
Brief Announcement: Relaxing Opacity in
Pessimistic Transactional Memory

Konrad Siek and Paweł T. Wojciechowski

Institute of Computing Science
Poznań University of Technology

60-965 Poznań, Poland
{konrad.siek,pawel.t.wojciechowski}@cs.put.edu.pl

Since in the Transactional Memory (TM) abstraction transactional code can
contain any operation (rather than just reads and writes), greater attention must
be paid to the state of shared variables at any given time. Thus strong safety
properties are important in TM, such as opacity [2], virtual world consistency [3],
or TMS1/2 [1]. They regulate what values can be read, even by transactions that
abort. In comparison to these, properties like serializability allow inconsistent
views, so they are relatively weak. However, strong properties virtually preclude
early release as a technique for optimizing TM. Early release is a mechanism that
allows transactions to read from other transactions, even if the latter are still
live. This can increase parallelism, and it is useful in high contention (see e.g.,
[4]). Thus, we introduce last-use opacity, a safety property that relaxes opacity.

Opacity consists of three core guarantees: serializability, preservation of real-
time order, and consistency. We concentrate on the latter, which stipulates that
non-local read operations (i.e. those that read values written by other transac-
tions than the current one) must only read values from committed or commit-
pending transactions. Last-use opacity relaxes this consistency criterion to only
provide last-use consistency [7] and recoverability. Then, a transaction can read
from another live transaction, if the latter will no longer access the variable in
question. Plus, transactions must commit or abort in the order in which they
access shared variables. These conditions are defined as follows:

Definition 1 (Commit-pending Equivalence). Transaction Ti in history H
is commit-pending–equivalent with respect to variable x if (a) Ti is live, and
(b) there is a read or write operation op on x in H|Ti, s.t. for any history Hc

for which H is a prefix (Hc “ H ¨H 1) op is the last read or write on x in Hc|Ti.

Definition 2 (Last-use Consistent Operation). Given a history H, a trans-
action Ti and a read operation opr “ rpxqv on variable x returning v in subhis-
tory H|Ti, we say opr is last-use–consistent as follows: (a) If opr is local then
the latest write operation on x preceding opr writes value v to x; (b) If opr is
non-local then either v “ 0 or there is a non-local write operation opw on vari-
able x writing v in H|Tk (k ‰ i) where Tk is committed, commit-pending, or
commit-pending–equivalent with respect to x.

Definition 3 (Recoverable Last-use Consistency). History H is recover-
able last-use–consistent if (a) every read operation in H|Ti, for every transaction



Ti in H is last-use–consistent, and (b) for every pair of transactions Ti, Tj such
that i ‰ j and Tj reads from or writes after Ti, then Ti aborts or commits before
Tj aborts or commit, and if Ti aborts, then Tj also aborts.

Relaxing consistency necessarily leads to some inconsistent views to be ac-
cepted. Hence, while last-use opacity prevents overwriting (releasing x and writ-
ing to it afterwards), it does not prevent zombie transactions—ones that view
inconsistent state and are forced to abort. This happens if transaction Ti reads
from Tj which, for whatever reason, later aborts. Even if Ti eventually aborts,
it operates on stale data and, therefore, can behave unexpectedly. However, this
can be rendered harmless by, e.g. sandboxing [5], or enforcing invariants.

On the other hand, using last-use opacity yields performance benefits, espe-
cially in high contention. In Fig. 1 we compare two variants of the same dis-
tributed TM [6]: last-use–opaque LSVA and opaque OSVA. In all benchmarks
LSVA is able to process transactions faster, due to its ability to release early.

2 4 6 8 10

20
0

60
0

10
00

Nodes

T
hr

ou
gh

pu
t [

%
]

80% readsLoan

● ● ● ●

●
●

●

●

●●

LSVA
OSVA

2 4 6 8 10

50
0

10
00

15
00

20
00

Nodes

T
hr

ou
gh

pu
t [

%
]

80% readsVacation

●
●

●

●
●

● ● ●

●

●

LSVA
OSVA

2 4 6 8 10

10
0

14
0

18
0

22
0

Nodes

T
hr

ou
gh

pu
t [

%
]

80% readsBank

●
●

●
● ●

● ● ● ●

●

LSVA
OSVA

Fig. 1. Percentage improvement relative to a lock-based implementation.

Acknowledgments The project was funded from National Science Centre funds
granted by decision No. DEC-2012/06/M/ST6/00463.

References
1. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and

verifying transactional memory. Formal Aspects of Computing 25 (Sep 2013)
2. Guerraoui, R., Kapałka, M.: On the Correctness of Transactional Memory. In:

Proc. PPoPP’08 (Feb 2008)
3. Imbs, D., de Mendivil, J.R., Raynal, M.: On the Consistency Conditions or Trans-

actional Memories. Tech. Rep. 1917, IRISA (Dec 2008)
4. Ramadan, H.E., Roy, I., Herlihy, M., Witchel, E.: Committing Conflicting Transac-

tions in an STM. In: Proc. PPoPP’09 (Feb 2009)
5. Scott, M.: Transactional Semantics with Zombies. In: Proc. WTTM’14 (Jul 2014)
6. Siek, K., Wojciechowski, P.T.: Atomic RMI: a Distributed Transactional Memory

Framework. In: Proc. HLPP’14 (Jul 2014)
7. Siek, K., Wojciechowski, P.T.: Zen and the Art of Concurrency Control: An Explo-

ration of TM Safety Property Space with Early Release in Mind. In: Proc. WTTM’14
(Jul 2014)


