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Abstract. This paper studies the semantics of protocol modules com-
position and interaction in configurable communication systems. We
present a semantic model describing Cactus and Appia — two frame-
works that are used for implementing modular systems. The model cov-
ers protocol graph, session and channel creation, and inter-module com-
munication of events and messages. To build the model, we defined a
source-code-validated specification of a large fragment of the program-
ming interface provided by the frameworks; we developed an operational
semantics describing the behaviour of the operations through state tran-
sitions, making explicit interactions between modules. Developing the
model and a small example implementing a configurable multicast helped
us to better understand the design choices in these frameworks. The work
reported in this paper is our first step towards reasoning about systems
composed from collections of modules.

1 Introduction

Modularization is a well-known technique for simplifying complex communica-
tion systems. Here, we describe an approach which is based on implementing
an application’s individual properties as separate protocols, and then combining
selected protocols using a software framework. This approach helps to clarify
the dependencies among properties required by a given communication system,
and makes it possible to construct systems that are customized to the specific
needs of the application or underlying network environment. We are particu-
larly interested in implementations of group communication infrastructure (or
middleware), as configurability of protocols should be clearly required here; for
example, different applications may demand very different properties and guar-
antees as far as the quality of service and failure semantics are concerned.

In this paper, we are primarily interested in the programming abstractions
provided by Cactus [10] (which subsumes the x-kernel model [3]), and Appia
[4]. We have described an operational semantics of the programming interface
offered by each framework, covering enough abstractions for expressing interac-
tions between modules composed into a protocol graph. The frameworks also
support primitives that can simplify the construction of protocols, such as sup-
port for processing messages, marshalling messages to the network format, and



timeouts, but they are not covered here. We illustrate the model with a small
program, implemented in Cactus and Appia.

We have chosen Cactus and Appia for two reasons. Firstly, each of the frame-
works implements a very different approach to building configurable software,
with a different range of programming abstractions. Therefore, it is interesting
to look at each framework in turn. More importantly, we want a model that is
general enough for building any kind of communication service, not just group
communication. For example, Cactus has been used to implement many config-
urable protocols and services in distributed systems, such as Group RPC, real-
time channels, secure communication service, and QoS components for CORBA.
Appia has been used for the development of group communication and real-time
protocols. On the other hand, systems such as Horus and Ensemble [1] have been
designed to support modular and reconfigurable group communication, however
the protocol stack can only be configured from selected protocols that use pre-
defined event types.

The frameworks for building configurable services are highly concurrent with
complex programming interfaces. This complexity makes it hard to achieve a
clear understanding of the framework’s behaviour based only on informal de-
scriptions, in turn making it hard to build robust configurable systems. To the
best of our knowledge, there exist only informal natural-language documents
describing Cactus and Appia, covering the general architecture of each design
and the programming interface but not precise enough or free from ambigui-
ties; for example, we had to inspect source code on several occasions since the
documentation was not clear enough.

Our work aims at precise understanding of the behaviour of programs that
are implemented using these frameworks. An important question is about the
sense in which the semantics of network subsystems composed from collections
of protocol modules will relate to the behaviour of the actual implementation.
This is an area that is often a secondary priority for the developers of practical
module composition frameworks, yet is crucial to the long-term acceptance of
this approach. While the work described here has not quite reached the point of
reasoning about composition, it makes the important first step in this direction.

2 Architecture

Figure 1 presents the architecture of Cactus and Appia. The protocol names are
taken from our small example, which is described in Section 5. It can be noticed
that the frameworks differ considerably in the way protocol modules (represented
by boxes) are composed. The dynamically created instances of modules are called
sessions. The protocol sessions (ovals) communicate using messages or events,
which are sent along communication paths (arrows).

The composition of protocols is defined by a directed acyclic graph, in which
edges define communication channels. The protocols in Cactus communicating
using messages are internally structured as collections of microprotocols. The mi-
croprotocols communicate using events and shared data such as messages, with
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Fig. 1. Example Protocol Composition in (a) Cactus, and (b) Appia

the events dispatching actions defined by event handlers; messages coming from
outside the protocol session normally trigger an event. A protocol in Cactus can
create a new session dynamically, e.g. when a message arrives from a new par-
ticipant. In Appia, all sessions must be created before a relevant communication
channel is established (usually at the time when a protocol stack is configured).

The sessions (or protocols) in Cactus decide themselves which other sessions
are to receive a message — in the case of messages incoming from the network
this information is usually extracted from the message. The message is forwarded
to a next session by invoking an interface method. The message arrival to a
session causes appropriate event handlers (within the session) to be invoked. In
Appia, there is a scheduler which forwards events to sessions in the order which
is defined by a communication channel; the channel name is extracted from the
event.

In the following sections, we describe each framework in turn, giving se-
mantics of the most important operations. We do not require from the reader
knowledge of the formal semantics methods, but instead we use algebraic objects
that should be also well known for non-theoreticians, such as sets, lists, tuples,
maps, and relations. We introduce our notation when it is first used. Due to lack
of space, some rules have been omitted (they are included in [8]).

3 Cactus

Cactus extends the x-kernel hierarchical composition of protocols with fine-grain
parallel composition. The Cactus protocols can be composed of semi-independent
microprotocols, each of which implements a well-defined property or function
of the protocol. Below we focus on Cactus/J, which is one of the prototype
implementations of Cactus.
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3.1 Microprotocols and Events

A microprotocol is a section of code, structured as a collection of event handlers,
where an event handler is simply a procedure invoked with every occurrence of
the event. We define Microprotocol as the set of microprotocol names, ranged
over by x, y. The set Handler is the set of event handler names, ranged over by
h. An event defines an occurrence that causes one or more microprotocols to be
executed. For example, an event such as message arrival might trigger the event
handlers of a microprotocol which detects host failures, and a microprotocol
which is responsible for message ordering, etc. The events not only drive the
flow of control, by executing event handler procedures associated with a given
event, but also pass data from the trigger point to the handler. The set Event
is the set of valid event names (or types), ranged over by e, e′. We denote the
occurrence of an event e as a triple (x, e, v), where x is the caller which raised
event e, and v is a value passed with the event.

In order to describe behaviour of the operations supported by the program-
ming interface (represented as functions), we use a transition relation of the form
S, p ` op(n) . S′, which means that the execution of operation op initiated or
invoked by p in some state (or context) S leads to state S′; op has parameters n.
The state is represented by relevant set(s) of elements. In our case, the context of
every transition relation is always a single protocol stack, i.e. S always describes
(part of) the state of a local runtime system only. To express and maintain the
internal state, we will need maps storing bindings from keywords of type T to
values of type T ′. We represent maps using a set M(T 7→ T ′) of all mappings
from elements in T to elements in T ′, together with operations for adding and
removing bindings from a map, and looking up an element. We also use lists of
elements in T ; L(T ) is to denote all possible lists of elements such that each
element is in T .

In order to associate a handler with a particular event, a microprotocol in-
vokes an operation

bind : Event ×Handler × Int → ()

specifying the event name, the handler name, an integer which is used to de-
termine an order in which handlers will be executed, and a static argument
(omitted here) which is passed to the handler when an event occurs (this can
be used to parameterize a handler and allow its use with more than one event
types). Below a microprotocol x binds an event handler h to event e.

hl = E[e]
E, x ` bind(e, h, i) . E⊕(e 7→ sort≤((h, i) :: hl))

This registers a handler h of event e in a map E ∈ M(Event 7→ L(Handler ×
Int)), which is part of the Cactus/J state of a composite protocol that contains
x. The map E stores bindings from an event name to a list of event handlers
which are to handle the event, where each handler name is paired with the order
argument i; the list is ordered with increased i. The value i does not need to
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be unique for each handler; handler names with the same order argument are
placed in an indeterminate order. With every occurrence of e, the handlers will
be executed in sequence as they appear in the list E[e]. We use the following
notation: E[e] looks up e in map E and returns the list of handlers bound to e, ::
is a concatenation symbol to append a new element to a list, sort≤(l) returns a
list l sorted by partial order relation≤, and E⊕(e 7→ l) returns map E with a new
binding of e to l; if e was already bound in E, its previous binding disappears.

3.2 Event Raising and Handling

An event can be raised by calling

raise : Event × {Sync, Async} × T → ()

specifying the name of the event, the calling mode, and a dynamic argument,
such as a message that is associated with the event. When an event is raised,
handlers bound to this event execute sequentially in the specified order. Each
handler is passed both the static argument defined at binding time and the
dynamic argument. The calling mode µ is either Sync, which invokes handlers
immediately and blocks the caller until the last handler is executed, or Async,
which allows the caller to proceed concurrently with the handlers (the handlers
can be executed after a specified delay, omitted here).

Below we define the behaviour of raise, assuming that a microprotocol x raises
an event e with a dynamic argument v.

raise(e,µ,v):

µ = Sync ∨ µ = Async

E[e] = (h1, ) :: ... :: (hn, ) :: nil
E, x ` invoke(h1, v), ..., invoke(hn, v) . E ∧ (x, e, v)µ raised

This looks up in map E a list of handlers of event e and executes the handlers,
passing v to each handler. The event raising is modelled by relation raised .

The caller x is either blocked until the last handler returns, or not, depend-
ing on mode µ. While the handlers of a particular event occurrence execute
sequentially, it is important to note that they can execute concurrently with
other occurrences of the same event or with other microprotocol code. Therefore
access to any shared data should be synchronised.

3.3 Messages

Protocols in Cactus communicate using messages; a message is created by the
application or a protocol session, and can travel through several layers of pro-
tocol sessions and across a network. Messages contain data stored in attributes,
which can be accessed and modified by microprotocols. Message creation raises
a predefined event NewMessage.
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Below, we use the set Session of session names, ranged over by s, and the set
Message of message names (or references), ranged over by m, n. A message m is
modelled as a triple of message attributes a, a message type T , and send votes
V m (the last two parameters are local to a session and never transmitted), i.e.

m = (a, T, V m)

where each named attribute in a record a has a defined scope; it can be visible
only in the current session, in the current stack, or within peer sessions only;
otherwise it is discarded or concealed. The message type T is equal ↑ if the
message arrived from a session below, or ↓ if from above. The message type ¦ is
for a temporary message local to a session. The send votes are described in §3.4.

A protocol can send a message to a Cactus session below or above using

sendDown : [Session×]Message → ()
sendUp : [Session×]Message → ()

where the first (optional) parameter is the name of a session to which the message
is to be sent. If a message is sent to a non-Cactus session, e.g. to an x-kernel
session, message attributes are converted into message headers by using a user-
defined procedure (see also the push and demux operations in [8]). Below we
define the default behaviour of sendDown, assuming that a protocol session s
sends a message m downward to a session s′, created by Cactus/J.

s ` sendDown(s′,m):

down
s ` s′.fromAbove(m)

M, s′ ` raise(MsgFromUser , Async,m) . M⊕(m 7→ s′)

The session s invokes an operation fromAbove of the lower-level session s′, passing
m as the parameter. The execution of fromAbove raises asynchronously an event
MsgFromUser which carries the message m. The message migration is recorded
in map M ∈ M(Message 7→ Session) of active messages bound to their current
sessions. Microprotocols which are interested in receiving messages from sessions
above could handle the MsgFromUser event. Note, however, that any subsequent
invocation of sendDown will also raise this event. Therefore, if the protocol re-
quires to receive messages in a first-in-first-out order, some synchronisation is
necessary so that the microprotocol handlers will be invoked in a sequence (e.g.,
in our example program, we have overwritten the operation fromAbove so that
it executes a synchronous operation raise(MsgFromUser , Sync,m)).

The semantics of message flow in the opposite direction is similar. The main
difference is that sendUp calls either fromBelow of a specified higher-level session
(inside which an event MsgFromNet is raised), or an operation demux of a higher
level protocol, if no session has been specified.

3.4 Message Events

An event can be associated with a particular message type (↓,↑). This event
is triggered by a collective action of all microprotocols that have registered an
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interest, providing a way for microprotocols to agree upon event raising. To
declare the interest, a microprotocol invokes

register : {↓, ↑} × Event → ()

passing a message type and an event name. Every subsequent message creation
of that type has the potential of triggering the event. (If the event is to be caught,
a bind call is also necessary.)

RT
e , x ` register(T, e) . RT

e ⊕(x 7→ false) ∧ (x, e, T ) registered

The invocation of register adds a new entry in a map RT
e for message type

T and event e. We mark registration by relation registered . The map RT
e ∈

M(Microprotocol 7→ Boolean) is created dynamically and updated each time
when some microprotocol executes operation register; it is a map from names of
microprotocols to Boolean values (initially false) that represent the microproto-
col “votes” signalling readiness of the event e to be raised for message type T
(where T not equal ¦).

For each message m, whenever message type T is assigned, Cactus/J uses
maps RT

e to build a (local to m) map V m. For each event e that has been
associated with the message type T , map V m stores a copy of corresponding
map RT

e , i.e. V m[e] = copyOf (RT
e ). Each event e can be raised only once per

message; that occurrence of e will pass name m to event handlers bound to e.
For each message, the message event is raised as soon as all of the interested

microprotocols have called

signal : Message × Event → () .

The signal operation requires to pass as arguments the names m of the message
and e of the event which will carry the message. The behaviour of signal invoked
by microprotocol x is below; the execution of signal should be atomic.

m = (a, T, V m)
V m[e][x] = false ∧ ∀y 6= x V m[e][y] = true

E, V m[e], x ` signal(m, e) . E, V m[e]⊕(x 7→ true) ∧ (x, e, m)Async raised
(1)

m = (a, T, V m)
∃y 6= x | V m[e][y] = false

E, V m[e], x ` signal(m, e) . E, V m[e]⊕(x 7→ true) ∧ (x, e, m) signalled
(2)

Rule (1) checks if x signals e for the first time and if all other microprotocols
set their “vote” to raise event e associated with the message. If so, the event
is raised asynchronously and all event handlers which have been bound to this
event will receive the name of the message (see §3.2 for details). Otherwise (2),
event e cannot be raised and we only set in V m the message readiness as far as
microprotocol x is concerned (and mark that the relation signalled holds).
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For example, we can use this mechanism to implement a collective sending by
several microprotocols. Below, we have two microprotocols x and y which share
a message m and want to agree when to invoke an event carrying this message.

(x, e, ↓) registered
(y, e, ↓) registered
m = (a, ↓, V m)

(y, e, m) signalled
E, x ` signal(m, e) . E ∧ (x, e, m)Async raised

We assume that microprotocols x and y registered their interest in raising an
event e when a message of type ↓ will be received from above by the composite
protocol. We also assume that some message m of this type eventually appeared
and was handled and signalled by microprotocols x and y. Since x is the last
microprotocol which signalled the readiness of message m, therefore it causes
event e to be raised. A microprotocol (more precisely one of its event handlers)
which has been bound to event e can now be invoked and, e.g., it might send
the message out of the composite protocol.

4 Appia

A protocol in Appia consists of two static parts, one is called layer and the other
one is called session (not to be confused with a session in Cactus). Protocols
interact using one or more coordinated channels. A channel defines routing of
events across protocols, and is defined by a set of instances of sessions (i.e. objects
of class “Session”).

4.1 Layers and Sessions

A layer declares types of events which are either generated, required, or accepted
by the protocol. Appia uses the event declarations to verify partial correctness
of QoS definitions (we describe this verification below). A layer is also used to
create instances of its session. A session implements the actual protocol code,
in particular it generates and handles events which have been declared by the
corresponding layer. An event may carry a message. Messages can be marshalled
and communicated in a network.

The set Layer is a set of layer names, ranged over by l. The set Session is a set
of session names, ranged over by s. The name of a layer identifies unambiguously
a protocol whose definition the layer is part of (so we may sometimes use terms
“layer” and “protocol” interchangeably). A layer can use an operation

createSession : Layer → Session

to create many instances of its session (the name of the layer is passed as the
operation argument).
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Below we use a set P ∈ S(Layer) of names of all protocols/layers which are
used to form a given protocol stack (S(Layer) denotes all possible subsets of the
set Layer , i.e. S(T ) is the powerset of T , usually denoted 2T ). In the context
of P , we define the following three maps Eg, Er, and Ea, which store bindings
from layer names to, respectively, a set of types of events which are generated
by a protocol, types of events which are required by the protocol, and types of
events which are accepted by the protocol (that includes the former set), i.e.

Eg, Er, Ea ∈M(P 7→ S(EventType)), ∀l ∈ P Er[l] ⊆ Ea[l]

where EventType is a set of abstract event types. A protocol l declares some
event type T to be in Ea[l] but not in Er[l] if the absence of events of this type
is not critical for the protocol execution; therefore we could use protocol l to
build protocol stacks which are meaningful even if events of type T are never
generated in these stacks.

The Appia state contains set P of layers which are used to form a single
protocol stack, together with a map S ∈M(P 7→ S(Session)) from layer names
to sessions created by the layers. New sessions are created as follows.

l ∈ P

P, S, l ` s := createSession(l) . P, S⊕(l 7→ S[l] ∪ {s})
This transforms the state at a time when the protocol stack is initiated, recording
a new session s created by layer l in map S.

4.2 QoS Definitions and Channels

A QoS definition is simply a static list of layers, which is used to create a com-
munication channel. The Appia framework partially verifies each QoS definition,
checking if events that the layers declared as required are also declared as gener-
ated. The verified QoS definition is used to build a channel with blank slots; the
slots can be filled as appropriate with sessions that are created by the layers.

A channel defines the flow of events through the sessions. Each channel maps
layers from the QoS definition into concrete sessions which have been created by
the layers. By selecting appropriate channels for routing different events through
the protocol stack, an application can obtain a requested quality of service (QoS).

We model a QoS definition as a list of names of layers which are used to build
a single protocol stack. A QoS definition qos ∈ L(P ) constructed using protocols
from P is well formed if for each event type T required by each protocol l from set
L (of all elements from list qos) there exists some protocol l′ in L which declared
T in set Eg[l′] of types of events generated by l′. This verification is usually done
before any session is created. The set Q ∈ S(L(P )) of QoS definitions, such that
each definition is well formed can be used by Appia to create channels.

A set Channel = L(Session × Layer) is a set of channels, ranged over by c.
Let C ∈ M(Id 7→ Channel) be a mapping from channel identifiers to channels
in a given protocol stack, where a single channel c in map C is modelled as a list
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of session names paired with names of the corresponding layers in the protocol
stack, i.e.

c = (s, l) :: t where l ∈ P, s ∈ S[l] .

The channel identifiers are unique per protocol stack; they are used by messages
to identify a (corresponding) channel on a remote site that should be chosen to
deliver the messages to peers. Here is how a new channel is created and bound
to sessions (first by user-defined binding and then automatic binding).

c := createUnboundChannel(ID , qos) ∧ qos well-formed
P, S, C ` c = defaultBind(userBind(c)) . P, S,C⊕(ID 7→ c)

This first creates a new channel c from a well formed QoS definition qos using an
Appia operation createUnboundChannel : Id×L(Layer) → Channel . The channel
is identified by a fresh name ID ∈ Id . The new channel is initially unbound, i.e.
each element (s, l) of c has a session name s equal null . After the channel is filled
with sessions, a mapping of ID to the channel is recorded in map C.

In order to bind the free slots of an unbound channel to sessions that are
created by corresponding layers (of the qos definition), the following two proce-
dures are used. The first procedure must be set up by the protocol programmer,
who can specify in this way which channels should share a common session.

userBind(c):

c = (null , l) :: t where l ∈ P

∃s ∈ S[l] | s required-by c

P, S, C ` return((s, l) :: userBind(t)) . P, S, C

This binds free slots in channel c to some existing sessions s, which are selected
by a programmer from set S[l]. We assume that the sessions have been created
before with createSession. The sessions s are likely to be bound already to some
other channels, so that they can process different types of events which originate
from different channels. The choice of sessions is application-dependent; here
modelled by relation required-by. If the relation does not hold, null slot is left.

The free slots that have not been bound explicitly by userBind are bound
automatically by a default procedure below.

defaultBind(c):

c = (null , l) :: t where l ∈ P

s := createSession(l)
P, S,C ` return((s, l) :: defaultBind(t)) . P, S⊕(l 7→ S[l] ∪ {s}), C (1)

c = (s, l) :: t ∧ s 6= null
P, S, C ` return((s, l) :: defaultBind(t)) . P, S, C

(2)

This creates a new session s for each session-free layer l in a channel c and returns
the channel with free slots filled with the session names.
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A protocol stack is a composition of all protocols that share (transitively)
some communication channels. We define F to be a well formed set of channels
where well-formedness means that each channel in F (built from a well-formed
QoS definition) shares at least one session (selected by the user) with some other
channel in the protocol stack. We represent a protocol stack as a map C from
channel identifiers to channels which are taken from set F .

4.3 Routing Table

After channels have been created, Appia can use information about the channels
and events declared by protocols to construct an optimal routing path for each
event type that is associated with a given channel.

We model a routing table as a map R ∈ M(Id × EventType 7→ L(Session))
from channel identifiers paired with types of events to routing paths, where a
routing path is a list of sessions (ordered from top to bottom) which accept these
events. A session accepts an event of type T if the session was created by a
protocol which declared T in its set of accepted events (in map Ea, which has
been defined in §4.1).

The map R is created from all routing paths which are well formed. A routing
path r ∈ L(Session) of events of type T that are to travel in a channel identified
by ID is well formed if r is a list of sessions constructed from a superset of
sessions taken from channel c identified by ID , so that each session in r accepts
events of type T and the order of sessions in r is the same as order of sessions
in c. Routing paths are kept unchanged during system lifetime.

4.4 Events and Messages

Events are the only mean which can be used by protocol sessions (including the
application session) to communicate with other sessions in the protocol stack.
Messages are specialised events which can be marshalled and sent over network
to remote sites; they contain headers with protocol-dependent data. The set
Event is the set of valid event (and message) names, ranged over by e.

An event (or message) e ∈ Event is represented as a tuple (T, ID , r, n), where
T is the event type, ID is the name of the channel carrying events of type T , r is
the list of sessions to be visited by e (which is built from the channel), and n is
the event content. We say that a channel l carries (or accepts) events of type T
if the QoS definition used to create the channel contains at least one layer l, such
that T ∈ Ea[l]. The event content n has two components attrs and m (denoted
n = attrs +m), where attrs is the record (with named fields) of event attributes,
and m is the list of message headers (attached to e by visited protocols). The
m fragment is marshalled and sent over network together with T and ID . If e
is not a message then m is empty; if e is a message then two attributes s and
d of attrs are predefined and should contain the source and destination of the
message.

Before a message of type T which arrived from a network can be injected
into a local channel c identified by ID , it must be first verified (by a user-defined
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procedure) and then “wrapped” by one of the event tuples below

e↓ := (T, ID , R[(ID , T )], n)
e↑ := (T, ID , reverse(R[(ID , T )]), n) .

The event tuples contain local routing data, which is found in R. The routing
data will not change during e’s lifetime. The choice between tuples e↓ and e↑

depends on if the event/message uses channel ID to travel downward, or upward
(reverse(l) returns a reversed list l). The verification procedure should check if
T is accepted by channel ID .

4.5 Event Scheduling and Routing

Below we confuse events and messages for simplicity, and describe the flow
of messages in a channel, modelled by modifications to a map of events E ∈
M(Session × Id 7→ Event) from channel sessions to events.

A session s holding an event e = (T, ID , r, n) can pass it along a channel
identified by ID by invoking an operation go(e).

down/up
E[(s, ID)] = e = (T, ID , r, n)

C, E,Φ, s ` go(e) . C, Eª(s, ID), Φ ∪ {(s, e)} (1)

This transfers control to a (default or user-defined) scheduler φ, modelled as a
set Φ of events paired with their last visited session, together with a function
takeEvent, which returns one element from the set. We record the change of
state by modifying the map of events and the scheduler set (Eªe returns map
E without a binding of e). The scheduler φ selects an event e from Φ (the choice
depends on the implemented scheduling algorithm), and passes e to the next
session to be visited by the event.

(s, e) = takeEvent(Φ)
e = (T, ID , r, n)

down/up
s′ = next(s, r)

C, E,Φ, φ ` s′.handle(e) . C, E⊕((s′, ID) 7→ e), Φ \ (s, e)
(2)

This selects an event e together with its last visited session s from Φ, and uses s
to find out which is the next session s′ to visit by e according to the routing path
r (which has been extracted from the event tuple). It then invokes an operation
handle of session s′ to handle event e. We record the change of state by modifying
a map of events, and removing (s, e) from the scheduler set. The handle operation
will recognise a type of e and invoke a user-defined procedure to handle e. For
simplicity, we assume in the rule above that a session can only hold one event
at a time. The scheduling of events depends on the event scheduler. The default
policy is such that each two events which are initially processed by some session
in a certain order (e.g. defined when the events are injected into a protocol stack
by an application, or received from the network) will never be processed in the
opposite order by any other session in the protocol stack. This implies that the
whole protocol stack (i.e. all channels) behaves like a distributed queue which
holds a first-in-first-out property.
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5 Example Protocol Decomposition

To experiment with Appia and Cactus/J we have implemented in each of these
frameworks a small example application that uses two communication services.
The first service (AB) sends a message atomically to all processes in a dis-
tributed system and guarantees Atomic Broadcast. The second service is an
Atomic Multicast (AM), which sends only to a specified group of processes. We
have decomposed each service into several modules, each implementing a small
protocol, so that some modules in the protocol graph can be shared by the two
services (in a given system). The modules are presented in Figure 1. The Atomic
Broadcast algorithm and pseudocode of an example modular implementation in
Appia and Cactus are described in [8].

In Cactus/J, we have decided to place modules LampCast and Clock in one
composite protocol so that they can share a clock variable Ci, which both mod-
ules need to read (see Figure 1a); we did the same for modules SkeenCast and
Clock (not shown in Figure). We might experiment with even finer grain pro-
tocols; e.g. the LampCast module could be further decomposed into two “mi-
croprotocols”, one for receiving an application message, and the second one for
receiving an acknowledgement message.
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Fig. 2. Example Decomposition in Appia

The clock variable in module
Clock of the Appia implementa-
tion is not shared by other pro-
tocols. Therefore, we need to cre-
ate a specialised event ClockEvent
(c) in order to propagate the cur-
rent clock value to SkeenCast ,
each time a new message arrives
from the network. Also, we need
to create another specialised event
TimeEvent (t) carrying the mes-
sage timestamp that is required
by LampCast . If the event will
be actually delivered depends on
which channel is used. The events
are illustrated in Figure 2 (events
with a dashed line are discarded).
Notice that each local event must
be sent upward before the event of
type Msg carrying the message (types AppMsg , AckMsg , and GroupMsg are all
subtypes of Msg). Unfortunately, we cannot pass the clock and timestamp values
between modules using network messages since the message headers can only be
accessed at the level on which they have been created by a peer participant (e.g.
a header which contains the timestamp required by LampCast is stripped by
layer Clock). Also, for sanity reasons, message attributes should not be used for
this either since, e.g. the current clock value is required only by SkeenCast —
it does not seem reasonable to extend the message format to include this value
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because we want to be able to remove or replace module SkeenCast at any time,
however the format of network messages should not change so often.

6 Brief Comparison

Cactus supports fine-grain composition of microprotocols, which communicate
using events or shared data. A composite protocol (built from a collection of
microprotocols) can also be composed with other (composite) protocols, forming
a protocol graph. This two-level architecture allows to decompose a given service
in an arbitrary way. Appia offers less flexibility of the composition — modules
are composed into a graph, and the pattern of communication between modules
is restricted by the communication channels. The channels are static, optimised
routing paths in the protocol stack.

In Cactus, the idea is that each well-defined property or function of a protocol
could be implemented as a microprotocol. However, we need more experience
to attain confidence when such fine-grain composition would be justified. In
particular, increasing the number of concurrent microprotocols per composite
protocol (which have to share resources) may increase the number of mutual
dependences, in turn making it harder to notice possible deadlocks.

Appia supports partial evaluation of the protocol composition — for each
communication channel it can verify if events declared as required are also gen-
erated. This helps to reject protocol compositions which are clearly not mean-
ingful, however, of course it does not guarantee correctness (see [8]). This simple
evaluation could be improved if a programmer was able to specify some addi-
tional (application-dependent) constraints when defining a module, e.g. a re-
quirement that all modules below in the communication channel should declare
some event(s) as accepted, or required. In the context of Cactus, Hiltunen [2]
developed a methodology which is based on identifying relations between mod-
ules that dictate which combinations are correct; a configuration tool based on
these relations allows only correct configurations to be created.

7 Related Work

To the best of our knowledge there is no other work that models the behaviour
of Cactus or Appia operations. An understanding of the behaviour is critical for
actually programming with these frameworks. In the Ensemble project, formal-
isation using the Nuprl theorem prover provided insight into the structure of
the layered protocols and their optimization [1], however the framework itself
has not been described formally. There has been work on formalisation of mod-
ules composition, e.g. [7], however it further abstracts away from programming
frameworks.

The approach of Serjantov et al. [5] is similar to ours in that they aim to
model the behaviour of partial systems, making explicit the interactions that
the infrastructure offers to applications. They constructed an experimentally-
validated specification of the standard UDP/ICMP sockets interface, including
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loss and failure, and integrated the above with semantics for an executable frag-
ment of a programming language (OCaml) with OS library primitives. In our
case, the “infrastructure” and “application” correspond in turn to the protocol
framework and communicating protocols, with correspondingly more complex
dependencies and mutual interactions. However, unlike them we do not need to
deal with the distributed phenomena and complex failure semantics.

The goals put forth in [6] in the area of the location-independent commu-
nication for mobile agents are also related to the approach described here in
the sense that the choice or design of protocols must be somewhat application-
specific. However, unlike the Nomadic Pict programming language [9] which
has been implemented and used to design many different communication in-
frastructures, provided as encodings of the high-level language primitives, the
frameworks described in this paper use standard language facilities and support
multi-level protocol composition.

8 Conclusion

8.1 Contribution

We have given a mathematically precise and experimentally validated model
of protocol modules composition and interaction in Appia and Cactus (which
subsumes the x-kernel model). It has been illustrated with a simple example ap-
plication that uses two (idealised) group communication algorithms. The model
consists of a set of inference rules defining operations and state transitions.
The contribution of the formalisation is twofold. It provides a clear and concise
description of a fragment of the programming interface provided by each frame-
work. Moreover, we think that this specification is at the right level of abstraction
to help reasoning about the design differences — it describes the frameworks’
behaviour (sufficiently accurately) but without going into too many implemen-
tation details. The specification is also precise enough to give some useful hints
for the designers and implementors of such systems. However, the model is not
complete — our primary goal was to understand the design features of the ex-
ample frameworks, instead of developing concrete reasoning tools that could be
applied for programs in Cactus or Appia. Nevertheless, it might be interesting
to see how we could express and verify certain properties in this model, like for
instance deadlock freedom. Due to lack of time, we also did not cover the whole
programming interface and some operations are missing, e.g. for dealing with
timeouts and dynamic microprotocol loading; also the description of threads,
error situations, and event scheduling should be sufficiently covered. Developing
and refining a small example application identified a bug in one of the frame-
works, which has been fixed up in a newer release of the system.

8.2 Further Research

The work described in this paper is a step towards a better understanding of pro-
tocol modules composition and interaction. However, it provides only a starting
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point — much additional work is required on algorithms decomposition, seman-
tics, and implementation. We hope to address some of this within our Crystall
project, that aims at the design of group communication services with solid
semantics foundations. In our future work, we would like to design a language
with clean abstractions for module composition and interaction in the context of
fault-tolerant computing. One way of making an application tolerant to partial
failures, is to replicate its services on different machines using group commu-
nication algorithms. The goal is to decompose the algorithms into configurable
modules in such a way that module dependencies are reduced, and the (inter-
nal) communication between modules is optimised. The language should adopt
a model which allows an application to specify its requirements so that they can
be adequately reflected by a protocol suite built from modules. The language
should also support a type system that can be used to verify certain properties
of the protocol suite. Eventually, it should be possible to integrate the language
abstractions with standard frameworks that are used to build component based
software, in order to increase the applicability of the method.
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