A 90% RESTful Group Communication Service

Tadeusz Kobus Tadeusz.Kobus@cs.put.poznan.pl
Pawet T. WOjCieChOWSki Pawel.T.Wojciechowski@cs.put.poznan.pl

Poznan University of Technology
Institute of Computer Science

Piotrowo 2, 60-965 Poznan, Poland

Technical Report RA-2/10

Abstract

In this paper we describe a 90% RESTful group communication ser-
vice that we have developed for Web applications. Our system is based
on Spread—a popular group communication toolkit which delivers many
useful programming abstractions, such as various reliable ordered broad-
casts; they can be used, e.g. for implementing resilient servers by repli-
cation. Contrary to Spread and many other such systems available as
libraries of programming languages, we represent group communication
abstractions as resources on the Web, addressed by URIs. To our best
knowledge, this is the first approach to engineering group communica-
tion systems in this way.

1 Introduction 2

1 Introduction

The Web can provide a common, language-independent platform for interoperable resilient
services that work together to create seamless and robust systems. Service resilience, de-
fined as the continued availability of a service despite failures and other negative changes
in its environment, is vital in the Service-Oriented Architecture (SOA). We must ensure
that each service is highly available regardless of unpredictable conditions, such as sud-
den and significant degradation of network latency or failure of dependant services. In
this paper, we describe our work on group communication service which can be used for
implementing resilient Web services, based on REST |9, 8].

A typical way of increasing service resilience is to replicate it. Service replication means
deployment of a service on several server machines, each of which may fail independently,
and coordination of client interactions with service replicas. Each service replica, called a
process, starts in the same initial state and executes the same requests in the same order.
Thus, the replicated service executes simultaneously on all machines. A client can use any
single response to its request to the service. A replicated service is available continuously,
tolerating crashes of individual server machines. If required, these machines can be located
in geographically distant places, connected via a wide-area network.

A general model of such replication is called replicated state machine [18, 17]. Two
properties are guaranteed by the replicated state machine: (1) each non-fault replica re-
ceives every request (the agreement property), and (2) each non-fault replica processes the
requests in the same relative order (the order property). The key abstractions required to
implement these properties are provided by group communication systems. They provide
various primitives for:

e detection of malfunctioning/crashed processes,
e reliable point-to-point transfer of messages,
e formation of processes into groups, the structure of which can change at runtime,

e reliable message multicasting with a wide range of guarantees concerning delivery
of messages to group members (e.g. causally- , fifo- and totally-ordered message
delivery).

Notably, the overlay protocols for reliable multicasting do not depend on any central
server, so that there is no single point of failure. For this, distributed agreement protocols
must be used, such as the Distributed Consensus protocol.

For the past 20+ years, many group communication systems have been implemented (see
e.g. [4,16,5,2,11, 14, 6, 19, 15] among others). There are however few commercial systems
(the examples are JGroups [15] and Spread Toolkit [19]). Unfortunately, various group
communication systems usually have quite different application programming interfaces,
which are non-standard, complex and language/platform dependent. Moreover, many of
such systems are monolithic, i.e. it is not possible to replace their protocols or add new
features. Using these systems to implement SOA services makes the code of services not
easily reusable nor manageable (adaptable), which is a counterexample to the Service-

1 Introduction 3

Oriented Architecture.

In this paper we propose an approach to designing an API of a group communica-
tion system, which is based on the REpresentational State Transfer (REST). REST [9, §]
is a key design idiom in the Web services world that embraces a stateless client-server
architecture, in which Web services are viewed as resources identified by their Uniform
Resource Identifiers (URIs) [3]. Clients that want to request these services access their
particular representation by transferring application content using a small globally defined
set of methods. These methods describe an action to be performed on a given resource
(consequently, by the corresponding service). Typically REST uses HTTP [7] and its
methods GET, PUT, POST, and DELETE. This makes it easy to describe one RESTful
Web service call to another Web service, e.g. a replicated service call to a group com-
munication service. We need only supply a verb, a URI and (optionally) a few headers
containing the message payload. Thus, REST gives us a uniform, simple way of using
group communication systems by Web applications, fulfilling the SOA requirements, such
as language/platform independence and easy software integration. Moreover, the use of
HTTP usually enables us to communicate with servers behind fire-walls.

We had to solve some problems to realize this approach, mostly related to the REST
characteristics and the constraints imposed on HTTP—a protocol which has not been
originally designed for software communication. For example:

e the client would not be able to change state based on the responses of intermediary
service calls; also,

e we had to provide means for the client to communicate both synchronously and asyn-
chronously with the group communication service using purely the HT'TP methods;
and

e we needed to match error codes of the HI'TP protocol to the incorrect behaviour of
a group communication system.

Various authors pointed out significant limitations of the REST architecture style. For
example, Khare and Taylor [12] discussed some of the limitations and proposed several
extensions of REST (collectively called ARRESTED). They allow to model the properties
required by distributed and decentralized systems. Similarly to them, we are not bound
by the rules of the original model. REST cannot model group communication well. There-
fore our goal was rather to design the RESTful interface to group communication, albeit
sacrificing strict conformance to the original REST model. To emphasize that group com-
munication cannot fully conform to REST, we say that our approach is “90% RESTful”.
To illustrate our ideas, we have been developing RESTGroups—a group communication
programming tool that can be used for developing resilient services on the Web. We think
that the benefits of using our tool overcome the lack of REST purity. RESTGroups is an
extension of Spread with a daemon and an API based on (some % of) REST over the stan-
dard HTTP [7]. RESTGroups functions as a front-end for Spread that is architecture- and
language-independent, i.e. communicating services can be implemented with the use of a
variety of programming languages and can run on different platforms. To our best knowl-
edge, it is the first attempt to a RESTful group communication service; the distribution

1 Introduction 4

files and javadoc are available [1].

The structure of the paper is as follows. Firstly, we describe an architecture of our sys-
tem and its main characteristics (e.g. statelessness). Then, we present an operation mode
of the system using a small example. It demonstrates the use of the group communication
programming interface based on REST/HTTP, and various communication protocols for
interaction between the client and the server. The system has been verified by developing
some use cases (or patterns); we sketch an example test application in the end. Finally,
we conclude.

Group Communication — Functional Requirements

Group communication systems provide various primitives, e.g. for a unicast and broadcast
within a group of processes, for maintaining group membership, for maintaining virtual
(or view) synchrony, and for detecting process failures. Message broadcasting can be
described with the use of two operations: a broadcast operation, which is used by a sender
process to send a message to all processes in a group, and a deliver operation, which is
used by a recipient process to deliver a broadcast message. Below we briefly describe
functional requirements of a group communication toolkit. A more detailed specification
of functional requirements can be found in many textbooks, for example [10].

Failure Models The design and implementation of group communication systems de-
pend on a model of system failures. In the simplest case, we consider a crash-stop (or
crash-no-recovery) model, in which a process that has failed stops its execution. In this
model, a process is said to be correct if it does not crash; the notion of “correctness” refers
to the whole execution time of a process. A process that crashes is said to be incorrect
(or faulty). In this model the processes that crashed do not recover.

In a crash-recovery model, processes can be recovered after a failure. In this model,
we consider a process to be incorrect if it crashes at least once and eventually cannot
recover its state (eventually down), or if it crashes and recovers infinitely often (unstable).
Otherwise, a process is correct, i.e. it never crashes (always up) or crashes at least once
but eventually recovers and does not crash anymore (eventually up).

Broadcast Properties The simplest broadcast primitive is Unreliable Broadcast, which
allows a message to be sent to all processes in a group, guaranteeing that if a message
sender is correct, then all processes in the group will eventually deliver the message.
However, if the sender crashes during the broadcast, then some processes in the group
may not deliver the message. Obviously, this primitive is not much useful in systems, in
which failures may occur. (Regular) Reliable Broadcast solves this problem; it guarantees
the following properties:

e Validity: if a correct process broadcasts a message, then it eventually delivers the
message;

2 Architecture of RESTGroups 5

e Agreement: if a correct process delivers a message, then all correct processes even-
tually deliver the message;

e Uniform Integrity: for any message, every process delivers the message at most once,
and only if the message was previously broadcast.

Note that Reliable Broadcast allows executions, in which a faulty process delivers a
message but no correct process delivers the message. Uniform Reliable Broadcast is a
stronger version of Reliable Broadcast, which satisfies the Validity and Integrity properties
defined above but replaces the Agreement property by the following;:

e Uniform agreement: if a process (correct or not) delivers a message, then all correct
processes will eventually deliver the message.

The Regular (or Uniform) Reliable Broadcast primitives provide a basis for stronger
broadcast primitives, which have additional properties, e.g.:

e FIFO order: this property guarantees that messages sent by a process are delivered
in the order of sending;

e Causal order: this property means that if some process has sent a message my that
caused sending of another message ms, then each process in a group will deliver my
before mo;

e Total order: this property means that messages sent by any different processes in a
group will be delivered by all processes in the group in the same order (note that
this property does not guarantee FIFO);

e Generic order: given a conflict relation C : M x M — Boolean, where M is a set
of broadcast messages, if two messages are in conflict, they must be delivered to all
processes in the same order. Otherwise, the messages are not ordered.

The (Uniform) Reliable Broadcast Protocols that support the above properties are
called, correspondingly: FIFO Broadcast, Causal Broadcast, Total-Order (or Atomic)
Broadcast and Generic Broadcast. Note that if the conflict relation C' is empty, Generic
Broadcast is reduced to Reliable Broadcast. Whereas, if all pairs of broadcast messages
are in conflict, then Generic Broadcast is equivalent to Atomic Broadcast. RESTGroups
however does not support Generic Broadcast since it is not available in Spread.

2 Architecture of RESTGroups

Spread Toolkit (or Spread in short) [19] provides a messaging service for point-to-point and
multicast communication that is resilient to faults across local and wide area networks.
Spread services range from reliable messaging to fully ordered messages with delivery
guarantees. Spread supports several programming languages, for example C/C++, Java
and Python.

2 Architecture of RESTGroups 6

Application Service

RESTGroups Library |3

RESTGroups Server Sockets
,,,,,,,,,,,,,, >‘ Spread Toolkit Daemon

HTTP / TCP

TCP

Figure 1: The RESTGroups system architecture

RESTGroups has been designed as the platform and language independent front-end
for Spread. RESTGroups represents all Spread services as Web resources, accessible using
the REST/HTTP architectural style. Since the Web is ubiquitous and the HTTP ports
are usually not blocked, we can run the group communication service truly globally.

The RESTGroups system architecture is shown in Figure 1. It consists of a RESTful
application interface to the Spread library that conforms to REST, and a daemon server
for communication with a Spread daemon (they run on each computer that is part of
the processor group). Below we sketch the interface (a more detailed description will be
in the next section) and present the system’s architecture. A complete description of
RESTGroups, including a demo application, appeared in the technical report [13].

Programming interface RESTGroups provides a representation of Spread group com-
munication services as resources, identified by URIs, with a simple but powerful API that
only uses the following methods of the HT'TP protocol for invoking the services:

e GET is used to retrieve data (for example, a message) or perform a query on a
resource; the data returned from the RESTGroups service is a representation of the
requested resource;

e POST is used to create a new resource (for example, to extend a process group with
a new process or to send/broadcast a new message); the RESTGroups service may
respond with data or a status indicating success or failure;

e PUT is used to update existing resources or data;

e DELETE is used to remove a resource or data (for example, to remove a process from
a process group); in some cases, the update and delete actions may be performed
with POST operations as well.

Figure 1 presents a fragment of a distributed system implementing replicated service
(only a single replica is depicted). The RESTGroups system architecture shows that
RESTGroups is an intermediary between a replicated Application Service and the Spread
group communication system. Instead of communicating with a group communication sys-
tem (GCS) directly, using its programming interface, a client of the RESTGroups system
(the Application Service), uses exclusively the HTTP methods, following the REST/HTTP
architectural style.

8 API and Communication 7

A suitable request of the HT'TP protocol, possibly containing a XML document, is
sent to a RESTGroups server, which is a front-end for the GCS. The GCS services are
represented as Web resources, which are identified with the use of Uniform Resource
Identifiers (URIs) [3]. The server translates client requests on these resources into concrete
calls of the group communication services. In our case, these services are supplied by the
Spread Toolkit Daemon.

System Deployment In the case of a concrete RESTGroups application, if the Appli-
cation Service were replicated on n machines, then, in most cases, we would have: (1) n
Spread Toolkit Daemons running on any n machines, and (2) from 1 to n RESTGroups
Servers that are communicating with them, usually deployed on the same machines as
Spread daemons.

The clients of the replicated Application Service (not shown in Figure 1) can commu-
nicate with any replica of the service. Each service replica (Application Service) connects
to a dedicated RESTGroups server. Each of the RESTGroups servers can interact with
any Spread daemon, using the sockets on TCP. Except when broadcasting of messages
can be optimized at the low level of network protocols (which is possible in the local-area
networks) the Spread Toolkit Daemons communicate using the IP unicast protocol.

Statelessness The RESTGroups server does not store any information about its clients
(which are service replicas), except for the necessary GCS sessions and so called permanent
connections, required for detection of client crashes; the details of this mechanism will be
explained in the following section.

Importantly, the RESTGroups server does not have any representation in the group
communication system, which is the back-end of RESTGroups. In particular, the unique
client identifiers, generated by the GCS, are used exclusively by the GCS, independently
from the RESTGroups. A crash of a given RESTGroups server results in the disconnection
of all clients of this server, which can then establish connection with another RESTGroups
server. In order to tolerate failures, the RESTGroups clients can establish connections with
separate RESTGroups servers, that are available within the same group.

3 APl and Communication

Group communication systems, such as Spread Toolkit, provide various primitives (or
services), e.g. for a unicast and broadcast within a group of processes, for maintaining
group membership, for maintaining virtual (or view) synchrony, and for detecting process
failures. In RESTGroups all these services are represented as resources, maintained by
RESTGroups servers.

In this Section, we describe our API and discuss the communication of a client userA
with a RESTGroups server. Let us assume that the RESTGroups server is available at
the address: http://mydomain.com:8182. The following components are required for the
communication with the server:

8 API and Communication 8

: Client : RestGroups server‘ ‘ : Spread Toolkit

\
: pilot connection

N
P

: permanent connection .
: create session

v

(create profile)
1 create session - OK

[v
L

: pilot connection - OK

: delete profile .
y—: delete session

: delete session - OK

3

: delete profile - OK

! permanent connection - OK

Figure 2: Successful connecting and disconnecting from the RESTGroups server

e a file transfer library supporting HTTP (e.g. libcurl or restlet),
e a library for building and parsing XML documents (e.g. jdom).

3.1 Connecting to the RESTGroups Server

HTTP is a stateless protocol for the client-server communication. In order to execute a
given action by a server, a client initializes connection with the server and sends a request
to it. The request contains all the information that are needed by the server to process
the action. After processing the action, the server sends back a response message and
the connection is closed. Therefore, using HI'TP as a transport protocol in the group
communication system does not seem natural. A permanent connection would be more
useful, since it can allow the system to detect client’s failure when the connection is broken.

Therefore, the connection with the RESTGroups server is accomplished using two re-
quests to the server. The first one, called the temporary (or pilot) request, is used to
ask the server to set up a resource which is representing a new communication session.
The session is created using the second request, called the permanent request. The server
does not respond to this request and so the connection opened to process it remains open.
Breaking of the latter connection is interpreted by the server as crash of the client. Both
requests should be separated in time by no more than 5 seconds; the order of the requests
is irrelevant. In Figure 2, we illustrate making a successful connection and disconnection
with the RESTGroups server.

Connection with the RESTGroups server is identified by a wunique identifier
pilotConnectionToken, created with the use of UUID numbers [20]. To create a random

8 API and Communication 9

UUID value in Java, it is necessary to import the java.util.UUID library and call a static
method randomUUID().

import java.util.UUID;
UUID value = UUID.randomUUID();

The UUID number created by a client is sent in XML format in the bodies of both the
pilot (temporary) and the permanent requests. A pilot request may look as follows:

POST http://mydomain.com:8182/groups/userA/pilotConnection

<?xml version="1.0" encoding="UTF-8"7>

<restgroups>
<pilotConnectionToken>dec7b89c-1f08-447e-952f-9c441ec92e5c<
</pilotConnectionToken>

</restgroups>

Processing of this request is suspended until a corresponding permanent request is
received or the timeout occurs. The schemes/profilesPilotMessage.xsd file is used for
validation of the temporary request’s body.

A permanent request may contain information about client preferences, e.g. a request
of discarding the group membership messages, as below.

POST http://mydomain.com:8182/groups/userA

<?xml version="1.0" encoding="UTF-8"?7>
<restgroups>
<pilotConnectionToken>dec7b89c-1f08-447e-952f-9c441ec92e5c¢
</pilotConnectionToken>
<groupMembership>false</groupMembership>

</restgroups>

The schema/profileMessage.xsd file is used for validation of the permanent request’s
body.

If a new session has been created successfully, the response message to the temporary
request is returned with the 204 ’'Success No Content’ status. The response contains:

e sessionID — a session identification number, stored in the response ’cookie’; from
now on, all requests to the RESTGroups server must include sessionID, which will
allow the server to identify the clients,

e identifier — URI of the client’s private group, stored in the response field that is
used for identification; since the names of private groups must be unique across the
whole group communication system, the identifier value can be different from the
name of the client, which is specified in the pilot and permanent requests.

8 API and Communication 10

: Client : RestGroups server‘ ‘ : Spread Toolkit
: pilot connection AL

N
P

: pilot connection - timeout

: permanent connection : create session

(create profile)
: create session - 0K

: delete session

: delete session - 0K

1 permanent connection

- timeout i

Figure 3: Unsuccessful session creation due to a connection timeout

For example, the following values could be received:

® sessionID: d10b88e7-74f3-424a-b306-c47440a818d9

e identifier: http://mydomain.com:8182/groups/@userA@mydomain

If connection with the RESTGroups server failed, the following error messages can be
received:

e in response to the pilot request:

— 408 'Request Timeout’ — if one of the two requests has not been received in a
predefined period of time (see Figure 3),

— 500 ’Server Internal Error’ — if an error occurs within the RESTGroups
server,

e in response to the profile request:

— 408 'Request Timeout’ — if one of the two requests has not been received in a
predefined period of time (see Figure 3),

— 500 'Server Internal Error’ — if an error occurs within the RESTGroups
server,

— 503 ’Service unavailable’ — if an error occurs while connecting to the group
communication system (see Figure 4).

8 API and Communication 11

: Client : RestGroups server‘ ‘ : Spread Toolkit

T
¢ pilot connection i

)
>

: permanent connection

» |: create session

(create profile)

. : create session - error
: permanent connection - error

: pilot connection - error

Figure 4: Unsuccessful session creation due to errors returned by the group commu-
nication system working as back-end

3.2 Disconnecting from the REST Groups Server

In order to disconnect from the RESTGroups server, a client sends the following request
message:

DELETE http://myDomain.com:8182/groups/@userA@mydomain

and waits for the response message with the 204 ’'Success No Content’ status code. Sub-
sequently, processing of the permanent request must be finalized and the response message
with the 200 '0K’ status code is returned.

Processing of the DELETE requests may occasionally fail. In such cases, the server returns
the following error messages:

e 400 'Client Bad Request’ —if the client identified by sessionID (which is sent in the
request’s ’cookie’) does not have an active RESTGroups session,

e 403 ’'Client Forbidden’ — if the client does not have sufficient privileges, defined by
the URI profile,

e 503 ’Service Unavailable’ — if the error occurred during disconnection from the
group communication system.

3.3 Joining a Group

To join a group named customGroup, a client userA sends the PUT request:
PUT http://mydomain.com:8182/groups/customGroup/members/@userA@mydomain

Upon successful request, the response message with the 204 ’'Success No Content’ status
code is returned to the client. Otherwise, the server returns one of the following error
messages:

® 400 ’'Client Bad Request’ — if the client identified by sessionID does not have an
active RESTGroups session,

8 API and Communication 12

: Client : RestGroups server‘ ‘ : Spread Toolkit‘

T T

. | I

: multicast message ! !
L

|

|

: multicast message

)
>

)
>

: multicast message - OK

: multicast message - OK |

Figure 5: Sending a message

e 503 ’'Service Unavailable’ — if the error occurred during disconnection from the
group communication system.

Detailed information about a group to which the client has joined, such as the current
group view and the membershipID identifier, will be sent inside a suitable membership
message.

The process of joining a group can be described using a sequence diagram in Figure 5,
which illustrates sending of a message.

3.4 Leaving a Group

In order to leave a group, say customGroup, a user named userA sends the following DELETE
request:

DELETE http://mydomain.com:8182/groups/customGroup/members/@userA@localhost
Responses to this request are the same as for joining a group (see above).

A sequence diagram for leaving a group is similar to the diagram illustrating sending of
a message (see Figure 5).

3.5 Sending Messages

There are two possible ways of sending messages to a group of users or to a single user,
identified by URI of the private group to which it belongs (only one user can belong to
a given private group). The first way can be applied in every case; it uses a predefined
resource /multicast and requires to specify—in the body of a message—the name of the
message recipient, i.e. an identifier of a group or a user to whom the message will be
sent. The second way of sending messages is convenient if a message (or messages) are
addressed for a single user only—there is no need to specify the message recipient in the
body of the message. However, each potential recipient of the message, i.e. a group or an
individual user, must be represented by a resource, identified by URI.

Sending a message to the customGroup by referring to the /multicast resource, re-
quires an XML document. The structure of this document is verified based on the
schemes/clientMessage.xsd file which defines a proper XML schema. The following sec-
tions (or tags) of the structure must be defined:

8 API and Communication 13

guarantee — reliability and ordering guarantees of message delivery,

e type — a message type,
e groups — a list of addresses,

e data — the message payload.
There are the following guarantees of message delivery:

e unreliable — no guarantee of message delivery,

e reliable — reliable broadcast,

e fifo — fifo broadcast (first-in-first-out),

e causal — causal broadcast, consistent with Lamport’s definition of causality,
e safe — total order broadcast,

e agreed — total order broadcast that is consistent with causal broadcast, i.e. messages
are delivered to all recipients in the same order, and the order agrees with the causal
relation between messages.

POST http://mydomain.com:8182/multicast

<?xml version="1.0" encoding="UTF-8"7?>
<restgroups>
<messages>
<message type="regular">
<guarantee>safe</guarantee>
<type>0</type>
<groups>
<group>customGroup</group>
</groups>
<data>Sample message</data>
</message>
</messages>
</restgroups>

Using the second approach for sending a message to the customGroup, requires to specify
an XML document. The structure of this document is verified using the schemes/client-
MessageSingleGroup.xsd schema file.

The request should look like below:

POST http://mydomain.com:8182/groups/customGroup/mailbox/safe

<?xml version="1.0" encoding="UTF-8"7?>

<restgroups>

8 API and Communication 14

<messages>
<message type="regular">
<type>0</type>
<data>Sample message</data>
</message>
</messages>
</restgroups>

Note that the request’s URI refers to a private mailbox located at the specified address.
The last part of the URI defines the chosen guarantee of message delivery; this guarantee
can take any of the six values described above.

Upon successful message sending, the RESTGroups server returns a response message
with the 204 ’Success No Content’ status code. In the case of an error, the server returns:

e 400 ’'Client Bad Request’ —if the client with the sessionID identifier in the request’s
‘cookie’ does not have an active RESTGroups session,

e 503 ’'Service Unavailable’ — if an error occurs during the disconnection from the
group communication system.

3.6 Checking for Messages

In order to check if there are any unread messages waiting on the RESTGroups server,
the userA client can send the following request:

GET http://mydomain.com:8182/groups/@userA@mydomain/mailbox/avaliableMessages

In reply, the server returns an XML document:

<?xml version="1.0" encoding="UTF-8"7>
<restgroups>

<messages avaliable="true"/>
</restgroups>

if there is at least one message waiting to be fetched, or:

<?xml version="1.0" encoding="UTF-8"7>
<restgroups>
<messages available="false"/>

</restgroups>

otherwise.

If the operation of checking for messages has been successful, it should be returned a
response status of 200 ’'0K’. Otherwise, the following error codes can be returned:

8 API and Communication 15

e 400 ’'Client Bad Request’ — if the client identified in the response’s ’'cookie’ by
sessionID, does not have an active RESTGroups session,

e 403 ’Client Forbidden’ —if the client does not have permission to check the mailbox,

e 503 ’'Service Unavailable’ — if an error occurs during the disconnection from the

group communication system.

3.7 Non-Blocking Reception of Messages

To download a new message, the client can send the GET request:

GET http://127.0.0.1:8182/groups/@userA@mydomain/mailbox/nonblocking
or simply:

GET http://127.0.0.1:8182/groups/@userA@mydomain/mailbox

If there are no new messages to fetch, the following message will be returned:

<?xml version="1.0" encoding="UTF-8"7?>
<restgroups>
<messages available="false"/>

</restgroups>

Otherwise, an XML document will be returned, which contains aggregated application
messages that have been sent (broadcast) by the sender. Below is an example XML
document of this type:

<?xml version="1.0" encoding="UTF-8"7>
<restgroups>
<messages available="true">
<message type="membership">
<membershipInfo membershipType="regular">
<members>
<group>@userA@mydomain</group>
<group>@userB@mydomain</group>
</members>
<group>customGroup</group>
<groupID>2130706433 1258230577 1</groupID>
<cause type="join">@userB@mydomain</cause>
</membershipInfo>
</message>
<message type="regular">
<guarantee>safe</guarantee>
<sender>@userB@mydomain</sender>
<type>0</type>
<endianMismatch>false</endianMismatch>

4 Test Application 16

<groups>
<group>customGroup</group>
</groups>
<data>Hello customGroup</data>
</message>
</messages>
</restgroups>

In the above example, two messages are returned in one XML document. The first one
is a membership message of the RESTGroups system, informing about a new member
of the customGroup group, identified with @userB@localhost. The second one is a regular
message which has been sent to the customGroup group by the userB client.

The server’s responses to this request are the same as those previously defined for
checking the availability of new messages.

More information about the structure of the returned XML document can be found in
the javadoc documentation of our system [1] and in the source code of RESTGroups-Client
in the restgroupsClient package.

3.8 Blocking Reception of Messages

The RESTGroups system offers a mechanism for blocking reception of messages. If used,
performing a GET request by a client is suspended until a new message (or messages) will
be received by the client (see Figure 6). Messages are sent to a client as soon as they
arrive to the RESTGroups server. In order to initiate blocking reception of messages, the
client sends the following GET request:

GET http://mydomain.com:8182/groups/@userA@mydomain/mailbox/blocking
In order to stop using this feature, the client should issue the DELETE request:
DELETE http://mydomain.com:8182/groups/@userA@mydomain/mailbox/blocking

The structure of responses to the above requests is the same as in the case of non-

blocking messages.

4 Test Application

To verify usefulness of our approach, we have designed a small distributed test applica-
tion. It implements a text console, analogous to the User application included in Spread
release. The console executed on a given machine allows the clients to create new custom
groups and the users which can dynamically join/leave custom groups and send/broad-
cast messages with specific guarantees. Messages can be received using both the blocking
and non-blocking modes. The test application is included in RESTGroups release [1] and
described in the technical report [13].

In the future, we plan to use RESTGroups in the implementation of a system for
managing and monitoring RESTful Web services (ongoing work).

5 References 17

: Client :_RestGroups server‘ ‘ : Spread Toolkit

: get messages

»—: set up listener

listener activated

listener

! new messages)
deactivated

1 get messages

- list of new messages

]

: get messages X
1 set up listener

listener activated

: finish get messages

y»—1: remove listener

listener
deactivated
: remove listener

: finish get messages - OK

|- (possibly) new messagesi

: get messages - (possibly)

new messages e

Figure 6: Blocking reception of messages

5 Conclusion

RESTGroups wraps functionality of a chosen group communication system and exposes
it through a uniform interface that is partially consistent with the RESTful approach.
However, due to the nature of the problem, some REST principles cannot be captured,
such as stateless interaction with certain group communication resources.

The usage of the open and popular hypertext transport protocol (HTTP) and the open
XML data format, which are both independent of the programming language and the
platform, makes building of distributed applications that require group communication
abstractions easier and time/cost-effective. This claim requires more evaluation which we
leave for the future work.

Acknowledgments. This work has been partially supported by the Polish Ministry of
Science and Higher Education within the European Regional Development Fund, Grant
No. POIG.01.03.01-00-008/08.

References

[1] (2010). RESTGroups. http://www.cs.put.poznan.pl/pawelw/restgroups/.

[2] Yair Amir & Jonathan Stanton (1998): The Spread wide area group communication
system. Technical Report CNDS-98-4, Dep. of CS, Johns Hopkins Univ.

[3] T. Berners-Lee, R. Fielding & L. Masinter (1998): Uniform Resource Identifiers
(URI): Generic Syntaz. Internet Engineering Task Force. RFC 2396.

http://www.cs.put.poznan.pl/pawelw/restgroups/

5 References 18

[12]

[13]

Ken P. Birman & Robbert Van Renesse (eds.) (1994): Reliable distributed computing
with the Isis toolkit. IEEE Computer Society Press.

Danny Dolev & Dalia Malki (1996): The Transis approach to high availability cluster
communication. Communications of the ACM 39(4), pp. 64-70.

EPFL (2006). Fortika. http://lsrwww.epfl.ch/crystall/.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach & T. Berners-Lee
(1999): Hypertext Transfer Protocol — HTTP/1.1. Internet Engineering Task Force.
RFC 2616 (Draft Standard). Updated by RFC 2817.

Roy T. Fielding (2000): Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine.

Roy T. Fielding & Richard N. Taylor (2002): Principled design of the modern Web
architecture. ACM Transactions on Internet Technology (TOIT) 2(2), pp. 115-150.

Rachid Guerraoui & Luis Rodrigues (2006): Introduction to Reliable Distributed Pro-
gramming. Springer.

Mark Hayden (1998): The Ensemble System. Technical Report TR98-1662, Depart-
ment of Computer Science, Cornell University.

Rohit Khare & Richard N. Taylor (2004): Extending the Representational State Trans-
fer (REST) Architectural Style for Decentralized Systems. In: Proceedings of ICSE
'04: the 26th International Conference on Software Engineering, pp. 428-437.

Tadeusz Kobus & Pawel T. Wojciechowski (2009): RESTGroups: Design and im-
plementation of the RESTful group communication service. Technical Report TR-
ITSOA-OB2-1-PR-09-6, Instytut Informatyki, Politechnika Poznanska.

Hugo Miranda, Alexandre Pinto & Luis Rodrigues (2001): Appia, a flexible protocol
kernel supporting multiple coordinated channels. In: Proc. of ICDCS ’01.

Red Hat (2009). The JGroups Toolkit. http://www.jgroups.org/.

Robbert Van Renesse, Kenneth P. Birman & Silvano Maffeis (1996): Horus: A flexible
group communication system. Communications of the ACM 39(4), pp. 76-83.

Fred B. Schneider (1990): Implementing fault-tolerant services using the state ma-
chine approach: A tutorial. ACM Computing Surveys (CSUR) 22(4), pp. 299-319.

Fred B. Schneider (1993): Replication management using the state-machine approach.
In: Sape Mullender, editor: Distributed Systems (2nd Ed.), ACM Press/Addison-
Wesley Publishing Co., pp. 169-197.

Spread Concepts LLC (2006). The Spread Toolkit. http://www.spread.org/.

The Internet Society (2005). A Universally Unique IDentifier (UUID) URN Names-
pace. http://www.ietf.org/rfc/rfc4l22.txt.

http://lsrwww.epfl.ch/crystall/
http://www.jgroups.org/
http://www.spread.org/
http://www.ietf.org/rfc/rfc4122.txt

	Introduction
	Architecture of RESTGroups
	API and Communication
	Connecting to the RESTGroups Server
	Disconnecting from the RESTGroups Server
	Joining a Group
	Leaving a Group
	Sending Messages
	Checking for Messages
	Non-Blocking Reception of Messages
	Blocking Reception of Messages

	Test Application
	Conclusion

