For
better performance, the implementation can rely on fine-grained locks. Secondly, in
our pseudocode, Log can grow indefinitely. In reality, Log can easily be kept small
by garbage collecting information about the already committed transactions that ended
before the oldest live transaction started in the system.

In the presented algorithm, we use the same certification procedure for both the certi-
fication test performed upon every read operation (line 29) and the certification test that
happens after a transaction descriptor is delivered to the main thread (line 52). In prac-
tice, however, doing so would be very inefficient. It is because for every read operation,
we check for the conflicts against all concurrent transactions (line 10), thus performing
much of the same work again and again. However, this repeated actions can be easily
avoided by associating the accessed shared objects with version numbers—the value of
LC at the time the objects were most recently modified.

Discussion. It is easy to see that, at least theoretically, DUR has the potential to
perform much better than SMR. The capability of executing requests in parallel is espe-
cially valuable for CPU-intensive workloads. Unfortunately, there are also factors that
limit the robustness of DUR. Firstly, the system has to monitor transactional accesses
to all shared objects, which is costly. This overhead cannot be avoided unless we know
a priori the conflict pattern of all transactions. Secondly, the volume of data exchanged
via a network is high, mainly due to, usually large, readsets that have to be broadcast
alongside updates. Thirdly, transaction certification, which can be a costly operation,
is performed independently for every transaction by each process, thus limiting scala-
bility. In the next sections, we present several replication algorithms that address some
of the above problems.

6 Deferred Update Replication with Multiversioning

Multiversioning [4] in an important optimization technique which allows for multiple
versions of transactional objects that are transparent to the programmer. Only one ob-
ject version is accessible by a transaction at any time. Object versions are immutable,
thus they can be accessed concurrently without any synchronization. Furthermore, since
read-only transactions accessing object versions are abort-free, the system does not need
to trace accesses to shared objects for transactions a priori known to be read-only. The
latter feature can greatly improve the overall performance and scalability of the trans-
actional system when workloads are dominated by read-only transactions [30]. All TR
algorithms described in this chapter can benefit from this optimization technique.

Algorithm. In Algorithm 3, we present the DUR scheme extended with multiversion-
ing, which we call Multiversion DUR (MvDUR). In MvDUR, the information about
already committed transactions is no longer stored in Log, and each object can have
many object versions obj, each one paired with their corresponding version numbers
ver. When a transaction commits, the system creates new versions of all objects mod-
ified by the transaction (lines 56–57), all having the same version number assigned,
which is equal to the current value of logical clock LC.
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Algorithm 3. Deferred Update Replication with Multiversioning for process pi

1: integer LC ← 0
2: function GETVERSION(objectId oid, integer notNewerThan)
3: lock { return (ob j,ver) such that ob j is a version of object oid whose version number ver
4: is the highest available such that ver ≤ notNewerThan }
5: function GETOBJECT(txDescriptor t, objectId oid)
6: if (oid,ob j) ∈ t.updates then
7: value ← ob j
8: else
9: (ob j,ver)← GETVERSION(oid, t.start)
10: value ← ob j
11: return value
12: function CERTIFY(integer start, set readset)
13: for all id ∈ readset do
14: (ob j,ver)← GETVERSION(id,∞)
15: if ver > start then
16: return f ailure
17: return success

Thread q on request r from client c (executed on one replica)
18: txDescriptor t ←⊥ // type: record (id, start, end, readset, updates)
19: response res ←⊥
20: upon INIT

21: wait until LC ≥ r.clock
22: raise TRANSACTION

23: return (r.id,LC,res) to client c

24: upon TRANSACTION

25: t ← (a new unique id,0,0, /0, /0)
26: lock { t.start ← LC }
27: res ← execute r.code with r.args
28: COMMIT()
29: upon READ(objectId oid)
30: ob j ← GETOBJECT(t,oid)
31: if r.code is not read-only then
32: t.readset ← t.readset∪{oid}
33: return ob j
34: upon WRITE(objectId oid, object ob j)
35: t.updates ←{(oid′,ob j′) ∈ t.updates : oid′ �= oid}∪{(oid, ob j)}
36: procedure COMMIT

37: if t.updates = /0 then
38: return to INIT

39: if CERTIFY(t.start, t.readset) = f ailure then
40: raise RETRY

41: TO-BROADCAST t
42: wait for outcome
43: if outcome = f ailure then
44: raise RETRY

45: else // outcome = success
46: return to INIT

47: upon ROLLBACK

48: stop executing r.code and return to INIT

49: upon RETRY

50: stop executing r.code
51: raise TRANSACTION

The main thread of MvDUR (executed on all replicas)
52: upon TO-DELIVER (txDescriptor t)
53: outcome ← CERTIFY(t.start, t.readset)
54: if outcome = success then
55: lock { LC ← LC+1
56: for all (oid,ob j) ∈ t.updates
57: add ob j as a new version of object oid with version number LC }
58: if transaction with t.id executed locally by thread q then
59: pass outcome to thread q
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Compared to DUR, there is also a new function GETVERSION which takes two ar-
guments oid and notNewerThan and retrieves a version obj of an object identified with
oid that is the most recent among all those object versions that have a version number
lower than or equal to notNewerThan (lines 2–4). The function can be used to read from
a consistent snapshot of the system and return the newest object versions that existed
in the system up to a given moment in time. This way all reads which are performed
by a transaction are consistent and no conflict checks are necessary. Therefore, read-
only transactions are guaranteed to always commit. For this reason, as stated earlier, if
a transaction is a priori known to be read-only, it does not need to record its accesses in
the readset (line 31).

The transaction certification phase in MvDUR is different and much more efficient
than in DUR. Instead of checking a transaction’s readset against the update sets of (pos-
sibly many) committed concurrent transactions, the certification procedure just com-
pares the version numbers of the objects that were read. If the most recent version of a
read object has a version number which is higher than the transaction’s start timestamp,
then a conflict exists—i.e., a new version was created after the transaction had already
started execution.

The committing phase in MvDUR is similar to DUR’s one. Both algorithms differ in
the way each replica applies transaction updates. In MvDUR, replicas update their state
by adding new object versions (lines 56–57). For this, we have to use locks since these
operations must be done atomically. However, in practice MvDUR can be implemented
in a way that avoids using locks altogether.

In our pseudocode, no object version is ever removed from the system. However,
a simple garbage collection mechanism can be proposed, as follows. Let us consider
a replica R, and let t be the transaction descriptor of the oldest live transaction in R
(t.start is equal to the the lowest value among all descriptors of live transactions in R).
Let d be the set of all object versions in R whose version numbers are lower than or
equal t.start. Then, for each shared object, all its versions in d but the most recent one
can be safely dropped.

7 Hybrid SM-DUR Algorithm

The SMR and DUR (or MvDUR) replication schemes presented in previous sections
are based on different premises. In SMR, any sequential program implementing some
service can be replicated, and the replication framework simply broadcasts requests
using TOB. On the other hand, DUR requires the service’s program to be transaction-
oriented, but it offers potentially much better scalability due to its capability of process-
ing requests in parallel. The two schemes were compared both theoretically and experi-
mentally in [37]. The main corollary drawn from this comparison is that no scheme can
be considered superior.

In SMR, all requests are executed sequentially by all replicas, which does not leave
much room for performance improvement. Therefore, it might seem that DUR, which
supports parallelism, should always outperform SMR. However, this is not the case for
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several reasons. Firstly, the size of messages broadcast can be an order of magnitude
larger than in SMR since a message contains not only the updates that result from
the transaction execution but also the readset, necessary for transaction certification.
Especially the latter set can be of significant size. Also, the cost of bookkeeping readset
and updates is not negligible. On the other hand, a message broadcast in SMR usually
only contains a client request with a reference (with some arguments) to a function that
executes this request. Therefore, it is sometimes more efficient to broadcast a client
request, as in SMR, rather than broadcast the state changes, as in DUR, even at the
cost of executing the request n times independently on each replica. Secondly, there is
also the aspect of concurrency control and its inherent cost in the optimistic replication
schemes. In DUR, transactions may be forced to retry due to conflicts, so a transaction
can be executed multiple times before it eventually commits. If the contention level
is high, the benefits of parallel execution in DUR may not only be overshadowed but
even completely outweighed by the costly transaction reruns. This, in turn, causes the
performance of the system to diminish. On the contrary, in SMR no conflicts ever occur.

The SMR and DUR (or MvDUR) replication schemes also differ in the semantics
offered to the programmer. Unlike DUR, SMR only supports deterministic services.
Otherwise, replicas could diverge when processing the same request and eventually
cause the system to run into inconsistencies. On the other hand, the fact that each request
(transaction) is executed in SMR exactly once by each process, and is never forcefully
retried can be an advantage. For instance, it allows SMR to support operations with
side-effects that cannot be easily undone, such as I/O, system calls, etc. On the other
hand, the basic DUR scheme cannot deal with irrevocable operations well because each
transaction may execute multiple times before it eventually commits. In transactional
memory systems, various techniques were developed to deal with this problem, such
as buffering or executing irrevocable transactions sequentially w.r.t. other transactions.
They can be used to extend DUR accordingly.

These insights led us to merge SMR and DUR into Hybrid Transactional Replication
(HTR) [14]. In this replication scheme, the programmer can use transactional constructs
to encode handlers of client requests as atomic transactions, similarly as in DUR. How-
ever, each transaction is executed in one of two execution modes that are selected dy-
namically: a pessimistic one (SM mode) and an optimistic one (DU mode). A transaction
which is executed in the SM mode is guaranteed an abort-free execution, but its code has
to be deterministic. Moreover, HTR makes sure that only one such a transaction is run in
the system at a time. On the other hand, a transaction which is executed in the DU mode
can run in parallel with any SM transaction and any other DU transactions. Because a DU
transaction is executed only by one replica process, it can also contain non-deterministic
operations. However, a DU transaction may abort, so the client requests that require ir-
revocable operations should only be executed as SM transactions.

Algorithm. Before we dive into the details of HTR, let us discuss the key idea of how
the two transaction execution modes can coexist. The way SM and DU transactions are
executed in HTR closely resembles how the client requests are handled, respectively, by
SMR and DUR, but objects are not modified in place as it is in SMR. HTR manages the
two modes by serializing the execution of SM transactions with the certification of DU
transactions. Therefore, during the execution of a SM transaction, no other transaction
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can modify the system state. This way a SM transaction operates on consistent state and
is guaranteed an abort-free execution. Note that DU transactions execute in isolation on
copies of shared objects, so no interference with other transactions is possible. The order
in which the main HTR thread certifies DU transactions and executes SM transactions
is determined by TOB. Therefore, each replica advances exactly in the same way.

The pseudocode of the HTR algorithm (see Algorithm 4) shares many parts with
MvDUR, on which HTR is based. 1 HTR features an abstraction called the transaction
oracle. After a replica receives a request, the oracle is queried to asses whether to ex-
ecute the request as a DU or SM transaction (line 25). In practice, the decision made
by the oracle relies on hints declared by the programmer as well as on dynamically
collected data regarding various aspects of system’s performance. Note that, the request
execution mode is determined on per transaction execution basis. It means that a request
can be first executed multiple times as a DU transaction (due to aborts) and then as a
SM transaction (which is guaranteed to always commit).

The execution and committing phases of DU transactions are almost identical as in
MvDUR. The only difference lies in feeding the oracle with the statistics regarding
transaction execution (lines 54, 57 and 61) which, in turn, allow the oracle to adjust
its future decisions. On the other hand, if the oracle determines that a request is to be
executed as a SM transaction, it is first broadcast using TOB (line 32). When the re-
quest is delivered, it is processed by the same thread that certifies DU transactions and
applies their updates (lines 76–79). A SM transaction does not execute directly on the
shared objects as in SMR. Instead, it uses shared object copies as a DU transaction does.
By doing so, a SM transaction can be easily rolled back on demand at any time. More-
over, SM transactions produce versions of objects that can be used by other transactions
(including the read-only ones) exactly the same way as the versions produced by reg-
ular DU transactions. For this purpose, HTR features the appropriate upon statements
(TRANSACTION, READ, WRITE, ROLLBACK, and RETRY) in the main thread section.
Since a SM transaction is guaranteed to commit, it does not need to maintain readset
(line 86). A SM transaction commits by simply applying the updates it produced (lines
90–92) and returning the result to the thread that originally received the request (lines
78–79).

Discussion. HTR brings together the best features of both SMR and DUR. It of-
fers rich transactional semantics, also when the client requests are executed in the SM
mode. Additionally, it supports irrevocable operations, which is not typical in replica-
tion schemes featuring optimistic concurrency control. In terms of performance, HTR
is at least as good as either SMR or DUR. Moreover, HTR can dynamically adapt to
a changing workload because the oracle can monitor the system’s performance and
adjust its decisions accordingly. However, for HTR to perform well, the oracle has
to be tailored to the application in question. In [14], we outline the most important
aspects of a good oracle design and describe example oracles for several benchmark
applications.

1 HTR does not require multiversioning in order to work. However, the only existing implemen-
tation of HTR is based on MvDUR [14].
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Algorithm 4. Hybrid Transactional Replication for process pi (part 1)

1: integer LC ← 0
2: function GETVERSION(objectId oid, integer notNewerThan)
3: lock { return (ob j,ver) such that ob j is a version of object oid whose version number ver
4: is the highest available such that ver ≤ notNewerThan }
5: function GETOBJECT(txDescriptor t, objectId oid)
6: if (oid,ob j) ∈ t.updates then
7: value ← ob j
8: else
9: (ob j,ver)← GETVERSION(oid, t.start)
10: value ← ob j
11: return value
12: function CERTIFY(integer start, set readset)
13: for all id ∈ readset do
14: (ob j,ver)← GETVERSION(id,∞)
15: if ver > start then
16: return f ailure
17: return success

Thread q on request r from client c (executed on one replica)
18: txDescriptor t ←⊥ // type: record (id, start, end, readset, updates, stats)
19: response res ←⊥
20: upon INIT

21: wait until LC ≥ r.clock
22: raise TRANSACTION

23: return (r.id,LC,res) to client c

24: upon TRANSACTION

25: mode ← TransactionOracle.query()
26: if mode = DU then
27: t ← (a new unique id,0,0, /0, /0, /0)
28: lock { t.start ← LC }
29: res ← execute r.code with r.args
30: raise COMMIT()
31: else // mode = SM
32: TO-BROADCAST r
33: wait for (outcome,res, t)
34: UPDATEORACLESTATISTICS(t)
35: if outcome = retry then
36: raise TRANSACTION

37: upon READ(objectId oid)
38: ob j ← GETOBJECT(t,oid)
39: if r.code is not read-only then
40: t.readset ← t.readset∪{oid}
41: return ob j
42: upon WRITE(objectId oid, object ob j)
43: t.updates ←{(oid′,ob j′) ∈ t.updates : oid′ �= oid}∪{(oid, ob j)}
44: procedure COMMIT // for DU transactions
45: if t.updates = /0 then
46: return to INIT

47: if CERTIFY(t.start, t.readset) = f ailure then
48: raise RETRY

49: TO-BROADCAST t
50: wait for outcome
51: if outcome = f ailure then
52: raise RETRY

53: else // outcome = success
54: UPDATEORACLESTATISTICS(t)
55: return to INIT

56: upon ROLLBACK // for DU transactions
57: UPDATEORACLESTATISTICS(t)
58: stop executing r.code and return to INIT

59: upon RETRY // for DU transactions
60: stop executing r.code
61: UPDATEORACLESTATISTICS(t)
62: raise TRANSACTION

63: procedure UPDATEORACLESTATISTICS(txDescriptor t)
64: TransactionOracle. f eed(t.stats)
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Algorithm 4. Hybrid Transactional Replication for process pi (part 2)
The main thread of HTR
65: txDescriptor t ←⊥ // type: record (id, start, end, readset, updates, stats)
66: enum outcome ←⊥ // type: enum {committed, rolledback, retry, success, failure}
67: response res ←⊥
68: upon TO-DELIVER (txDescriptor t)
69: outcome ← CERTIFY(t.start, t.readset)
70: if outcome = success then
71: lock { LC ← LC+1
72: for all (oid,ob j) ∈ t.updates
73: add ob j as a new version of object oid with version number LC }
74: if transaction with t.id executed locally by thread q then
75: pass outcome to thread q
76: upon TO-DELIVER (request r)
77: raise TRANSACTION

78: if request r handled locally by thread q then
79: pass (outcome,res, t) to thread q

80: upon TRANSACTION // for SM transactions
81: t ← (a new unique id,0,0, /0, /0, /0)
82: lock { t.start ← LC }
83: res ← execute r.code with r.args
84: COMMIT()
85: upon READ(objectId oid) // for SM transactions
86: return GETOBJECT(t,oid)
87: upon WRITE(objectId oid, object ob j) // for SM transactions
88: t.updates ← t.updates∪{(oid, ob j)}
89: procedure COMMIT // for SM transactions
90: lock { LC ← LC+1
91: for all (oid,ob j) ∈ p.updates
92: add ob j as a new version of object oid with version number LC }
93: outcome ← committed
94: return to TO-DELIVER

95: upon ROLLBACK // for SM transactions
96: outcome ← rolledback
97: stop executing r.code and return to TO-DELIVER

98: upon RETRY // for SM transactions
99: outcome ← retry
100: stop executing r.code and return to TO-DELIVER

8 Postgres-R

In the previous sections we explained that the great strength of the algorithms such as
DUR (or MvDUR) is the fact that there is only one communication step for each trans-
action’s run. However, there is no such thing as free lunch. DUR trades low commu-
nication latency for a high volume of data to be broadcast and transaction certification
which has to be performed independently by each replica. In this section we present
Postgres-R [12], an algorithm originally proposed for database replication, which ap-
pears similar to DUR but is able to compensate some of its limitations. Postgres-R has
also been used in distributed TM [8]. Unlike in DUR, in Postgres-R no readset is broad-
cast after a transaction completes its execution. Also, in total, all processes perform less
certification, thus saving resources. Postgres-R, however, requires an additional com-
munication phase—a process that executed the transaction broadcasts to all replicas the
final decision on whether to commit or abort the transaction. This additional broad-
cast is performed after the process broadcasts and delivers the updates produced by the
transaction.
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Algorithm 5. Postgres-R for process pi (part 1)

1: integer LC ← 0
2: set AbortedTx ← /0, DecidedTx ← /0
3: function GETOBJECT(txDescriptor t, objectId oid)
4: if (oid,ob j) ∈ t.updates then
5: value ← ob j
6: else
7: lock { acquire read lock on oid for transaction t.id }
8: value ← retrieve object oid
9: return value

Thread q on request r from client c (executed on one replica)
10: txDescriptor t ←⊥ // type: record (process, id, start, end, updates)
11: response res ←⊥
12: upon INIT

13: wait until LC ≥ r.clock
14: raise TRANSACTION

15: return (r.id,LC,res) to client c

16: upon TRANSACTION

17: t ← (pi,a new unique id,0,0, /0)
18: lock { t.start ← LC }
19: res ← execute r.code with r.args
20: COMMIT()
21: upon READ(objectId oid)
22: return GETOBJECT(t, oid)
23: upon WRITE(objectId oid, object ob j)
24: lock { acquire write lock on oid for transaction t.id }
25: t.updates ←{(oid′,ob j′) ∈ t.updates : oid′ �= oid}∪{(oid, ob j)}
26: procedure COMMIT

27: if t.updates �= /0 then
28: TO-BROADCAST t
29: wait for outcome
30: lock { release all the locks held by transaction t.id }
31: return to INIT

32: upon ROLLBACK

33: lock { release all the locks held by transaction t.id }
34: stop executing r.code and return to INIT

35: upon RETRY

36: lock { release all the locks held by transaction t.id }
37: stop executing r.code
38: raise TRANSACTION

39: upon ABORT

40: raise RETRY

Algorithm. The pseudocode for Postgres-R is given in Algorithm 5. Similarly to
DUR, Postgres-R executes a transaction on copies of shared objects. Unlike DUR, how-
ever, Postgres-R does not maintain readsets for executed transactions and extensively
relies on the read-write locks associated with each shared object (lines 7 and 24). The
locks prevent live transactions from reading an inconsistent snapshot. In this sense, the
locks fulfill the same function as the local certification procedure performed upon every
read operation in DUR.

Once a transaction T finishes execution, the transaction’s descriptor containing the
process ID, the transaction ID, start timestamp and the updates that T produced, is
broadcast to all replicas using TOB (line 28). Since the message does not contain
readset (as in DUR), replicas cannot independently certify T . In Postgres-R certifi-
cation happens somewhat indirectly and is driven by TOB. Similarly as in DUR, TOB
is used to establish the serialization order on all (updating) transactions in the system.
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Algorithm 5. Postgres-R for process pi (part 2)
The main thread of Postgres-R (executed on all replicas)
41: upon TO-DELIVER (txDescriptor t) lock
42: if t.id ∈ AbortedTx then
43: return
44: if transaction with t.id executed locally by thread q then
45: outcome ← commit
46: R-BROADCAST (t.id,outcome)
47: DecidedTx ← DecidedTx∪{t.id}
48: apply t.updates
49: LC ← LC+1
50: pass outcome to thread q
51: else
52: for all (oid,ob j) ∈ t.updates do
53: if read or write lock acquired on oid by some transaction t ′.id executed locally by thread q then
54: AbortedTx ← AbortedTx∪{t ′.id}
55: R-BROADCAST (t ′.id,abort)
56: raise ABORT on thread q
57: enqueue write lock request on oid for transaction t.id
58: upon R-DELIVER(integer id, decision d) lock
59: if id ∈ DecidedT x then // transaction executed locally
60: return
61: if d = commit then
62: DecidedTx ← DecidedTx∪{id}
63: else // d = abort
64: AbortedTx ← AbortedTx∪{id}
65: release all the locks held by transaction id
66: upon GRANTED ALL LOCKS ENQUEUED FOR TRANSACTION t.id AND t.id ∈ DecidedTx lock
67: apply t.updates
68: release all the locks held by transaction t.id
69: LC ← LC+1
70: upon PROCESS pj CRASH // reliable information from group membership mechanism
71: lock { release all locks/dequeue all lock requests for transactions t.id such that t.process = pj }

Transactions in committing state that are TO-Delivered preempt earlier transactions
whose updates are not yet TO-Delivered. This is done in the following way: upon de-
livery of a new transaction descriptor (line 41) a replica tries to acquire write locks
for every object in the update set on behalf of the incoming transaction; if the lock is
held by a local transaction whose updates were not yet broadcast and delivered, the
local transaction is aborted (lines 54–56) and its locks are released (line 36). At this
point the replica is the sole process which has the knowledge about the outcome of
this local transaction. Because the aborted transaction might have already broadcast its
transaction descriptor, which other processes will eventually deliver, the replica needs
to inform them of its decision to abort the transaction.2 For this purpose the reliable
broadcast (RB) is used (line 55). It is sufficient because decision messages do not need
to be ordered.

If a committing transaction is not preempted and it gets to the point where it is TO-
Delivered by the replica which initiated it, then the transaction can finally commit (lines
45–50). Similarly as in case of an aborted transaction, only one process knows about
the outcome, so it has to inform others of the decision to commit (line 46). The next
step is to apply the updates and increment LC. The updates can be applied straight

2 If the aborted transaction was still in the executing phase, i.e. it did not reach the commit phase,
then this step can be ignored. However, this optimization is not reflected in the pseudocode.
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away, because in case of a local transaction we are sure that it holds the locks for every
modified object since its execution phase.

The commitment of a foreign transaction (initiated by a different replica) is more
complicated (lines 52–57). As previously stated, first, the transaction needs to acquire
write locks for every updated item. If they are held by local (executing or committing)
transactions, the local transactions need to be preempted. However, locks may also be
held by other foreign committing transactions which wait to be committed. Therefore,
the replica enqueues lock requests on behalf of the incoming transaction (line 57). The
operation of acquiring locks and enqueuing lock requests for individual objects must
be atomic and the lock requests need to respect FIFO order. Note, that three upon
statements handled by the main Postgres-R thread feature a lock in its declaration (lines
41, 58 and 66) meaning the whole statement is guarded by a global lock. Therefore, all
accesses to read/write locks in the pseudocode are protected from interleaving with each
other. Besides acquiring the locks one more condition needs to be met for a transaction
to be able to commit. The replica that initiated it must take the actual decision to commit
it and then broadcast this decision. Only when the appropriate decision is R-Delivered
(line 58) and all the required locks are granted (line 66) the process of committing can
be finished (lines 67–69). Naturally, if the R-Delivered decision is to abort, then the
waiting transaction is dropped and all the locks it managed to acquire are released (line
65).

Sometimes the decision message for some transaction T may arrive at some process
before the message with T ’s transaction descriptor. Postgres-R, therefore, maintains two
sets AbortedTx and DecidedTx, so it knows whether to apply or drop the updates once
they arrive. Now, consider a scenario in which the decision message for a transaction T
never arrives because of a replica crash. In such a case, every replica would indefinitely
hold locks for all objects modified by T . It is easy to show that a simple timeout-based
mechanism running independently on each replica is not sufficient. Therefore, replicas
need to abort such transactions in a coordinated fashion. For this purpose, Postgres-R
utilizes group communication services. Whenever processes leave (because of failures
or shutdowns) or join (recovering processes), the group communication module creates
different views in the computation. A view gives an illusion of a stable configuration
consisting of only operational processes. All messages sent within a view are confined
to that view.

In case of failures, upon a view change, we can identify active transactions origi-
nating at the failed site and we can safely abort them (line 71) without compromising
consistency of the non-faulty processes. Even if the crashed replica has broadcast a
commit decision just before the crash, this message will not be delivered to any of the
processes. This is because a new view is established, and all the messages from previous
view were already delivered or are discarded.

Discussion. As described above, the process of certification in Postgres-R is some-
what indirect. Incoming transactions, whose order is established with TOB, invalidate
live transactions that are local to specific replicas. Therefore, the certification is dis-
tributed and replicas need additional synchronization to disseminate the result of cer-
tification. Instead of certifying each transaction directly, the processes have to rely on
others to broadcast the final decision in a second phase. The additional broadcast greatly
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increases the latency of a transaction’s commit. It means that the concurrent transactions
may have to wait significant amount of time on locks held by a transaction waiting for
the decision message. In turn, these concurrent transactions are more prone to abort
induced by transactions executed by other replicas. One can see, then, that even low
contention is problematic to Postgres-R. It seems, therefore, that Postgres-R is not suit-
able for transactional replication where transactions are usually short and access few
objects but may conflict often. One has to remember, though, that Postgres-R was orig-
inally designed for database systems, not distributed TM.

So what types of workloads does Postgres-R handle well? Transactions in Postgres-
R have to be long and access many objects. Only then the potential gains that stem
from not having to broadcast readset (as in DUR) are worth the cost of an additional
communication phase.

9 Executive Deferred Update Replication

In this section we present yet another DUR-based algorithm, called Executive Deferred
Update Replication (EDUR) [15]. The key idea behind EDUR lies in an observation re-
garding some distributed agreement protocols, such as Paxos. These algorithms feature
a distinguished process, the leader, which is responsible for coordination of message
broadcast. It means that a message broadcast by some process is first received by the
leader who, essentially, stamps it with a sequence number before sending it to the rest
of the processes. This way each process knows the final message delivery order. Since
all messages pass through the leader, we can use the leader to perform some additional
work before it forwards the messages to the rest of the replicas. In particular, EDUR
uses the leader to certify transactions on behalf of all replicas. Streamlining transaction
certification with the broadcast protocol has several advantages. Firstly, certification is
performed only by one process, not by all process as in DUR. Secondly, the network
traffic is greatly reduced which can be explained as follows. Once a transaction is certi-
fied successfully, only the set containing the updates resulting from transaction execu-
tion has to be forwarded to all replicas. The often large readset required for transaction
certification is no longer needed. In case a transaction fails certification, the leader only
needs to inform the process that executed the transaction that it has to be restarted. Fi-
nally, unlike Postgres-R, EDUR does not increase the number of communication steps
for each transaction’s run. It means that EDUR can be implemented efficiently.

It is worth to note that the load of the leader in EDUR not only does not increase
compared to DUR but even can be lower. Both in DUR and EDUR the leader certifies
transactions but in the latter case the certification procedure occurs earlier and the size
of messages broadcast is often much smaller, which attribute to lower load.

Let us focus for a while on a broadcast protocol that serves as a base for EDUR. It
turns out that it is insufficient to simply extend this protocol so that the leader executes
some routine before a message is forwarded to the rest of the processes. It is because
the leader, by processing the messages and possibly changing their content, establishes
a prefix order on the sequence of messages it sends. In other words, the messages which
were concurrently issued by different replicas and pass through the leader are no longer
independent with regard to each other. Any message m that appears later in the sequence
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is logically dependent on any message m′ that appears in the sequence prior to m.3 This
would not be problematic if the leader coordinated only one consensus instance at a
time. Then, a new transaction did not undergo a certification until the message regarding
the previously certified transaction would not be delivered by the leader (in the total
order broadcast sense). This way, upon leader change, the new leader would be aware
of all transactions certified by the previous one, thus preserving consistency. However,
for performance reasons, TOB protocols such as Paxos allow for concurrent processing
of several consensus instances. This means that a different solution is required.

In [15], we point out that it would be possible to build EDUR on top of Extended
Virtual Synchrony (EVS) [22]. In EVS, processes are organized within groups of pro-
cesses that maintain dynamic views of processes that are considered to be operational.
As noted in Section 8, a process view gives an illusion of a stable group configuration
consisting of only correct processes that never crash. Whenever a process is suspected
to have crashed or voluntarily joins or leaves the group a new view is formed. Messages
sent within a view are confined to that view. It is therefore possible to safely elect some
process in each view and make it responsible for transaction certification. However,
EVS limits the performance of EDUR in several ways. Most importantly, EVS requires
a system to pause computation upon every view installation event. The overhead should
not be noticeable if views do not change often. Unfortunately, a new view has to be
installed every time any process begins to be suspected of a failure by any other process
from the same group. If a group is large such a situation can be a commonplace. For
these reasons, EDUR uses a new broadcast protocol called Executive Order Broadcast
(EOB).

Below we characterize EOB informally (see [15] for a formal specification). EOB
extends TOB in two aspects. Firstly, EOB introduces a number of new primitives that
allow the programmer to define actions to be undertaken by the leader before a message
is forwarded to the rest of the replicas (see below). Secondly, in EOB the total order
property of TOB is substituted by the executive order. This property guarantees that not
only all messages are delivered by each replica in the same order but also it ensures
that the prefix order imposed by the leader is always preserved. The definition of EOB
accounts for multiple concurrent leaders, so it is possible to devise an EOB-enabled
algorithm similar to Paxos. In fact, the implementation of EOB in [15] is based on
Paxos.

Let us review the primitives and events of EOB. EO-BROADCAST(id,mc) and
EO-DELIVER(id,mc′) correspond to the ones of TOB. In addition they account for the
fact that the content mc of the broadcast message can be changed by the leader. Therefore,
the unique identifier id is used to distinguish between messages. The next four primitives
are characteristic for EOB: EO-LEADERELECT and EO-LEADERRECALL are used by
a local failure detector to inform the process that it has to, respectively, take on or relin-
quish the duties of the leader process (and we say that during the time periods between
these events the process is a leader). A leader receives EO-LEADERDELIVER(id,mc)

3 Naturally, all messages issued by replicas as a result of processing requests from the same
client form a sequence of logically dependent messages. However, a client cannot issue a new
request, until the previous one returns.
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events, so it can process the incoming messages. To broadcast a (possibly) modified
message, the leader invokes the EO-LEADERBROADCAST(id,mc′) primitive.

When the leader promptly forwards all messages that it received through the EO-
LeaderDeliver events, with no additional action, EOB is reduced to TOB. In fact, EOB
is strictly stronger than TOB. One can also show that EOB is strictly weaker than EVS.
It is because, unlike EVS, EOB does not feature the group membership service. Most
importantly, however, under stable conditions, EOB can operate as efficiently as TOB
but, unlike EVS, it requires reconfiguration only when the current leader is suspected
to have crashed (groups in EVS are reconfigured each time any process is suspected).

Algorithm. Once we understand how EOB works, we can describe pseudocode for
EDUR, given in Algorithm 6. It is based on MvDUR presented in Section 6. The most
apparent difference between MvDUR and EDUR lies in the fact that EDUR features a
leader thread running on each replica (lines 54–78). During the time between the EO-
LeaderElect and EO-LeaderRecall events (lines 62 and 68), the thread performs transac-
tion certification on behalf of other replicas (line 72). Note that, the EO-LEADERELECT

primitive takes as an argument initialHistory. It is an ordered set which represents the
initial (unreliable) knowledge of the leader about the EO-Broadcast but not yet EO-
Delivered transaction descriptors. The order in initialHistory is consistent with the or-
der in which the transaction descriptors were TO-LeaderBroadcast by previous leaders
and in which they will most probably be TO-Delivered soon. It allows the leader to
start certifying incoming transactions as soon as possible, i.e. without waiting for the
appropriate EO-Deliver events. In case the set contains incorrect information, e.g., it
does not include a transaction successfully certified by the previous leader, which was
agreed on by majority of processes, EOB guarantees to invalidate all decisions made
by the new leader, thus preventing any inconsistencies.4 The leader thread maintains
its own tentative logical clock TLC, which is incremented every time a new transaction
descriptor is EO-LeaderDelivered and the transaction is successfully certified (line 73).
The information about successfully certified transactions that are not yet EO-Delivered
is stored in the ProcessedTx set.

The certification procedure performed by the leader (lines 54–61) is a bit different
from the standard one, featured in MvDUR, and also used in EDUR for local transaction
certification (lines 14–19). It is because each transaction T needs to be certified by
the leader also against all transactions T ′ which are (a) concurrent with respect to T ,
(b) have been successfully certified by the leader, and (c) are not yet EO-Delivered
(line 57). After the certification, the transaction descriptor is transformed before it is
EO-LeaderBroadcast. Since the certification is already performed, readset is no longer
needed. Moreover, if the transaction failed certification, the updates set also need not
be broadcast. In such a case, only the transaction identifier is included in the forwarded
message, so that the replica that executed the transaction knows to restart it.5

4 In this sense, the EOB primitives give a leader an impression of being the sole leader in the
system, capable of making authoritative decisions on behalf of the rest of the processes. Obvi-
ously, this makes the work of the programmer much easier.

5 In fact, only a unicast message would suffice in such circumstances. This optimization, how-
ever, would require extending EOB with new primitives, thus making the protocol unjustifiably
more complicated [15].
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Algorithm 6. Executive Deferred Update Replication for process pi (part 1)

1: integer LC ← 0, T LC ← 0
2: set ProcessedTx ← /0
3: boolean IsLeader ← f alse
4: function GETVERSION(objectId oid, integer notNewerThan)
5: lock { return (ob j,ver) such that ob j is a version of object oid whose version number ver
6: is the highest available such that ver ≤ notNewerThan }
7: function GETOBJECT(txDescriptor t, objectId oid)
8: if (oid,ob j) ∈ t.updates then
9: value ← ob j
10: else
11: (ob j,ver)← GETVERSION(oid, t.start)
12: value ← ob j
13: return value
14: function CERTIFY(integer start, set readset)
15: for all id ∈ readset do
16: (ob j,ver)← GETVERSION(id,∞)
17: if ver > start then
18: return f ailure
19: return success

Thread q on request r from client c (executed on one replica)
20: txDescriptor t ←⊥ // type: record (id, start, end, readset, updates)
21: response res ←⊥
22: upon INIT

23: wait until LC ≥ r.clock
24: raise TRANSACTION

25: return (r.id,LC,res) to client c

26: upon TRANSACTION

27: t ← (a new unique id,0,0, /0, /0)
28: lock { t.start ← LC }
29: res ← execute r.code with r.args
30: COMMIT()
31: upon READ(objectId oid)
32: ob j ← GETOBJECT(t,oid)
33: if r.readOnly = f alse then
34: t.readset ← t.readset∪{oid}
35: return ob j
36: upon WRITE(objectId oid, object ob j)
37: t.updates ←{(oid′,ob j′) ∈ t.updates : oid′ �= oid}∪{(oid, ob j)}
38: procedure COMMIT

39: if t.updates = /0 then
40: return to INIT

41: if CERTIFY(t.start, t.readset) = f ailure then
42: raise RETRY

43: EO-BROADCAST t
44: wait for outcome
45: if outcome = f ailure then
46: raise RETRY

47: else // outcome = success
48: return to INIT

49: upon ROLLBACK

50: stop executing r.code and return to INIT

51: upon RETRY

52: stop executing r.code
53: raise TRANSACTION
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Algorithm 6. Executive Deferred Update Replication for process pi (part 2)
The leader thread of EDUR (executed on all replicas)
54: function LEADERCERTIFY(integer start, set readset)
55: if CERTIFY(start,readset) = f ailure then
56: return f ailure
57: lock { con f lictingT x ←{(id,updates,clock) ∈ ProcessedTx :
58: clock > start∧ ∃(oid,ob j) ∈ updates : oid ∈ readset} }
59: if con f lictingT x = /0 then
60: return success
61: return f ailure
62: upon EO-LEADERELECT (ordered set initialHistory) lock
63: TLC ← LC
64: for all t ∈ initialHistory : t.updates �= /0 do
65: TLC ← T LC+1
66: ProcessedTx ← ProcessedTx∪{(t.id, t.updates,T LC)}
67: IsLeader ← true
68: upon EO-LEADERRECALL lock
69: IsLeader ← f alse
70: ProcessedTx ← /0
71: upon EO-LEADERDELIVER(txDescriptor t)
72: if LEADERCERTIFY(t.start, t.readset) = success then
73: TLC ← T LC+1
74: lock { ProcessedTx ← ProcessedTx∪{(t.id, t.updates,TLC)} }
75: else
76: t.updates ← /0
77: t.readset ← /0
78: EO-LEADERBROADCAST t

The main thread of EDUR (executed on all replicas)
79: upon EO-DELIVER(txDescriptor t)
80: if updates �= /0 then
81: outcome ← success
82: lock { if IsLeader = true then
83: ProcessedTx ←{(id,updates,clock) ∈ ProcessedTx : id �= t.id}
84: LC ← LC+1
85: for all (oid,ob j) ∈ t.updates
86: add ob j as new version of object oid with version number LC }
87: else
88: outcome ← f ailure
89: if transaction with t.id executed locally by thread q then
90: pass outcome to thread q

The rest of the pseudocode of EDUR is very similar to MvDUR’s. In fact, the exe-
cution phase of EDUR differs from MvDUR only in using EOB to broadcast messages
(line 43). Naturally, in EDUR processes do not perform certification upon delivering the
message (line 79). Instead, they only update their state if the transaction successfully
passed certification (lines 81–86).

Discussion. It is easy to see why EDUR introduces no inconsistencies during stable
periods, i.e., when a leader process does not change. All messages pass through the
leader which certifies, transforms and finally forwards them to all processes. The leader
does not wait for a transaction it successfully certified to be committed before it certi-
fies other transactions. It means that implicit order on message delivery is introduced.
Since the leader does not change, each process EO-Delivers messages in the order the
leader sent them. The consistency is therefore preserved. During unstable periods the
consistency is preserved as well. It is because EOB makes sure that the prefix order es-
tablished on the messages EO-LeaderBroadcast by the leader is always respected, even
when the leader changes. The system performance during the leader transition periods
is comparable to DUR’s since in EOB the changes of the leader occur smoothly (thanks
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to initialHistory passed to EO-LEADERELECT and the fact that multiple concurrent
leaders are allowed). In fact, the new leader starts just when the old one is suspected to
have crashed, and not only after a distributed agreement is reached to elect a new leader
or establish a new view.

Having only one process to certify the transactions enables us to devise all kinds of
interesting optimizations, not possible with standard DUR/MvDUR [15]. One of the
most interesting involves using a multithreaded certification procedure to improve the
throughput of the leader.

10 Comparison

In Table 1, we compare replication algorithms discussed in this chapter, looking at their
selected features and performance characteristics. We excluded DUR with multiver-
sioning (MvDUR). This powerful optimization technique boosts DUR’s performance
but does not change the characteristics of DUR in any aspect that we consider in our
comparison. Below we discuss and explain our results.

Semantics. All discussed replication algorithms (except SMR) support full transac-
tional semantics, so the programmer can use additional constructs to manage the flow
of control, such as abort and retry (and possibly also commit). In DUR, Postgres-R and
EDUR, a transaction is always executed optimistically. Therefore, these algorithms do
not support irrevocable operations. Naturally, requests executed with SMR may include
irrevocable operations, because SMR always executes all (updating) requests sequen-
tially. Similarly, abort-free execution of irrevocable transactions is guaranteed in HTR
for transactions executed in the SM mode. Additionally, DUR, HTR, Postgres-R and
EDUR guarantee abort-free execution of read-only transactions if only they support
multiversioning.

Complexity. We consider three aspects in the quantitative evaluation of the algo-
rithms. Firstly, we compare the overhead due to the used concurrency control mecha-
nisms. All replication schemes featuring transactional semantics require some
additional computation steps and data structures, which result in some extra overhead
during request processing. DUR, HTR, Postgres-R and EDUR do not update the ac-
cessed shared objects directly. Instead, the updates are performed on copies of shared
objects and stored in the updates set. Additionally, DUR, HTR in DU mode and EDUR
maintain readset containing object IDs of all shared objects read by the transaction.6

Postgres-R does not maintain readset but acquires locks on accessed shared objects.
Similarly, all algorithms but SMR feature a transaction certification phase. Depending
on the algorithm, certification is performed by all replicas (DUR, HTR in DU mode), by
all replicas but the one that executed the transaction (Postgres-R) or by a single replica
(EDUR). Transaction certification differs between the algorithms. Its complexity de-
pends either on the size of readset (DUR, HTR in DU mode and EDUR) or updates
(Postgres-R).

6 Readset does not need to be maintained for read-only transactions.
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Secondly, we compare the number of communication steps per transaction run which
are required for replica synchronization. Naturally, the least number of communication
steps is two: the processes send data in the first phase and, to ensure reliable commu-
nication, exchange acknowledgments in the second phase. Additionally, if the order of
messages is important, the message needs to be first forwarded to the leader/sequencer
process which then orders and broadcasts it. Thus under stable conditions two broad-
cast protocols featured in this chapter, i.e. TOB and EOB, require three communica-
tion steps, and third one, RB (reliable broadcast), requires only two. Hence, for each
transaction’s run SMR, DUR, HTR and EDUR need three communication steps while
Postgres-R needs five communication steps.

Thirdly, we check the amount of data that replicas need to exchange in order to
synchronize. Typically, SMR requires the least data to be transferred. It is because SMR
broadcasts only the request’s code and data needed for request execution. On the other
hand, other algorithms require to broadcast the updates resulting from the local request
execution, and usually some metadata that are necessary for transaction certification.
Of course, when using the SM execution mode in HTR, the amount of data needed to
be broadcast is the same as in SMR. EDUR reduces the network traffic by performing
certification only on one process—this reduction is particularly significant in case of
transactions that failed certification.

Finally, we compare three different types of workloads and discuss how they influ-
ence the performance and scalability of the algorithms. Replication schemes featuring
optimistic concurrency control typically do not tolerate high contention well (i.e., when
multiple concurrent requests access the same data). It is because under such workloads
many transactions are rolled back and restarted, thus wasting resources. This type of
workload is particularly troublesome for Postgres-R because it requires two broadcasts
to be performed for each transaction’s run. In HTR and EDUR, the negative aspects
of high contention can be compensated. HTR allows for transaction execution with
abort-free guarantees thus reducing the overall contention. In EDUR, conflict detection
is streamlined with message broadcast, thus reducing the total amount of computation
and the volume of data transferred through the network. Moreover, other processes do
not need to bother with processing transactions that failed certification. On the other
hand, in SMR, no conflicts can occur, because all (updating) requests are executed
sequentially. However, for the same reason, SMR is not suitable for CPU intensive
workloads. On the contrary, DUR, HTR, Postgres-R and EDUR perform better under
CPU intensive workloads because they allow for the concurrent execution of all re-
quests, not necessarily the read-only ones.

DUR does not handle well requests that execute multiple read operations. It is be-
cause DUR gathers the information about read objects in readset and later broadcasts it
alongside updates to all replicas. Large readsets put strain on the network stack and so
limit the system’s scalability. In HTR, a transaction accessing a large number of objects
can be executed in the SM mode (thus no readset need to be broadcast). Such a work-
load is also not problematic for EDUR or Postgres-R as well (in EDUR readset is only
sent to the leader process; in Postgres-R replicas do not exchange any information about
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objects read by transactions). On the other hand, the type of operations (read/write)
executed within a request does not influence the performance of SMR because it does
not feature transactional semantics.

11 Conclusion and Further Reading

In this chapter, we studied distributed algorithms for full transactional replication. We
defined the properties of transactional replication in terms of the rules that define the
replicated process as well as the interaction between the replicated process and exter-
nal clients. Then we described and discussed several core algorithms. They included
basic schemes, such as state machine replication (SMR) and deferred update replica-
tion (DUR), as well as optimized variants that use multiversioning (MvDUR), combine
SMR and DUR (HTR), optimize broadcast data (Postgres-R), and optimize the broad-
cast protocol itself (EDUR).

We then compared their main features and complexity, taking into account concur-
rency control, computation overhead, network communication overhead, and the appli-
cation workload type. One can see from this comparison that there is no one solution
that fits all purposes. The results of experimental evaluation (see e.g., [37,14]) show
that a simple scheme such as SMR performs surprisingly well compared to DUR, even
though it provides limited parallelism. However, the optimizations of DUR make it a lot
more viable, especially given its full transactional semantics which basic SMR lacks.

We only presented selected SMR and DUR-like algorithms whose main feature is
that they all rely on the total order broadcast to serialize the execution of transactions or
state updates. There exist many other transactional replication methods and algorithms
that differ in a number of ways, e.g., they use pessimistic concurrency control or specu-
lative executions, build the replication protocols on top of non-distributed transactional
memory, or explore other models of data space and failure. Below we give some exam-
ple references to the recent work that is close to the work discussed in this chapter, but
they are by no means complete.

Romano, Palmieri, Quaglia, Carvalho, and Rodrigues [31] (see also [24]) explore
speculative replication protocols for transactional systems. The key idea is to run an
optimistic atomic broadcast (OAB) algorithm to provide an early, possibly erroneous,
guess on transactions’ serialization order, in parallel with the algorithm that is used to
determine the actual order.

Marandi, Primi, and Pedone [21] optimize the SMR scheme by using speculative
execution to reduce the response time and state partitioning to increase the throughput
of SMR. In the follow-up paper [19], the authors propose parallel state-machine repli-
cation (P-SMR), which optimizes SMR by exploiting service semantics to determine
when commands can execute concurrently and when serial execution is needed (see
also [20], where a more aggressive speculative strategy is used).

Arun, Hirve, Palmieri, Peluso, and Ravindran [3] observe that in DUR even in case
when remote transactions rarely conflict with each other, the conflicts among local
transactions (on the same replica) can significantly decrease performance. They explore
speculation to optimize this scenario and prevent some local transactions from aborting
each other.
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Sciascia, Pedone, and Junqueira [36] propose scalable deferred update (S-DUR)
aimed at increasing scalability of DUR through optimizing the execution of update
transactions. The key idea is to divide the state into logical partitions, replicate each
one among a group of servers, and orchestrate the execution and termination of transac-
tions across partitions using a 2PC-like protocol. Pacheco et al. [23] build on this idea
to scale DUR on multicore processors.

In [35], Sciascia and Pedone research the application of DUR to geo-replicated stor-
age systems. The paper discusses two optimizations of DUR for geo-replication which
essentially explore delaying and reordering of transactions.

Some researchers investigated transactional replication algorithms considering com-
plex failure models, in which servers mail fail arbitrarily. For example, Pedone and
Schiper [28] discuss DUR under Byzantine faults and propose suitable extensions of
this replication scheme in this failure model.

Acknowledgements. This work was funded from National Science Centre funds
granted by decision No. DEC-2012/06/M/ST6/00463.

References

1. Agrawal, D., Alonso, G., Abbadi, A.E., Stanoi, I.: Exploiting atomic broadcast in replicated
databases (extended abstract). In: Lengauer, C., Griebl, M., Gorlatch, S. (eds.) Euro-Par 1997.
LNCS, vol. 1300, pp. 496–503. Springer, Heidelberg (1997)

2. Aguilera, M.K., Chen, W., Toueg, S.: Failure detection and consensus in the crash-recovery
model. In: Kutten, S. (ed.) DISC 1998. LNCS, vol. 1499, pp. 231–245. Springer, Heidelberg
(1998)

3. Arun, B., Hirve, S., Palmieri, R., Peluso, S., Ravindran, B.: Speculative client execution
in deferred update replication. In: Proc. of MW4NG 2014: The 9th Middleware for Next
Generation Internet Computing Workshop (December 2014)

4. Bernstein, P.A., Goodman, N.: Multiversion concurrency control—theory and algorithms.
ACM Transactions on Database Systems (TODS) 8(4), 465–483 (1983)

5. Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable and Secure Distributed
Programming. Springer (2011)

6. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consen-
sus. Journal of the ACM (JACM) 43(4), 685–722 (1996)

7. Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication - Theory and Practice. LNCS,
vol. 5959. Springer, Heidelberg (2010)

8. Couceiro, M., Romano, P., Rodrigues, L.: Polycert: Polymorphic self-optimizing repli-
cation for in-memory transactional grids. In: Proc. of Middleware 2011: The 12th
ACM/IFIP/USENIX International Conference on Middleware (December 2011)
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37. Wojciechowski, P.T., Kobus, T., Kokociński, M.: Model-driven comparison of state-
machine-based and deferred-update replication schemes. In: Proc. of SRDS 2012: The 31st
IEEE International Symposium on Reliable Distributed Systems (October 2012)


	Introduction to Transactional Replication
	Introduction
	System Model and Properties
	Replicated Algorithm Design Problems
	State Machine Replication
	Deferred Update Replication
	Deferred Update Replication with Multiversioning
	Hybrid SM-DUR Algorithm
	Postgres-R
	Executive Deferred Update Replication
	Comparison
	Conclusion and Further Reading


