
Extending Atomic Tasks to Distributed Atomic Tasks

Paweł T. Wojciechowski
Poznań University of Technology

60965 Poznań, Poland

Pawel.T.Wojciechowski@cs.put.poznan.pl

ABSTRACT

In this paper we consider distributed atomic tasks that span
multiple sites and make calls on remote objects (as part
of the same atomic task). Since object calls can be asyn-
chronous, distributed atomic tasks may be internally concur-
rent. The combination of two features: distribution and in-
ternal concurrency, makes the implementation of distributed
atomic tasks challenging. In this paper, we design language
and runtime support for distributed atomic tasks. This work
is based on our previous work (summarized in the paper) on
the calculus of non-distributed atomic tasks.

Keywords: concurrency, atomicity, transactions, singleton
kinds, lambda calculus, distributed systems.

1. INTRODUCTION
Let us begin from a small example. Below is a program

expressed using a ML-like programming language with let-
binders and references, extended with atomic blocks (or
tasks). The program consists of two concurrent parts that
use the atomic construct to spawn atomic tasks k1 and k2.

let a1 = ref 1000 in
let a2 = ref 1000 in

(* An atomic task k1: *)

atomic (
a1 := !a1 - 10;
a2 := !a2 + 10

);

(* A concurrent atomic task k2: *)

atomic (
let balance = !a1 + !a2 in
print balance

);

The concurrent tasks share two reference cells a1 and a2,
which have been created and initiated to 1000 using the ref

construct. The let a = v in P construct from ML is used

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
.

to bind a value v (here a reference cell) with a name a and
continue with program P (a binds in P).

Task k1 is performing a bank transfer: it withdraws 10
from an account a1 and deposits 10 to an account a2; the
accounts are implemented using reference cells. The ’read’
expression !a returns the current value stored in a, while
the ’write’ expression a := v overwrites a with v. Task k2 is
computing the current balance balance, which is equal the
total amount of assets deposited on accounts a1 and a2.

The semantics of atomic (e1;...;en) implementing non-
distributed atomic tasks is that a sequence of operations

e1;...;en executed on a machine can be regarded as a sin-

gle unit of computation, regardless of any other operations

occurring concurrently. The execution of atomic operations
appears as they would be executed alone, with no concur-
rency at all. Thus, the total balance is equal 2000, even if
the concurrent ’read/write’ operations would be interleaved.
Without atomic we might get balance equal 1990.

To support concurrency on multicore CPUs, the imple-
mentation of atomic should allow some operations to be
interleaved whenever this would bring performance gains;
coarse-grain locks are therefore not suitable. Instead, the
Software Transactional Memory (STM) [6] can be used [2].
Atomicity of sequential (single-threaded) code blocks can
also be verified statically [1]. The STM approach allows for
non-blocking task execution since the task operations are
never locked. However, tasks may be re-executed if the con-
flicting operations cannot guarantee atomicity. This creates
problems with Input/Output (I/O) operations whose effects
are not easily revocable. On the other hand, the possibil-
ity of restarting an atomic task increases expressiveness, e.g.
transactional memory in Haskell [3] has the retry construct
that aborts a transaction and restarts it at the beginning;
see also [2] for the STM-based implementation of conditional
critical regions (CCRs) [4] in Java.

2. THE CALCULUS OF ATOMIC TASKS
In our previous work [7], we designed the calculus of

atomic tasks, equipped with an operational semantics that
does not depend on task rollback-recovery. Our motivation
was to provide good support of I/O operations. The in-
put/output operations on communication channels must be
used by atomic tasks in the same way as the ’read/write’ op-
erations on reference cells. Below we summarize this work.
In §3, we extend it to distributed atomic tasks.

The key idea is to schedule the ’read/write’ operations
of concurrent atomic tasks, so that the atomicity is pre-
served. We have proposed scheduling algorithms that may

delay (temporarily block) the execution of the ’read/write’
operations that appear “too early”. The decision to delay
an operation on some object or not, is made by comparing
versions associated with the object with versions hold by
the atomic task. We can think of versions as integer val-
ues that are incremented after some actions have occurred.
Each atomic task obtains version snapshots for all objects it
may ever use. Since a version snapshot is guaranteed to be
unique for all atomic tasks, it can therefore be used to obtain
an exclusive access to the objects; moreover since versions
are ordered, atomic tasks can access the shared objects in
the order which guarantees atomicity.

To demonstrate usefulness of our approach, we have im-
plemented a protocol framework with support of atomic
tasks [9], and used it to develop a group communication
protocol stack. Atomicity is used there to guarantee con-
sistent processing of messages across the stack of protocols.
Since the I/O actions of some protocols, such as message
sending/delivery, are not easily revocable, the STM-based
implementations of atomicity were not suitable.

2.1 The Main Constructs of the Calculus
Our calculus of atomic tasks corresponds to the interme-

diate language for translation from the concrete syntax of a
programming language used by programmers (e.g. the one
used in §1 to encode our example program), to executable
code. Below is the translation of our example program to
the calculus. We use it to explain the calculus’s main con-
structs; a complete description of it can be found in [7].

newlock l1 : m in
newlock l2 : n in

let a1 = ref_m 1000 in
let a2 = ref_n 1000 in

(* An atomic task k1: *)

atomic {l1, l2} (
sync l1 a1 := !a1 - 10;
sync l2 a2 := !a2 + 10

);

(* A concurrent atomic task k2: *)

atomic {l1, l2} (
let balance = sync l1 !a1 + sync l2 !a2 in
print balance

);

Execution of newlock l : m in e creates a new versioning

lock l of type m (or verlock in short) to be used in program
e. The type m is a singleton verlock type, i.e. the type
of a single verlock. In a full-scale language, a fresh verlock
could be created for every communication channel and every
data structure that are shared by atomic tasks. In the above
program, verlocks have been created for the reference cells a1
and a2. Note that the reference creation refm e is decorated
with a singleton verlock type m (for some m).

Execution of atomic e e creates a new atomic task for the
evaluation of expression e. After the creation, e commences
execution, in parallel with the rest of the body of the spawn-
ing program (each task is executed by a new thread). The e

expression should give verlocks {l1, ...ln}. They can be used
by an atomic task to mark critical ’read/write’ operations
on objects, which are shared with other tasks. An atomic

task could spawn internal threads (using fork), which are
executed within the scope of the task.

The sync construct can be used to mark critical oper-
ations of an atomic task; this will provide ’hooks’ for the
scheduling algorithm, which may then delay these opera-
tions in order to guarantee atomic execution of concurrent
atomic tasks. At first sight, the sync e e′ expression is sim-
ilar to Java’s synchronized statement: the expression e is
evaluated first, and should yield a verlock, which is then
acquired when possible; the expression e′ is then evaluated,
giving a value v; and finally the verlock is released and the
value v is returned as the result of the whole expression. (In
task k1, v is just an empty value returned by the assignment
expression :=.) Verlocks are however more than locks–they
combine the semantics of simple locks (mutexes) for pro-
tection against simultaneous access by concurrent threads,
with the scheduling algorithm for atomicity; the details of
an example scheduling algorithm will be given in §3.3.

2.2 Static Typing for Correctness
Our calculus of atomic tasks is equipped with a type

system which is able to verify two conditions [7]: (1) all
’read/write’ operations on reference cells are protected by
the sync construct, and (2) a verlock being an argument of
the sync construct is also an argument of the corresponding
atomic. These two conditions are necessary to guarantee
the correct execution of the scheduling algorithm. For in-
stance, the above program does not typecheck if either of
the arguments of atomic (i.e. l1 or l2) would be removed;
the same occurs if sync would be omitted.

Given the type system, it is not difficult to propose a sim-
ple but inefficient algorithm translating from the concrete
ML-like syntax (as in §1) to the intermediate language (as
in this section): (1) wrap the ’read/write’ operations on ref-
erence cells with sync based on some type annotations, and
(2) assign an argument of each atomic task, permuting over
all declared verlocks and type checking the program until the
verification succeeds. We leave open the problem of finding
a more efficient translation algorithm.

3. THE OBJECT CALCULUS OF DISTRI

BUTED ATOMIC TASKS
Our work aims at better language support for correct dis-

tributed programming. In this section we define a class-
based object calculus of distributed atomic tasks; a prelimi-
nary version of it appeared in [8]. To simplify semantics, we
take the call-by-value λ-calculus, and extend it with basic
object features and the datomic construct.

3.1 Syntax and Informal Semantics
The syntax of our language is in Figure 1. For conve-

nience, we differentiate names: A, B range over interface
names; P , Q range over class names; f ranges over object
field names, and m ranges over method names. We write
x as shorthand for a possibly empty sequence of variables
x1, ..., xn (and similarly for t, v, and e). We abbreviate op-
erations on pairs of sequences in the obvious way, writing
e.g. x : t as shorthand for x1 : t1, ..., xn : tn (and similarly
for f = v). Sequences of parameter names in functions and
class methods are assumed to contain no duplicate names.
We write M as shorthand for a (non-empty) sequence of
methods M1, ... , Mn in a class. Methods of the same class

Variables x, y, a, b ∈ Var

Interface names A, B, C ∈ Sig

Class names P, Q ∈ Lab

Field names f

Method names m

Selector names n ∈ Sel ::= f | m

Types t ::= Unit | Sig | Obj | t → t′

Interfaces i ::= interface A {f1 : t1, ... , fk : tk, m1 : t1 → t′
1
, ... , mn : tn → t′n}

Fun. abstractions F ::= x : t = {e}

Methods M ::= t m F

Classes C ∈ Class ::= class P {f1 = v1, ... , fk = vk, M1, ... , Mn}

Values v, w ∈ Val ::= () | A | new P | F

Expressions e ∈ Exp ::= x | v | e.n | e e | let x = e in e | e := e | rebind e e | fork e | datomic e e

Figure 1: The class-based object calculus of dynamic rebinding

must contain no duplicate names; similarly, field names are
unique per class. Below we give an informal semantics.

3.1.1 Interfaces and classes

An object interface (or signature) is a declaration of ob-
ject fields and methods that can be accessed or called re-
motely. Syntactically, an interface is a keyword interface,
followed by the name of the interface, and a sequence of field
and method names, accompanied with their types. Types
include the base type Unit of unit expressions, which ab-
stracts away from concrete ground types for basic constants
(integers, Booleans, etc.), the type Sig of object interfaces,
the type Obj of objects, and the type t → t′ of functions and
class methods.

A class has declarations of its name (e.g. class P) and
the class body {f = v, M}, where f = v is a sequence of
fields (data containers) accessible via names f and instan-
tiated to values v, and M is a sequence of object methods.
Class inheritance and object constructor methods can be
easily added to the calculus, in the style of Featherweight
Java (FJ) [5]. A method of the form t m F has declarations
of a type t of the value that it returns, its name m, and its
body F . Access control is not modelled (all fields and meth-
ods are public). Objects can refer to their own methods with
self.m, where self is a special variable. A method’s body is
a function abstraction of the form x : t = {e} (we adopted
the C++ or Java notation, instead of the usual λx : t.e from
the λ-calculus).

3.1.2 Values and expressions

A value is either an empty value () of type Unit, an in-
terface name, e.g. A, an object instance, e.g. new P , or a
function abstraction, e.g. x : t = {e}. Values are first-class,
they can be passed as arguments to functions and methods,
and returned as results or extruded outside objects. (Typ-
ing could be used to forbid extruding functions that contain
the self references.)

Basic expressions e are mostly standard and include vari-
ables, values, field/method selectors, function/method ap-
plications, let binders, and field assignment e := e. We can
write e.g. x.f := v, to overwrite a field f of object x with a
value v, or we can write e.g. x.m v to call a method m of ob-
ject x. We use syntactic sugar e1; e2 (sequential execution)
for let x = e1 in e2 (for some x, where x is fresh).

Execution of A.m calls a method m of a remote (or local)
object that had been bound to A; let us name such calls

“remote object calls”. If a remote object call is part of some
distributed atomic task, then the call may be delayed if some
“older” running task accesses this object. If no object has
been bound to A, the call is also delayed till the interface A

will be bound to some object.
Execution of rebind A o binds an interface A with an

object o. If the interface has already been bound to another
object, it is unbound from it and bound to o.

The calculus allows multithreaded programs by including
an expression fork e, which spawns a new thread for the
evaluation of expression e. This evaluation is performed
only for its effect; the result of e is never used. It can be
used to express asynchronous object calls, as in fork A.m v.

Execution of datomic e (e1;...;en) spawns a new distri-
buted atomic task, such that a set of operations e1;...;en

possibly executed on multiple network nodes can be regarded

as a single unit of computation, regardless of any other op-

erations occurring concurrently. The execution of these op-
erations appears as they would be executed alone, with no
other concurrent operations occurring on any node. The e

argument depends on the algorithm scheduling the remote
object calls; in case of the one in §3.3, it is a set of interface
names that are used by the task to call remote objects.

To guarantee language robustness, some verification is
needed. We assume that interfaces are type-checked against
objects that are bound to these interfaces. However, it is
also required to check if an interface that is used to call
an object has been bound to or will eventually be bound
to some object; otherwise the task may get stuck waiting
for an object forever, leading to deadlocks. Thus, to guar-
antee liveness the program should also be checked against
potential deadlock conditions.

3.2 Example Program
To explain the use of distributed atomic tasks, we present

a small example. Below is a distributed program that con-
sists of four parts, executed on different network nodes: S1,
S2, S3 and S4. Each part begins with a comment (* On

node S i *).

(* Declaration of interfaces and classes *)

interface A {
s : Int
transfer : Sig -> Sig -> Int -> ()

}
interface B {

s : Int
transfer : Sig -> Sig -> Int -> ()

}
interface C {

s : Int
transfer : Sig -> Sig -> Int -> ()

}

class Account {
s = 1000 (* local balance *)
Unit transfer (x : Sig, y : Sig, amount : Int) = {

datomic {x,y}
(x.s := x.s - amount;
y.s := y.s + amount);

self.transfer(x,y,10)
}

}

(* On node S1 *)

let a = new Account in (* create object a *)
rebind A a; (* and binds A to a *)
a.transfer (A,B,10);
exit(0) (* never executed *)

(* On node S2 *)

let b = new Account in (* create object b *)
rebind B b; (* and binds B to b *)
b.transfer (B,C,10);
exit(0) (* never executed *)

(* On node S3 *)

let c = new Account in (* create object b *)
rebind C c; (* and binds C to c *)
c.transfer (C,A,10);
exit(0) (* never executed *)

(* On node S4 *)

class Manager {
Unit getBalance (x : Sig, y : Sig, z : Sig) = {

let balance = datomic {x,y,z} x.s + y.s + z.s in
print balance;
self.getBalance(x,y,z);

}
}

(new Manager).getBalance(A,B,C);
exit(0) (* never executed *)

The code executed on nodes S1, S2, and S3 creates an ob-
ject of a class Account with a state s initialized to 1000,
and then invokes the object’s method transfer; the method
withdraws 10 from the object and deposits 10 in another
(remote) object atomically. Remote objects are accessed
through interfaces A, B, and C, that had been bound to the
corresponding objects. A manager executed on node S4 re-
peatedly computes a global balance, which is the sum of all
local states; the balance computation is a distributed atomic
operation. Since all transfer operations are also atomic, the
global balance computed in every iteration step must be the
same, and equal 3000.

3.3 Versioning Algorithms
Below are the steps of the simplest scheduling algorithm

for datomic e e. It is almost like the BVA algorithm in [7, 8],
for non-distributed atomic tasks, modulo some implementa-
tion details. For each interface A in e, there are two version
counters: gvA and lvA, initialised to 0.

1. At the moment of spawning a new distributed atomic
task k by datomic e e, for each interface A ∈ e, increase
version counter gvA of A by one. Create a task’s pri-
vate copy pvk of all versions computed as above, i.e.,
pvk is a map (dictionary) containing bindings from all
interfaces A ∈ e to copies of their upgraded versions
gvA. Upgrading the version counters gvA and creation
of the task’s private copy of the upgraded versions is
an atomic operation.

2. An object method called by distributed atomic task k

via an interface A is executed only when the task holds
a version for this interface that matches the current
(local) version lvA of A i.e. pv[A]k − 1 = lvA (*).
Otherwise, the method call is pending. Checking this
condition is an atomic operation.

3. After distributed atomic task k has completed its
execution, i.e. all its threads terminated, for each
interface A ∈ e in parallel, wait until (*) is true,
then upgrade the local version of A, so that we have
lvA = pv[A]k; in the end, erase map pvk.

The distributed implementation of the scheduling algo-
rithm must deal with the fact that task objects may be lo-
cated on different machines. In the simplest case, all coun-
ters gvA are grouped into a map gv (binding interfaces to
the counters) and located on a single site. Accessing this
map is protected by a lock, which is known to every remote
object. The local versions lvA can be associated with the
objects bound to interfaces A. With any rebinding of A to
another object, the counter would need to be (atomically)
transferred to this new object. The algorithm implementa-
tion must also deal with node crashes and network failures
or partition; we omit these issues in this paper.

The BVA algorithm guarantees atomic execution of dis-
tributed atomic tasks: a task is locked if it wants to call a
remote object that had been called by another uncompleted
task; it will be released after task completion. This solves
the problem of atomicity but does not allow for much con-
currency. In [8], we describe the SVA and RVA algorithms
that can–whenever possible–release the blocked tasks ear-
lier, and so they permit more concurrency in the system.

3.4 Implementation
We are currently extending the Java Remote Method

Invocation (RMI) mechanism with support of distributed
atomic tasks. The programmer can either publish and sub-
scribe for remote objects using the RMI registry (or other
lookup service) or our registry, reimplementing functions
such as Naming.rebind and Naming.lookup. In the latter
case, any remote calls on such objects can be part of a dis-
tributed atomic task. We have implemented the distributed
versions of the BVA and SVA algorithms. The version coun-
ters are kept as part of the object stub, which is used to han-
dle calls on the object. The programmers can use our RMI
mechanism in a similar way to the original Java RMI, i.e.
the implementation classes of remote objects must extend a
special RemoteObject class.

Acknowledgments We would like to thank Mariusz
Mamoński for his ongoing implementation work on the ex-
tension of Java RMI with distributed atomic tasks.

4. REFERENCES
[1] C. Flanagan and S. Qadeer. Types for atomicity. In

Proc. the 2003 ACM SIGPLAN International

Workshop on Types in Languages Design and

Implementation, 2003.

[2] T. Harris and K. Fraser. Language support for
lightweight transactions. In Proc. OOPSLA ’03: the

18th ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications,
Oct. 2003.

[3] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy.
Composable memory transactions. In Proc. PPoPP ’05:

the ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, June 2005.

[4] C. A. R. Hoare. Towards a theory of parallel
programming. In Operating Systems Techniques,
volume 9 of A.P.I.C. Studies in Data Processing, pages
61–71. Academic Press, 1972.

[5] A. Igarashi, B. Pierce, and P. Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. In
Proc. OOPSLA ’99: the ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages

& Applications, Nov. 1999.

[6] N. Shavit and D. Touitou. Software transactional
memory. In Proc. PODCS ’95: the 14th ACM

SIGACT-SIGOPS Symposium on Principles of

Distributed Computing, Aug. 1995.

[7] P. T. Wojciechowski. Isolation-only transactions by
typing and versioning. In Proc. PPDP ’05: the 7th

ACM-SIGPLAN International Symposium on

Principles and Practice of Declarative Programming,
July 2005.

[8] P. T. Wojciechowski. Language Design for Atomicity,

Declarative Synchronization, and Dynamic Update in

Communicating Systems. Politechnika Poznańska Press,
2007. http://www.cs.put.poznan.pl/pawelw/book/.

[9] P. T. Wojciechowski, O. Rütti, and A. Schiper.
SAMOA: A framework for a synchronisation-
-augmented microprotocol approach. In Proc. IPDPS

’04: the 18th IEEE International Parallel and

Distributed Processing Symposium, Apr. 2004.

