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Abstract
Atomic RMI is a library for pessimistic concurrency control in
distributed systems that uses versioning algorithms. These algo-
rithms require a priori knowledge about execution of transactions
to achieve maximum efficiency, i.e. the maximum number of times
specific objects will be accessed. This paper presents an algorithm
and a tool that establishes these upper bounds on objects accessed
through static program analysis.

1. Introduction
The unpredictable manner in which concurrent data access is
performed in shared memory systems causes concurrency con-
trol mechanisms continuously to gain importance, especially with
the mounting popularity of multi-core processors. Therefore it is
usual for programming languages to supply a set of constructs
that facilitate the synchronization of concurrent processes, among
them critical sections, monitors, locks, conditional variables, and
semaphores. Nonetheless, these mechanisms are considered to be
difficult to use and the developer must manage the blocking mech-
anisms unaided and on a low-level, as well as identify the sections
of code that require synchronization—both being error-prone tasks.
In addition, the low-level constructs are neither directly re-usable
nor composable (if every single component is safe by itself, it does
not necessarily follow that their combination is safe).

Many authors have recently proposed to solve the problems
of concurrent programming by turning to the idea of Software
Transactional Memory (STM) [27]: STM allows the declaration of
atomic transactions in concurrent programming (similar to transac-
tions known from Database Management Systems) whose correct
processing is enforced by the system, thus ensuring synchroniza-
tion. Several such systems have been designed and implemented,
though mostly non-distributed (see e.g. [10–13, 24, 26] among oth-
ers). Another line of research is on type systems for specifying and
verifying the atomicity of methods in multithreaded programs (see
[6] and follow-up papers). Roughly, it is guaranteed that the effect
of an execution (i.e. the state of the system) of two or more con-
current atomic blocks of code will be equivalent to the effect of a
sequential execution of those blocks.

In our work, we are interested in extending the idea of STM
to distributed systems. In distributed systems, when two or more
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clients want to access shared remote resources consistently, it is
necessary to control concurrent access to these resources. Since
the distributed system can be loosely coupled and shared resources
can be whatsoever, we exclude heavy-weight solutions based on
distributed database systems. Several authors proposed Distributed
STM, meaning a system with locally-scoped transactions executing
on different network nodes, with shared data replicated on these
nodes and kept consistent (see e.g. [3, 34] among others). In gen-
eral, Distributed STMs can be seen as distributed shared memory
systems (implementing distributed global address space), extended
with the notion of atomic transactions. Alternative approaches in-
clude distributed transactions that can span many nodes; they are
aimed at loosely-coupled distributed systems, such as the Inter-
net. We consider STMs and distributed transactions that are object-
based, in the sense that transactional synchronization works by in-
tercepting and synchronizing calls to object methods, leveraging
the infrastructure provided by object-oriented languages. An ex-
ample of an object-based STM is DSTM2 [13], while JSTM [34]
can be seen as an object-based Distributed STM.

We develop Atomic RMI [19, 32]—an object-based concur-
rency control library built on top of Java RMI which ensures lin-
earizable distributed objects in Java by allowing the developer to
define specific sequences of method calls on remote objects as dis-
tributed transactions. The library uses pessimistic concurrency con-
trol algorithms that suspend (block) methods calls when necessary
to satisfy linearizability. We are currently extending our algorithms
and implementation to support a rollback mechanism. Thus, the
programmer will be offered a mechanism equivalent to distributed
atomic transactions, in which shared data can be any objects de-
fined as ’remote’ (in the sense of Java RMI) and accessed by any of
their methods. We have already designed and implemented a non-
distributed variant of our library that supports rollback [17].

The result of the use of Atomic RMI, is lifting the chore of
manual management of blockades from the developer, therefore
reducing his efforts to declaring distributed transactions. However,
the benefits in ease of use are offset by the requirements of the
algorithms used by Atomic RMI. In order to schedule the execution
of method calls, the algorithms require some input data about a
transaction to be known a priori—i.e. before the transaction is
spawned. More precisely, the developer needs to find the number
of times a particular object will be accessed during run-time, or at
least an upper bound on that number.

This paper proposes a method to gather the upper bounds on the
number of calls to specific objects by static analysis in order to aid
the programmer in using Atomic RMI transactions. This method
was implemented in the form of a tool that is meant to be an integral
part of Atomic RMI. However, our algorithm could also be useful
in Distributed STMs and non-distributed STMs that use pessimistic
concurrency control.
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Figure 1. Transaction scheduling: (a) BVA, (b) SVA, and (c) RVA

There is a large body of research related to worst case analysis
of programs that aims at deriving information about execution pat-
terns statically (we sketch some of these in Section 5). However,
we do not know examples of using this information for optimizing
the execution of distributed transactions nor STM (or Distributed
STM). Our paper shows how the information gathered from trans-
actional code at compile time can make the execution of distributed
transactions in Atomic RMI more efficient. However, we think that
our approach is general enough to be applicable in the implemen-
tations of STM too.

The paper has the following structure. First, the concepts of pes-
simistic concurrency control in Atomic RMI are described. Then,
the algorithm and tool for static analysis are shown. Next, similar
work on worst case analysis of programs is described. Finally, our
conclusions are presented.

2. Concurrency Control in Atomic RMI
With respect to concurrency control, Atomic RMI uses versioning
algorithms [30, 31, 33]. The key idea is that an object method called
by a transaction is executed if that transaction holds a matching
version number of the object. Otherwise, the call is blocked (put
to sleep), waiting passively for the version upgrade. Thus, version
numbers determine the order of executing object methods by trans-
actions; this order agrees with the isolation property. This simple
mechanism protects objects from being accessed by transactions
that—in order to satisfy the isolation property—should wait till
other transactions access these objects.

Figure 1(a) shows transaction scheduling using the BVA ver-
sioning algorithm. Note that a call to critical method a.m of trans-
action T2 is postponed until transaction T1 has completed. This
gives an almost serial execution of transactions. However, some
other critical method p of another (non-shared) object c can be ex-
ecuted by transaction T2 in parallel with transaction T1; note that
c.p is executed by a separate thread that belongs to transaction T2

(e.g. as a result of an asynchronous call to the remote object c). The
isolation property is still satisfied since the effects of executing c.p
cannot be observed by transaction T1.

Figure 1(b) shows transaction execution using the SVA algo-
rithm. The algorithm must know a priori, a least-upper-bound (or
supremum) on the number of times a given object may be accessed
by a transaction. In our example, method m of object a is called
by transactions T1 and T2 only once, while method n of object b is
called twice. This quantitative information allows the algorithm to
permit more parallelism than BVA. For example, consider transac-
tions T1 and T2. Note that the critical method a.m of transaction
T2 (that had been postponed) is now executed soon after transac-
tion T1 has completed executing a.m. This is permitted since the
SVA algorithm already knows that the supremum on the number of
times object a (providing method m) can be called by transaction
T1 is equal 1, i.e. the method a.m will not be executed again by
k1, and so k2 can call a and execute m. If supremum cannot be
reached for some object, e.g. because it has been over-calculated
then the SVA algorithm performs like BVA. The latter guarantees
that all blocked objects are released.

The RVA improves upon the SVA by exploring the partial infor-
mation about transaction execution. Figure 1(c) shows an example
execution of two transactions, T1 and T2, under control of the RVA
algorithm. For each transaction, the algorithm must know a priori,
a causal relation between object calls made by the transaction.

As the example indicates, in relation to BVA, the RVA and
SVA can be expected to shorten the system’s response time (the
time before a transaction terminates) and increase its capacity for
simultaneously running transactions. We are mostly concerned with
SVA at this time, although extending our efforts to encompass RVA
may prove to be an interesting topic for future work.

3. Finding Upper Bounds on Method Calls
We designed an algorithm, dubbed the Object Call Count Analysis
(OCCA), to count upper bounds on the number of calls issued
to each of a predefined set of objects. The algorithm statically
analyzes source code in the Simple Language (SL), a small subset
of the Java language. SL consists of only the most basic constructs,
like variable declaration, assignment, if statements, while loops,
etc. (the complete definition of the language has been described
in TR [28]). 1 If the upper bound cannot be computed, then the
algorithm returns infinity, which reduces efficient scheduling of
transaction operations to serial execution of transactions. Thus, our
algorithm guarantees safety but not completeness. The following
properties of the algorithm are proposed.

PROPOSITION 1 (Supremum). The OCCA algorithm computes
the upper bounds (supremum) on objects’ method calls for any
correct program in the SL language. All method invocations in
code (that are not dead code) are considered, and the estimated
upper bound is never lower than the actual number of method in-
vocations.

PROPOSITION 2 (Safety). The OCCA algorithm is safe: it cannot
produce any upper bound on the number of object accesses that is
lower than the actual number of this objects’ method calls during
any execution of the analyzed program.

PROPOSITION 3 (Termination). The OCCA finishes in a finite
number of steps, even on occurrence of recursion or infinite loops.

The algorithm’s input takes the form of source code in SL
expressed as an expression tree. The algorithm’s output is a map
where keys are unique object identifiers pointing upper bounds on
the number of times the objects were used to make a method call.

1 Our implementation supports a subset of Java that is a superset of SL, and
therefore is more fit for use.
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This number can be zero, any finite number, or ω—the symbol
representing an infinite or unpredictable result.

The algorithm is started by the application of function ana-
lyze expr, which takes the expression tree (E) and the number
of executions of this fragment of code, as arguments. The func-
tion then decides what particular type of expression it was provided
with, and then delegates the analysis to one of the specialized func-
tions. The function is given in Figure 2. The type of the main func-
tion and the specialized functions is defined as:

analyze expr : expression→ (N0 ∪ ω)→ {id→ N0 ∪ ω}
(1)

where, id belongs to the set of all possible identifiers.
The most interesting aspects of the analysis are handling of

loops, conditional expressions, and method calls, and these are
explained below. Detailed information can be found in TR [28].

3.1 Method call analysis
When a method call has been found in the code, the function
indicates that the object implementing the analyzed method will
be called at most a certain number of times. The function returns
a single-element map: if the analyzed expression is evaluated only
once, then the object identifier will be mapped to the value of one;
if the expression may be evaluated more times (e.g. in a loop) then
the number of evaluations is included in the map. Later, the number
from all such maps will be totaled to produce a global estimate.

If the body of the analyzed method is known, then the method’s
arguments and its body are further analyzed. Additionally, every
time a method’s body is analyzed, a global visit counter for that
method is incremented, and if the counter exceeds a certain thresh-
old, it must be assumed that infinite recursion occurred, and no
more analysis of that method’s body should is allowed.

In cases where the method body is not analyzed, the states of
values that may be potentially modified within the body should be
set to unknown. If the body is of the method known, the variables
that need to be subjected to this may be derived by analysis.

The function can be expressed formally as,

analyze call(E, n) =8><>:
{object(variable(E)) 7→ n}, if ¬has body(E)
add({object(v) 7→ n}, if V < M

analyze block(P ∪B, n)) ∧has body(E)
{object(variable(E)) 7→ ω}, if V ≥M

where
v = variable(E), B = method body(E),
P = method argument assignments(E),
V = visited(E), M = MAX ITERATIONS

(3)

3.2 Conditional block analysis
The function attempts to evaluate the guard condition whose out-
come may be either true, false, or uncertain. In the foremost case
the positive block is then further analyzed, while in the case of eval-
uation to false the positive block is ignored, and if the alternative
block is analyzed if it is defined. If the guard condition is not a
literal, but another expression, it must also be analyzed.

In the case of unpredictable, both blocks must be analyzed
further and the maximum of both analyses must be derived using
join. In addition, if there are assigned values that differ between
blocks, the variable must be noted to have an unknown value.

The join operation
W

takes two maps and returns a new map,
which contains all key-value pairs from both maps. If a key is
present in both input maps, the referenced values are compared, and
the higher of the two is used in the output map. The join operator
ensures that the maximum number of method calls will be selected
as a result of the analysis.

The conditional analysis function is defined as follows,

analyze conditional block(E, n) =8<: analysis proper(E, C, n) if is literal(C)
add(analyze expr(C, n),

analysis proper(E, C, n)) if ¬is literal(C)
analysis proper(E, C, n) =8><>:

analyze expr(Epositive, n) if is true(C)
analyze expr(Ealternative, n) if is false(C)
analyze expr(Epositive, n) if ¬is true(C)W

analyze expr(Ealternative, n) ∧¬is false(C)
where

C = condition(E),
Epositive = positive block(E),
Ealternative = alternative block(E)

(4)

3.3 Loop block analysis
The function attempts to analyze an expression E representing a
loop. The loop’s condition is evaluated: if the result is true both
the condition C and the body B of the loop are further analyzed
before the next round of loop analysis is conducted; whereas if the
result is false only the condition is analyzed and the analysis of the
loop ends. If the condition evaluates to neither true nor false but
is indefinite, the condition and the body are both analyzed using
unknown values.

Since it is possible for the analysis never to terminate if the con-
dition always evaluates to true, the parameter i tracks the number
of iterations, and when it exceeds a threshold the analysis assumes
the loop will run indefinitely and treats the loop as if the condition
evaluated to an unknown value. If the condition of the loop is un-
known, an analysis is performed, which marks all of the values that
may be written to as unknown.

analyze loop block(E, n) =
analyze loop(E, n, MAX ITERATIONS)

analyze loop(E, n, i) =8>>>>><>>>>>:

add(analyze expr(C, n),
analyze expr(B, n),
analyze loop(E, n, i− 1)) if is true(C) ∧ i > 0

analyze expr(C, n) if is false(C) ∧ i > 0
add(analyze expr(C, ω), if ¬(is true(C)

analyze expr(B, ω)) ∨ is false(C)) ∨ i ≤ 0
where

C = condition(E), B = body(E)
(5)

This approach is resource-intensive, so a more light-weight al-
ternative is considered: an auxiliary function iteration count pre-
dicts the maximum number of loop iterations beforehand, then the
condition and the body of the loop are analyzed, with the iteration
count as an argument.

analyze loop block(E, n) =
add(analyze expr(C, n ∗m),

analyze expr(B, n ∗m))
where

C = condition(E), B = body(E),
m = iteration count(E)

(6)

A simple and imprecise function establishing the maximum
number of loop iterations can determine if the loop will be eval-
uated at all, in which case it returns 0, and otherwise returns the
unknown value ω. The conception of better functions is widely cov-
ered in [2, 4, 7, 8].
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analyze expr(E, n) =8>>>>>>><>>>>>>>:

analyze declaration(child(E), n) if type(E) = variable declaration
analyze initialization(child(E), n) if type(E) = object initialization
analyze assignment(child(E), n) if type(E) = variable assignment
analyze call(child(E), n) if type(E) = method call
analyze block(child(E), n) if type(E) = block
analyze conditional block(child(E), n) if type(E) = conditional block
analyze loop block(child(E), n) if type(E) = loop block

(2)

Figure 2. The main function of the OCCA algorithm

4. Code Generation
A prototype static analyzer was built based on the algorithm de-
scribed above. Apart from implementing the various analyses, the
tool generates preambles to transactions that it finds in the code,
with the upper bounds defined using the Atomic RMI API.

The code generation itself is done by injecting tokens into the
processed code on the lexical level. Before it is done, the appro-
priate places in the token stream must be found, and this is done
during the analysis of the expression tree.

5. Related work
A large body of work is available on the use of static analysis in
the Worst-Case Execution Time (WCET) problem [16, 29], where
methods like path analysis [9], symbolic analysis [18], and partial
evaluation [14] are employed to establish upper bounds on the time
code will take to run. Emphasis is placed on finding in advance the
maximum number of loop iterations [2, 4, 7, 8]. Frameworks for
WCET are available, like aiT [5] or Bound-T [15].

This work also bears resemblance to finding user-definable us-
age bounds (for Java [20, 21, 23] in particular, but also other lan-
guages [22]) where prediction of the maximum number of uses of
particular resources is attempted by code analysis.

In the context of code generation, a number of tools employ
static analysis to deduce properties of the code that the following
generation requires, e.g. AutoBinder [25] a Python binding genera-
tor for the C language, or Jass [1] (Java with Assertions), a tool for
injecting assertions based on defined invariants.

6. Conclusions
The investigation of the subject has led to the conception of the
algorithm, as well as the implementation of a prototype tool for
static analysis that is able to process a subset of the Java language
(extended in relation to SL) and generate safe, execution-ready
code. The tool, therefore, relieves the developer of having to create
these preambles manually.

Both the tool and the algorithm itself are designed with exten-
sion in mind, to allow future expansion beyond the limited capa-
bilities of the SL, as well as to refine the analyses to produce more
precise bounds. Specifically, future work could involve improving
the method for handling loops.

In addition, support for RVA in Atomic RMI may become a topic
for future work, resulting in still improved response times.
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