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Abstract

Mobile agents — units of executing computation that can migrate between
machines — are likely to become an important enabling technology for fu-
ture distributed systems. We study the distributed infrastructures required
for location-independent communication between migrating agents. These
infrastructures are problematic: the choice or design of an infrastructure
must be somewhat application-specific — any given algorithm will only have
satisfactory performance for some range of migration and communication
behaviour; the algorithms must be matched to the expected properties (and
robustness demands) of applications and the failure characteristic of the com-
munication medium. To study this problem we introduce an agent program-
ming language – Nomadic Pict. It is designed to allow infrastructure al-
gorithms to be expressed clearly, as translations from a high-level language
to a lower level. The levels are based on rigorously-defined process calculi,
which provide sharp levels of abstraction. In this dissertation we describe
the language and use it to develop a distributed infrastructure for an ex-
ample application. The language and examples have been implemented; we
conclude with a description of the compiler and runtime system.
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Chapter 1

Introduction

Mobile agents, units of executing computation that can migrate between
machines, have been widely argued to be an important enabling technology
for future distributed systems [CHK97, VT97]. They introduce a new prob-
lem, however. To ease application writing one would like to be able to use
high-level location independent communication facilities, allowing the parts
of an application to interact without explicitly tracking each other’s move-
ments. To provide these above standard network technologies (which directly
support only location-dependent communication) requires some distributed
infrastructure, problematic in three ways. Firstly, the distributed algorithms
needed are delicate. Secondly, flexible structuring mechanisms are required
to support clean factorisation of a system into its high-level application com-
ponent and the infrastructure implementation. Thirdly, the choice or design
of an infrastructure must be somewhat application-specific — any given al-
gorithm will only have satisfactory performance for some range of migration
and communication behaviour; the algorithms must be matched to the ex-
pected properties (and robustness and security demands) of applications.

We are addressing these issues in the context of a mobile agent program-
ming language, designed and implemented as part of this thesis. The lan-
guage, called Nomadic Pict, is based on a small core calculus – the Nomadic
π-calculus – that has a clear rigorous operational semantics, tightly related
to real network communication. This permits infrastructure algorithms to
be expressed precisely and concisely in an executable form, aiding design and
supporting ongoing work on correctness and robustness proofs.

The language has a two-level architecture. The low level consists of well-
understood, location-dependent primitives, including communication and
agent migration. The high level, in which applications can be written, ex-
tends these with location-independent communication. An infrastructure can
be expressed as an implementation of the high-level primitives in terms of



4 Introduction

the low-level language; only the low level need be supported by a widespread
runtime system (the distributed parts of the infrastructure can be deployed
dynamically, on application start-up, using agent migration).

The ease of writing infrastructure algorithms, and the fact that an ar-
bitrary infrastructure can be provided for an application at compile time,
make it straightforward to experiment with a wide range of infrastructures
for applications with different migration and communication patterns.

The content of the thesis is as follows. In chapter 2, after discussing a
variant of the asynchronous π-calculus, we describe the design of the No-
madic π-calculus, giving its operational semantics. In the end of the chapter,
we describe related calculi and two other non-calculi models. In chapter 3,
we present Nomadic Pict. Firstly, we motivate our decision to design and
implement another programming language. Then, we describe the language
in more detail, introducing enough of the syntax and idioms to be able to
understand translation encodings. Finally, we compare our design with two
other related programming languages. In chapter 4, we describe different
plausible infrastructures for location independence in the presence of mobil-
ity, expressing two simple infrastructure algorithms as translations from high-
to low-level Nomadic Pict. In chapter 5, we discuss various applications of
mobile agents, matching example applications with suitable infrastructures.
Then, in chapter 6 we discuss a small example application and the design of
an infrastructure suited to it in more detail. The focus is on demonstrating
the benefits of a multi-level architecture based on clearly defined levels of
abstraction. We begin with a simple centralised algorithm, which is further
extended to improve scalability and providing support for disconnected oper-
ation. In chapter 7, we describe the current implementation of the Nomadic
Pict compiler and runtime system.

In §1.1 we present background work, describing process mobility, dis-
tributed objects, and mobile agent systems. We focus on the problems of
migration and communication transparency in these systems. Then, in §1.2
we introduce our work and outline the contribution of this thesis to research
on the semantics of programming languages and design of communication
infrastructures for systems with mobility.

1.1 Mobility and Location Independence

The last few years have seen much interest in systems and applications which
support and use different forms of mobility, such as mobility of processes, de-
vices, and agents (see, e.g. a collection of representative papers on each of
these, published in [MDW99]). A major challenge to the success of em-
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ploying mobility in the global network is the lack of widespread distributed
infrastructure. The infrastructure should offer support for connecting devices
while or after they physically move, and allow processes, objects or agents
to visit remote sites and bind to local resources. For example, in collabo-
rative applications, mobile devices such as palmtop computers can be used
to maintain continuous communication channels within a group of people;
mobile agents can migrate to a stable part of the network and act on behalf
of the users if the connection with the mobile device was likely to be broken
or interrupted. The agents and processes executing on mobile or stationary
computers may want to maintain communication while moving.

In order to ease application writing, the infrastructure should support
some forms of location-independence for programs and devices migrating
from one location to another. The principle of location-transparency means
that all names are independent of their location, migrating processes can re-
quest identical kernel services wherever they reside, distributed objects can
be invoked without knowing their physical location, etc. Ideally, this means
that communication with a migrating entity can proceed as if there had been
no mobility. In practice, however, this is an (unattainable) ideal, especially
in wide-area networks. The issues of speed, latency, failure semantics, het-
erogeneity, and physical disconnection mean that agent or object behaviour
must adapt with location. Arguably, this adaptation should not be entirely
at infrastructure level since the knowledge about the application cannot be
fully exploited. The application programmer should be aware of mobility and
distribution at a low level whenever it is hard or inefficient to drive adap-
tation within the infrastructure. In this context, we are interested in the
infrastructure support for location independence which allows mobile devices
to be transparently reconnected after restarting at a new location, objects
to be accessed after migration to a new host machine, and mobile agents to
receive messages while they move on the network, as long as the only failures
which happen in the system are transient failures and there are no network
partition or any administrative boundaries.

The need for a suitable infrastructure to support location independence
appears inevitably in mobile computing. Traditionally, the Internet Protocol
(IP) assumed that an address is mapped to a static physical location, i.e.
the first few octets of an IP address specified a network, and the last part
of the address specified a host interface on that network. Since a mobile
computer can be moved around and connected to different networks, keeping
the IP address static required other protocols for routing communication
to and from the mobile computer (such as Mobile IP, initially proposed in
[IDJ91, IJ93]).
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Examples of traditional infrastructures supporting location independence
include network services like directory assistance (e.g. X.500 protocol), dis-
tributed object managers (e.g. CORBA, DCOM, OLE, and OpenDoc) and
automatic brokers, such as Publish and Subscribe Service in Mac OS and
ToolTalk. Directory assistance allows a program to find a desired service.
Distributed object managers provide transparent access to a distributed col-
lection of objects; messages are automatically routed to the destination object
even if the sender does not know the object’s network location. Automatic
brokers provide both functions by first identifying an appropriate recipient
for a message and then forwarding the message.

Below, we describe background work on migration and communication
transparency in process migration, distributed objects and mobile agents.

1.1.1 Process Migration

In [MDW99], Milojičić, Douglis and Wheeler summarise the key concepts of
process migration and give an overview of the most important implementa-
tions. The basic idea of process migration is to move an executing process
from one node to another (a node here can be a processor or host machine)
in order to, e.g. balance load distribution. Below, we describe examples
of systems with process migration; they are assumed to run in a local area
network.

Traditional process migration mechanisms rely on support provided by
the underlying operating system. For example, in MOSIX [BGW93] and
Sprite [OCD+87], the distributed operating system provides a single system
image that allows access to system resources (e.g. files) in the same way
irrespective of the process’ physical location, i.e. a process running on any
node can access any other node’s resources transparently (we assume the
notion of ownership of resources by a node). The system can automatically
migrate any process — migration is transparent to processes and to the users.

Other systems provide higher level mechanisms. For example, in
[MZDG93] Milojičić et al. present a task migration mechanism built on top
of the Mach microkernel system [ABB+86]. In Mach, a task is an execution
environment that provides the basic unit of resource allocation. A task con-
sists of a virtual address space and protected access to system resources via
ports. A task may contain one or more threads. A port is implemented as a
kernel-protected communication channel. File systems and other traditional
abstractions are implemented in Mach by user-space system daemons. Since
ports are location independent, a task and all its ports can be easily moved
from one machine to another. All tasks which previously communicated with
the moved task can continue to do so because they reference a task only by
its location-independent ports and communicate via messages to these ports.



1.1 Mobility and Location Independence 7

Although, task migration in Mach has been implemented in user space, some
modifications to the kernel were necessary.

Condor [LS92] avoids the complexity of kernel-based migration and sup-
ports migration of UNIX processes entirely as a user-space mechanism, i.e.
the process state must be exported into user space and then transferred.
When a process is about to migrate, the system produces a core file for the
process, which is sent to the new node. However, not all types of applications
can migrate in this way, e.g. processes are not eligible for migration if they
use signals or inter-process communication (IPC).

Some operating systems with process migration, such as Charlotte
[ACF87], Amoeba [TvRvS+90, Tan92], and Mach provide support for trans-
parent communication of processes (or tasks in Mach) irrespective of the
current process location. Maintaining communication in the presence of mi-
gration has turned out to be one of the most complex components in these
systems. Complex algorithms are required, e.g. to prevent messages sent
during migration being discarded or received out of order. Typically, the
algorithms involve some form of forwarding through proxies.

The object-based language and system Emerald [JLHB88] takes another
approach to mobility. Firstly, Emerald has language support for the notion
of location and for mobility. Secondly, mobility is fine-grained, i.e. the unit
of distribution and mobility is an object, which can be a small data object
(e.g. integer) as well as an active object which contains a process. The ac-
tive object mobility subsumes both process migration and data transfer. In
the next section, we describe the mechanism of location-independent invoca-
tion of Emerald objects. Besides object mobility, processes executing native
machine code can also be moved on the fly, but only between computers
that have the same architecture. (This restriction was later lifted when full
heterogeneous mobility was implemented [SJ95].)

Process migration provides several benefits, e.g. it enables: load distribu-
tion (by migrating processes from a node which is overloaded to a less loaded
one), fault resilience (by migrating processes from a node that may have par-
tial failures), improved system administration (by migrating processes from a
host machine that is about to be shutdown), and improved data access local-
ity (by migrating processes to the host of data). However, process migration
has not achieved widespread use. One reason for that is the complexity of
supporting migration in operating systems originally designed as stand-alone.
Another reason for the failure of process migration to become commonplace
commercially is the rapid improvement of processing capabilities and other
resources. For example, reclaiming processing power by migration in order
to improve interactive performance is now a less obvious requirement, since
interactive performance is now less likely to be affected by CPU-intensive
and memory-intensive processes.
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1.1.2 Distributed Objects

In order to ease the writing of distributed applications, good programming
abstractions are required, providing forms of location independence. In the
vision of “objects all the way down”, one could imagine a single natural
object-oriented design for a given application, regardless of whether that
application will be deployed in a local or distributed context. The failure and
performance issues are tied to the implementation of the underlying system
components, and consideration of these issues is left out of the application
design. The interface to a remote object is just like the interface to objects
used locally.

In [WWWK97], Waldo et al. argue that such a unified view of local and
remote objects was mistaken. Local and distributed computing are different
in many ways. Distributed systems require that the programmer be aware of
network latency, have a model of remote data access and data distribution
different from the model of local memory access, and take into account issues
of concurrency, inherent indeterminacy, and partial failure. Neglecting these
differences has led to systems which are either not robust and reliable in
a distributed context, or offer unnecessary complication of the local object
implementation (since all local objects in this unified view must be treated as
potentially remote). The conclusion which can be drawn from this polemic
paper is that in order to realise a true distributed object system, a suitable
infrastructure is required. A commonly accepted technology to build such
an infrastructure was unavailable at that time.

In traditional RPC systems, such as DCE, and object based RPC systems,
such as DCOM [EE98] and CORBA [OMG91], we use an interface definition
language to define interfaces, where method calls are specified in terms of the
primitive data types, object references, and structures of these entities. These
interfaces are then compiled, for any given implementation language, with the
result being stub and skeleton files. Once these are augmented with code that
needs to be provided by a programmer, they can be compiled for the target
operating system and architecture. The kind of information passed between
the client and server cannot change without both the participants being
updated simultaneously, since each must know exactly what is transmitted
by the wire protocol.

We can use traditional distributed object frameworks to realise the dis-
tributed system as a whole as a set of cooperating objects. Unfortunately,
the way in which those objects cooperate and communicate is decidedly non-
object-oriented [Wal99]. In order to explain this point, we should recall the
definition of the object-oriented paradigm. The principles that are at the core
of object-oriented programming are the following: (1) the independence of an
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object’s interface from the implementation of the object, (2) the binding of
behaviour with data, (3) polymorphism, i.e. the ability to describe an object
in terms of the necessary conditions on the object, allowing an object to have
multiple forms. Polymorphism is only available if the full objects, including
implementations, can be passed between client and server. Unfortunately,
the traditional distributed object frameworks cannot download and execute
implementations because they do not allow real objects to be passed as argu-
ments from one location in a distributed system to another, only data1. This
precludes a common (in the non-distributed context) style of programming,
when the information passed between objects as a parameter or a return
value in a method call is another object. A revolution has been brought in
by infrastructures that make it possible to communicate objects, not just
object references. Below, we characterise the design choices made within the
examples of Emerald, Network Objects and the Java environment.

Emerald [JLHB88] introduced mobile objects with safe, static subtyping
and location-independent invocations. In Emerald, programmers use a single
object definition mechanism with a single semantics for defining all objects.
This includes small, local data-only objects, and active, mobile, distributed
objects. Objects have unique network-wide names. The location of the ac-
tive object may change over time, as an object migrates from one machine
to another. The Emerald compiler is capable of analysing the needs of each
object and generating an appropriate implementation from the same piece of
source code, depending on the context in which it is compiled. For example,
an array object whose use is entirely local to another object will be imple-
mented differently from an array that is shared globally. Altogether with
other features, such as the idea that new objects and new classes (subtypes
as well as supertypes) can be added to a system at any time, Emerald can be
seen as precursor of Network Objects and the Java environment, described
below.

The need for semantic support for mobility, distribution, and abstract
types led the Emerald group to design a new language. While method invo-
cation is location-independent, language primitives can be used to find and
manipulate the location of objects. Emerald uses call-by-object-reference pa-
rameter passing semantics for all object invocations, local or remote. How-
ever, the programmer may decide that an object should be moved based on
knowledge about the application. For example, on remote invocations a pa-
rameter passing mode called call-by-move permits an invocation’s argument
object to be moved along with the invocation request. A call-by-visit mode

1Passing functions (code) has long been exploited in distributed implementations of
functional languages (e.g. Facile described in §3.3.1).
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does the same but the argument object returns to the source of the call.
Also, the compiler may decide to move an object along with an invocation
(e.g. small immutable objects which can be copied cheaply, such as integers
or strings, are moved in this way).

Systems like Emerald successfully handle object distribution and hide
the distinction between local and remote objects in small networks. But the
failure modes of local and remote objects are inherently different, and perfor-
mance is radically reduced by distribution and scale. This means that object
placement is absolutely critical to application performance and robustness
— and the tools that are currently available to automate this placement are
minimal [Bla99]. (A closely related problem of the static estimation of po-
tentially mobile functions and channels in a Facile-like language has been
studied in [Kir99].) A simplified and more flexible approach to object-based
distributed computing has been taken by the designers of Network Objects
and Java.

Network Objects [BNOW95] is a distributed programming system de-
signed for Modula-3. Network objects are not mobile, but the system makes
it easy to communicate objects either by copying or by reference. The ob-
jects have no implicitly associated thread of control. The main features of the
design are distributed typechecking, transparent invocation, powerful mar-
shalling, efficient and convenient access to streams, and distributed garbage
collection. We characterise some of these features briefly. The system pro-
vides typechecking via the narrowest surrogate rule, which allows a program-
mer to release a new version of the service (a separately compiled program)
as a subtype of the old version, which supports both old and new clients
and ensures type safety. Remote invocations are syntactically identical to
local ones. A client invoking a method of an object need not know whether
the object is local or remote. Marshalling (of argument values and results
into a sequence of bytes sent between programs) relies on a general-purpose
mechanism called pickles. Pickles perform efficient and compact marshalling
of arbitrary complicated data types. The facility can be used to distribute
data and computation by object copying. Network objects are always sent by
reference and other objects are always sent by copying. On the other hand,
object mobility would allow the same object to be either sent by reference or
moved. The authors of Network Objects argue, however, that this extra flex-
ibility does not seem to be worth the substantial increase in the complexity
of mobile objects.

The Java programming language and Java environment [GJS97, LY97]
provide an object-oriented layer on top of the heterogeneity of the distributed
system. Rather then thinking in terms of particular architectures and op-
erating systems as in CORBA or DCOM, the Java environment provides a
virtual machine that is (more or less) the same everywhere. This allows code
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to be moved from one machine to another, irrespective of the underlying
architecture. Applets were the first application of the Java technology to a
large scale network. By supplying code that implemented a well-known in-
terface, and making sure that browsers of the World-Wide Web knew how to
recognize such code, Java allowed active content to be added to the World-
Wide Web. Different implementations for the same interface can be offered
and moved dynamically into the browser that made the calls to that inter-
face. However, in order to support the sending of whole objects rather than
just code, an additional layer of distributed infrastructure is required.

The Java Remote Method Invocation system (RMI) [WRW96] provides
the next step, allowing real objects (both code and data) to be passed from
one Java virtual machine to another. RMI uses the standard Java object
serialization mechanism to pass objects. Arguments that are references to
remote objects are passed as remote references. If an argument to a method is
a primitive type or a local (non-remote) object, a copy is passed to the server.
Return values are handled in the same way, but in the other direction. RMI
lets one pass and return full object graphs for local objects and references to
remote objects. The mechanism allows the passing of subtypes to methods
declared to use a supertype. If the receiving virtual machine does not have
the code associated with the actual class of the object that it receives, the
code for that class is downloaded, verified, and dynamically loaded into the
receiving virtual machine. RMI does not allow thread mobility.

Jini [AWO+99] forms another layer of infrastructure on top of the Java en-
vironment (including RMI), adding a component, called the Lookup Service,
that allows services to advertise themselves, and a simple protocol that al-
lows these services and clients wanting to find a service to first find a Lookup
Service. By using Jini, matching services and clients can be virtually auto-
matic and transparent. The Jini architecture has been designed for subnets
that enable multicasting, restricting the use of Jini to local-area networks.
However, some enhancements to overcome this problem were proposed by the
Jini community and realised in practice, in order to allow multicast messages
to be ”tunneled” to other domains through a hierarchical set of daemons.

Java offers typed bytecode and bytecode verification. This is a real ad-
vance over systems like Emerald, since one can obtain a class that someone
else has compiled and be sure that it is type-safe. However, the Java virtual
machine institutionalizes a particular object model, and some authors argue
that it is a “technical, commercial, and cultural mistake”. In their opinion,
a better approach would be a virtual machine that is language-neutral – for
example, a virtual RISC processor, which would “evenhandedly and compat-
ibly enable any number of high-level languages for distributed computing”
[Whi98]. This could also be done in a type secure way by using a typed
assembly language (see, e.g. Morrisett et al. [MCG+99]).
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1.1.3 Mobile Agents

Mobile agents are units of executing computation that can migrate between
machines (in a local- or wide-area network) and act on behalf of their users or
other agents. The attributes of agents such as being autonomous, goal-driven,
etc. are investigated in the area of Distributed Artificial Intelligence (DAI).
Here, we are only interested in the ability of agents to migrate freely, i.e. to
suspend execution at some point, move the whole state of computation to
another location, and resume execution at this new location. Agent mobility
combines features known from mobile code (such as in Java), object migration
(moving encapsulated code and data), and process migration (moving the
thread of execution). Additionally, issues of security (such as authentication
and authorisation) have to be solved to migrate and execute agents safely.

Many mobile agent systems have been built in Java, using Java support
for code mobility; they include Aglets [LOKK97], Voyager [Obj97, Gla98],
Concordia [WPW98], Mobile Objects and Agents (MOA) [MLC98], and Mole
[SBH96]. TACOMA [JvRS95] and Agent Tcl [Gra95] are systems in which
agents can be written using a scripting language Tcl. Some languages and
runtime systems have been designed expressly to support mobile agents or
mobile computation, such as Telescript [Whi96], the Join Language [FGL+96,
CF99], and Nomadic Pict, described in this thesis.

A number of existing mobile agent systems provide a form of location
independence; we briefly review some of them below. Comparisons are diffi-
cult, in part because of the lack of clear levels of abstraction and descriptions
of algorithms — without these, it is hard to understand the performance and
robustness properties of the infrastructures.

The Join Language provides location-independent messages using a built-
in infrastructure, based on forwarding pointer chains that are collapsed when
possible. Voyager supports location-independent messages, both synchronous
and asynchronous messages and multicasts, again using forwarding pointer
chains that are collapsed when possible. A directory service is also provided.
The Mobile Object Workbench [BHDH98] provides location independent in-
teraction, using a hierarchical directory service for locating clusters of ob-
jects that have moved. There is a single infrastructure, although it is stated
that the architecture is flexible enough to allow others. The infrastructure
work of Aridor and Oshima [AO98] provides three main forms of message
delivery: location-independent using either forwarding pointers or location
servers, and location dependent (they also provide other mechanisms for lo-
cating an agent). Mobile Objects and Agents (MOA) supports four schemes
for locating agents; these are used as required to deliver location-independent
messages. Stream communication between agents is also described, with
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communicating channel managers informing each other on migration. The
MASIF proposal [MBB+98] also involves four locating schemes, but appears
to build communication facilities on top. This excludes a number of reason-
able infrastructures; it contrasts with our approach here, in which location-
independent message delivery is taken as primary (some infrastructures do
not support a location service).

1.2 Thesis Contribution

Different forms of mobility, such as process migration, distributed objects,
and mobile agents, require specific distributed infrastructures and novel forms
of language and runtime support — for interaction between migrating enti-
ties, responding to network failure and reconfiguration, support of discon-
nected operation, binding to resources, managing security, etc. Although
the problems which designers of systems with mobility have to solve are of-
ten very similar (e.g. maintaining communication between moving entities,
resource discovery, etc.), the complexity of plausible implementations and
heterogeneity of target environments make it hard to directly transfer and
reuse results developed for a particular system.

1.2.1 Observations

Distributed infrastructures are somewhat application-specific. Different ap-
plications may require different forms of support for mobility. For example,
a non-stop system manager would require thread mobility in order to be
able to move all running processes from a node which is (or may soon be)
partially faulty to another node. In mobile computing, the desire to sup-
port small devices which have limited CPU and memory capabilities (such
as PDAs and mobile phones) will require some light-weight infrastructures
designed for a particular application. In the example of an “active home”,
home devices could be plugged into a home LAN using a Jini architecture
(which uses code mobility). However, in the vision of ubiquitous computing
on the whole Internet, the infrastructure would have to be even more delicate.
The problem of scale is not the only one which has to be solved. The wide-
area network is more asynchronous and less predictable and manageable than
a local-area network, delays and bandwidth fluctuations are unpredictable,
failures harder to detect (since remote machines are not under a centralised
management and normal disconnected operation of some remote device can-
not be distinguished from faulty behaviour). Thus, it may not be easy to
extend an infrastructure originally designed for a LAN to a wide-area net-
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work by just introducing proxy servers and replicating servers to improve
scalability and availability. For example, it may be required to use a network
event notification service as a building block of the infrastructure, instead
of explicitly attempt to detect failures using time-outs. The service would
use time-outs only on neighbouring servers and local clients, rather than on
processes that are several hops away. It would propagate information about
network events to clients that subscribed for it. Also, pervasive computing
on the Internet will require good support for (optional) code mobility, discon-
nected operation, naming and location independence (e.g. to enable binding
to local resources after reconnecting a mobile computer at some other point
of the network).

It seems unlikely one can build a world-wide distributed infrastructure
on the whole wide-area network which could efficiently address all these re-
quirements for all types of applications (it may even not be desirable due to
security reasons). Instead, a wide-area network should offer some mech-
anism to enable many different distributed infrastructures to co-exist on
top of some architecture-independent, perfectly scalable and loosely cou-
pled medium. Some light-weight infrastructures could possibly be spawned
dynamically with the application — they would form another layer of the
legacy system. For example, in chapter 5 we describe a few potential mo-
bile agent applications; they all use only a very limited pattern of migration
and communication (we generally do not envisage free-roaming on the whole
Internet), thus encouraging the use of infrastructures that are specifically
tailored for the application.

The design of distributed applications for wide-area networks (WANs)
may require a new model of computation (and so a new kind of programming
language). In a LAN we could successfully use some transparent distributed
object system in order to build a distributed application, but the intent to use
the same application in a WAN, across firewalls and along links with large and
highly unpredictable message latency, would require some less transparent
way of accessing objects and more asynchrony in the computational model.

1.2.2 Problem Statement

Mobile agent communication primitives can be classified into two groups.
At a low level, there are location dependent primitives that require a pro-
grammer to know the current site of a mobile agent in order to communicate
with it. If a party to such communications migrates, then the communicat-
ing program must explicitly track its new location. At a high level, there
are location independent primitives that allow communication with a mo-
bile agent irrespective of its current site and of any migrations of sender or
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receiver. Location independent primitives may greatly simplify the develop-
ment of mobile applications, since they allow movement and interaction to
be treated as separate concerns. Their design and implementation, however,
raise several difficult issues. A distributed infrastructure is required for track-
ing migrations and routing messages to migrating agents. This infrastructure
must address fundamental network issues such as failures, network latency,
locality, and concurrency; the algorithms involved are thus inherently rather
delicate and cannot provide perfect location independence. Moreover, appli-
cations may be distributed on widely different scales (from local to wide-area
networks), may exhibit different patterns of communication and migration,
and may demand different levels of performance and robustness; these vary-
ing demands will lead to a multiplicity of infrastructures, based on a variety of
algorithms. These infrastructure algorithms will be exposed, via their perfor-
mance and behaviour under failure, to the application programmer — some
detailed understanding of an algorithm will be required for the programmer
to understand its robustness properties under, for example, failure of a site.
Below, we sketch some of the assumptions, which laid the foundation for the
Nomadic Pict language.

1.2.3 Project Foundations

A good level of abstraction is needed for our language primitives - high
enough not to fuss with marshalling and unmarshalling of data which need
to be sent between agents, but low enough to have clear handle on the algo-
rithms which are used in real mobile agent systems. An intuitive example of
such abstraction is provided by the Remote Procedure Call (RPC) systems.
At the application level, we use transparent method invocations for client-
server computing (they involve parameters which are passed to the method
and results which are returned to the method caller), and at the low stub
level, we have a wire protocol encoded for transferring data from one loca-
tion in the distributed system to another (which involves messages containing
application data and control information, such as acknowledgments).

The need for clear understanding and easy experimentation with infras-
tructure algorithms, as well as the desire to simultaneously support multiple
infrastructures on the same network, suggests a two-level architecture of the
language—a low-level consisting of a single set of well-understood, location-
dependent primitives, in terms of which a variety of high-level, location-
independent communication abstractions may be expressed. This two-level
approach enables one to have a standardized low-level runtime system that
is common to many machines, with divergent high-level facilities chosen and
installed at run time. It also facilitates simple implementation of the location-
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independent primitives (cf. protocol stacks).
For this approach to be realistic, it is essential that the low-level primitives

should be directly implementable above standard network protocols. The In-
ternet Protocol (IP) supports asynchronous, unordered, point-to-point, un-
reliable packet delivery; it abstracts from routing. We choose primitives
that are directly implementable using asynchronous, unordered, point-to-
point, reliable messages. This abstracts away from a multitude of additional
details—error correction, retransmission, packet fragmentation, etc.—while
still retaining a clear relationship to the well-understood IP level. It is also
well suited to the process calculus presentation that we use in 2.2. More
controversially, we also include agent migration among the low-level primi-
tives. This requires substantial runtime support in individual network sites,
but not sophisticated distributed algorithms—only one message need be sent
per migration. By treating it as a low-level primitive we focus attention
more sharply on the distributed algorithms supporting location-independent
communication. We also provide low-level primitives for agent creation, for
sending messages between agents at the same site, for generating globally
unique names, and for local computation.

Many forms of high-level communication can be implemented in terms of
these low-level primitives, for example synchronous and asynchronous mes-
sage passing, remote procedure calls, multicasting to agent groups, etc. For
the work presented in this dissertation we consider only a single representa-
tive form: an asynchronous message-passing primitive similar to the low-level
primitive for communication between co-located agents but independent of
their locations and transparent to migrations.

1.2.4 Contribution

The main contribution of this dissertation is the design and implementation
of Nomadic Pict, a concurrent programming language with thread mobil-
ity. The language introduces a new model of concurrent mobile computa-
tion in a wide-area network. It assumes the underlying environment is very
asynchronous and loosely coupled — the runtime system generally does not
depend on any distributed infrastructure — all (application-specific) infras-
tructure algorithms are executed by the Nomadic Pict virtual machine as
normal applications above the network level. Although the desire to have
a runtime system implementation purely local may seem to be absolute in
the real world, it appeared very useful for prototyping purposes. The im-
plementation of the Nomadic Pict runtime system is very light-weight (even
messages are encoded as little agents).
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We have used our language to design some non-trivial infrastructure algo-
rithms for mobile agent systems. The language has been used to prototype
a small example application and the design of a suitable communication in-
frastructure for it. The infrastructure design, which required good scalability
and support for disconnected operation, is an interesting problem in its own
right. Our experience of using Nomadic Pict has been positive — the sharp
levels of abstraction have aided the design of algorithms. It was also possible
to include in this thesis an almost complete specification of the algorithms,
expressed as Nomadic Pict encodings.

The Nomadic Pict language allows distributed algorithms to be expressed
precisely and unambiguously, but in a compact and clean way; this enables
a good understanding of the infrastructure algorithms. The language prim-
itives have simple but powerful semantics. The communication primitives
are designed to express easily fundamental concepts of synchronisation and
concurrency in the presence of mobility. A polymorphic type system and the
notion of agents allow simple objects to be expressed. Although we focus
here on distributed infrastructures for location-independent communication
between mobile agents, our language can be used for specifying virtually
any kind of distributed infrastructure (e.g. distributed garbage-collectors for
distributed programming languages).

The work may contribute to future design of specific infrastructures, and
also to future industrial languages for distributed programming.
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Chapter 2

Model of Mobile Computation

The purpose of this chapter is to introduce the Nomadic π-calculus, a new
model of mobile computation. The calculus is a formal extension of the
asynchronous π-calculus, also presented in this chapter. The Nomadic π-
calculus is designed to model computations with the use of mobile agents.
The calculus identifies two levels of abstraction. At a low level there are
location dependent primitives that require a programmer to know the current
site of a mobile agent in order to communicate with it. At a high level there
are location independent primitives that allow communication with a mobile
agent irrespective of its current site and of any migrations. Implementation
of these requires delicate distributed infrastructure. Our calculus serves as a
foundational core for Nomadic Pict language design. We use our language as
a concise and precise notation for specifying the infrastructure algorithms.

In our work we deal with communication aspects of using mobile agents.
By analogy to process communication in distributed operating systems we
can think of two low-level methods of communication between agents: mes-
sage passing, where agents send and receive messages over communication
channels, and the concept of logically shared memory, where agents interact
by means of a finite collection of shared variables. Shared memory, simu-
lated in distributed systems by message passing, has potential to make it
easier to write distributed applications. Unfortunately, it requires a dis-
tributed infrastructure which does not scale well (in particular if we allow
migration). Therefore, we are primarily concerned with a message passing
method as more fundamental in distributed systems. The message-passing
style of communication can be efficiently implemented just above IP proto-
cols. Other abstractions at the same level, such as streams which are useful
in many agent applications, can be incorporated into our model by simply
extending the current calculus.
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The message-passing communication of processes and mobile agents can
be best understood in terms of a tiny model capturing the essential features of
communication and synchronisation, but expressive enough to reason about
complex interactions built on top of it. Many different models of sequential
and concurrent computation have been proposed. For example, the lambda-
calculus invented by Church in the 1930s [Chu32, Chu41], has proven to be
a good model of purely functional computation (the programming paradigm
where the only observable properties of an expression are its behaviour when
applied to arguments). Concurrency, distribution, and recently mobility,
have introduced new models of computation, most notably (state-based) au-
tomata models and process calculi (sometimes also called process algebras).

Process calculi denote processes and actions in concurrent systems by
using algebraic expressions and sets of algebraic operators. They are built
around three basic principles [Pie97]: modelling interaction via communica-
tion in terms of message passing rather than shared variables, using a small
set of basic primitives to specify behaviour of the system, deriving useful
algebraic laws for manipulating expressions written using these primitives.
We focus here on one process calculus, the π-calculus of Milner, Parrow, and
Walker [MPW92, Mil91].

In §2.1 we present a very simple version of the π-calculus, describe its
semantics, first informally by comparison to message passing in operating
systems, and formally by giving operational semantics. In §2.2 we describe
Nomadic π-calculus — a formal extension of the above. We conclude the
chapter by showing related work.

2.1 Asynchronous π-Calculus

The π-calculus of Milner, Parrow, and Walker [MPW92, Mil91] is a model of
concurrent computation. Below, we present a simple asynchronous, choice-
free version of the calculus (the asynchronous π-calculus was first proposed
by Honda and Tokoro [HT91], and Boudol [Bou92]). The π-calculus has two
kinds of entities — concurrent processes and communication channels (identi-
fied by globally unique names). The calculus allows communication between
concurrent processes by an output and an input (on the same channel) in
parallel. One of its goals is to demonstrate that in some sense it is sufficiently
powerful to allow only names to be the content of communications. Names
have no structure, while the syntax of processes is as follows.
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2.1.1 Syntax

Take an infinite set N of names of channels, ranged over by x, y,. . . etc. The
process terms are then those defined by the grammar in Figure 2.112.

P,Q ::= () nil
P |Q parallel composition of P and Q
x !v output v on channel x
x?p→P input from channel x
x?∗p→P replicated input from channel x
new x in P new channel name creation

Figure 2.1: Syntax of the π-Calculus

The term () represents an inactive process, which cannot perform any
action. The form P |Q means that P and Q are concurrently active, and
can also communicate. Intuitively, a process term x !v sends the name v on
channel x. A process term x?w →P waits to receive a name on x, substitutes
w in P by this name after reception, and continues with P . Placing the
restriction operator new x in before a process expression P ensures that x
is a fresh channel in P — i.e. messages sent and received on x will never
be mixed with messages sent on any other channel created elsewhere, even
if that channel would happen to be named x too. In x?w →P the ‘formal
parameter’ w binds in P ; in new x in P the x binds in P . We will work up
to alpha renaming of bound names so as to avoid name clashes (in the same
way as we are allowed to rename formal parameters and their occurrences in
a function definition). We write {a/x}P for the process term obtained from
P by replacing all free occurrences of x by a, renaming as necessary to avoid
capture. We assign parallel composition the lowest precedence among the
operators. Substitutions have precedence over the operators of the calculus.

1Here we have adopted the language concrete syntax, instead of a more concise, math-
ematical style usually found in the literature on process calculi.

2An original definition of the π-calculus also includes a choice operator +; the expression
P +Q denotes an external choice between P and Q: either P is allowed to proceed and Q is
discarded, or vice versa; we drop the full choice here as it is not very useful for programming
in our language (input-only choice, which seems more useful, can be encoded as a library
module).
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2.1.2 Informal Semantics

We first try to describe the semantics of π-calculus communication informally,
using the communication metaphors of message-passing in network architec-
tures. In network architectures and distributed systems (described, e.g. in
[CDK94]), processors share only a communication network. We can think of
a π-calculus channel as an abstraction of a physical communication network.
It provides a communication path between processes, a means for data to be
transferred between them. A process here is a running program in the sense
understood in the field of operating systems; it consists of an environment for
execution together with a thread of control. Communication is accomplished
when one process sends a message to a channel and another (concurrent) pro-
cess acquires the message by receiving from the same channel. The message
can only be received after it has been sent (causal ordering).

One of the arguments of a send operation must specify an identifier de-
noting the message destination address. This identifier must be known to
any process that wishes to send to this address. In the Internet protocols,
destination identifiers for messages are specified as the Internet address of
the host computer (as in IP) or a pair of the Internet address and a fixed
port number attached to the host computer on which a receiving process runs
(as in UDP). In the π-calculus, however, there is no notion of physical ma-
chines, channels are linked directly to processes, and channel names are used
for communication addresses. Therefore, perhaps a better intuition would
be provided by distributed operating systems such as Amoeba [MvR92], in
which messages are transmitted directly to processes, or to communication
ports that are attached to processes (a communication port here is one of
several alternative points of entry to the receiving process). Messages are
addressed by specifying port names.

The semantics of π-channels is however different from semantics of com-
munication ports, as shown below. A communication port is a message des-
tination that can have many senders, but has exactly one receiver. In the
π-calculus, many concurrent processes can share the same channel for input,
although only one process will succeed in receiving a message sent by some
other process1. Here v is received on x by either P or Q

x !v | x?u →P | x?w →Q

1Some operating systems provide the ability to send a message to groups of destinations
(either ports or processes) identified by a group identifier. A message addressed by such
a group identifier will be received by all group members. There is no similar operation in
the π-calculus.
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There can be many outputs on the same channel competing for the same
input — only one will succeed, introducing nondeterminism. For example
process P can receive either a or b on x

x !a | x !b | x?u →P

If we want to model process P which is always ready to receive a new
message (similar to a process listening on the communication port), we can
use a replicated input

x !a | x !b | x?∗u →P

Π-calculus names can be dynamically generated and communicated be-
tween processes; every process which has obtained a channel name x can use
it for unrestricted communication (in particular the process can read from
x). This allows modelling of systems with evolving connectivity structures.
Pure port names can only have output capability. Thus, there is no simple
analogy between π-calculus channels and communication ports as described
above.

A port has usually a message queue to store incoming messages. Sending
processes add messages to the queue and the receiver process removes mes-
sages from the queue. The send and receive operations in operating systems
can include synchronisation of the receiving operation with the sending oper-
ation, so that the sending or receiving process is prevented from continuing
until the other process makes an action that frees it (much as semaphore
operations on shared variables). In the asynchronous form of communica-
tion, the sending process is allowed to proceed as soon as the message has
been copied to a local buffer and the transmission of the message proceeds
in parallel with the sending process. The receive operation can have blocking
or non-blocking variants. In the original π-calculus, the communication is
synchronous — the input and output processes synchronize at every mes-
sage. Here, we only consider a variant with asynchronous communication
and blocking input, where the writer can continue computation after sending
value to a channel, but the reader is always blocked if there is no message
to read. This style seems more practical in distributed systems. The asyn-
chronous version is known to be powerful enough to encode the synchronous
message passing discipline of the π-calculus (see [HT91, Bou92]).

The issue of channel implementation is hidden from the model. The
calculus assumes that channels are global (each process which obtained a
channel name can read messages sent to the channel by any other process)
and unbounded (i.e. they are never full; therefore an output will never be
blocked due to overfilling the channel). There is no guarantee on the order
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of message delivery, much like in connectionless transport protocols, such
as UDP, in which neither the transport nor the network layer is required to
perform any sequencing of data packets. The UDP service does not guarantee
that all messages sent are actually received at the destination, however it
makes its ’best effort’ to deliver each message. It is a responsibility of higher-
level services to support reliable delivery. In the π-calculus, we assume that
messages are never lost or duplicated1.

Although we have used an analogy to message-passing, we should not,
however, forget that the π-calculus is simply a model of concurrent com-
putation — there is neither the notion of process locations in the calculus,
nor the physical separation between the sender and receiver. Communica-
tion (or computation) is assumed to be error-free; process failures cannot be
expressed in the calculus. However, many other π-calculi (including the No-
madic π-calculus) identify the problem of distribution, and they do it in the
context of network communication. In the Nomadic Pict language, bare π-
calculus, as described here, is used as a means for expressing local concurrent
computation within an agent.

2.1.3 Operational Semantics

The operational semantics of π-calculus expressions and operations on chan-
nels is usually defined as a reduction relation, as in the lambda-calculus. We
say that P reduces to Q, written P−→Q, if P contains two parallel subpro-
cesses that can communicate on the same channel to become the correspond-
ing subprocesses of process Q. For example, in the expression x !a | x?u →R,
first two subprocesses can communicate, the value a is being sent along the
channel x, reducing the whole expression to () |{a/u}R. We normally drop
inactive processes (). In order to illustrate substitution {a/u}R, let R be
y !u. Then the data value a is substituted for the bound variable u in R as
follows:

x !a | x?u → y !u −→ y !a

A replicated input x?∗p→P can be used to construct a server which
after reading a value from x, is ready to accept a new input on x; it loosely

1Nomadic π-calculus (described below) introduces messages which can be misaddressed
and discarded (’lost’), and timed inputs to model situations where the potential sending
process has crashed or the expected message has been lost. A timeout specifies an interval
of time after which the input operation will give up its action.
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behaves as an arbitrary number of parallel copies of x?p→P :

x !a | x?∗u → y !u −→ {a/u}(y !u) | x?∗u → y !u

−→ y !a | x?∗u → y !u

More importantly, the replicated input term allows the encoding of infinite
computations (similarly to the way in which recursion is used for this purpose
in pure functional languages). For example, a process term x?∗u →(y !u | x !v)
responds to a message on x by sending the message on y and ’triggering’
another copy of itself by sending another message on x, thus leading to an
infinite computation (here a continuous stream of v’s on y).

(x?∗u →(y !u | x !u)) | x !v −→ (x?∗u →(y !u | x !u)) | y !v | x !v

−→ ...

−→ (x?∗u →(y !u | x !u)) | y !v | ... | y !v | x !v

The data values sent on channels are just names. In particular, a name
received on a channel can then be used itself as a channel name for output
or input. The strength and subtlety of the calculus comes from the dynamic
character of name scoping. A restricted name can be sent (exported) outside
its original scope (this is known as scope extrusion). For example, in the
expression (x?y → y !u) | (new z in (x !z | z?v → v !a)), we create a new fresh
channel z, which will be exported outside its original scope, and used for
communication. Names x, u, and a are free (they have been either created
or imported by some process which our expression is part of). Initially, the
scope of z is limited to the second branch of the parallel, and z is unknown
in the first branch. One can then pass z to the first branch on x — outside
the scope of the initial new z in binder which must therefore be moved
(with care, to avoid capture of other instances of z), obtaining the term
new z in (z !u | z?v → v !a). From now on, z can be used as a communication
channel between both branches and our term reduces to new z in u!a which
is structurally equivalent to u!a.

The operational semantics can be defined in two steps, by giving a defini-
tion of a structural congruence (written ≡) and the binary reduction relation
−→ over process terms. The structural congruence relation formalizes the
intuition that we can always rearrange a reducible process term such as to
enable reduction (we can change the order of parallel compositions, enlarge
the scope of bindings, or garbage-collect null processes and names which will
be no longer used). Rules for our simple π-calculus are grouped in Figure 2.2.
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Structural congruence:

P | 0 ≡ P
P |Q ≡ Q |P

P |(Q |R) ≡ (P |Q) |R
new x in new y in P ≡ new y in new x in P

P |new x in Q ≡ new x in (P |Q) if x 6∈ FV(P )
new x in P ≡ P if x 6∈ FV(P )

Renaming of bound variables

x?w →P ≡ x?v →({v/w}P ) if v 6∈ FV(P )
new x in P ≡ new y in ({y/x}P ) if y 6∈ FV(P )

Reduction semantics:

c!v | c?w →P −→ {v/w}P communication
c!v | c?∗w →P −→ c?∗w →P |{v/w}P communication and replication

P−→Q
P |R−→Q |R reduction under |

P−→Q
new x in P−→new x in Q

reduction under new ... in

P ≡ P ′−→Q′ ≡ Q
P−→Q structural congruence

Figure 2.2: Operational Semantics of the π-Calculus
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There is potentially a large set of different variants of the π-calculus pre-
sented here. We mention some of these calculi in the end of this chapter.
There are also a number of extensions which are useful in designing a pro-
gramming language based on process calculi. A natural extension is to allow
tuples of names to be sent (as in polyadic π-calculus), or allow more general
data, e.g. tuples-of-tuples and basic values such as booleans, strings and
natural numbers. Another extension would be to have recursion, e.g. with
process variable X and a recursion operator rec X.P .

Having defined a set of basic operators (syntax) and operational seman-
tics, a notion of observational (or behavioural) equivalence and congruence
can be introduced. This makes it possible to reason about the behaviour
of communicating processes in a formal theoretical framework. The formal
framework and proof methods developed within the π-calculus (e.g. based on
bisimulation) are beyond scope of this thesis. A theory of bisimulation for the
π-calculus is described, e.g. in [San96, MPW92]. Honda and Tokoro [HT91],
and Amadio, Castellani, and Sangiorgi [ACS98] present two different notions
of bisimulation for the asynchronous π-calculus. More about π-calculus can
be found in Milner’s book [Mil99], see also good introductory texts such as a
chapter of the “Computer Science and Engineering Handbook” [Pie97] and
the tutorials [Mil91, San99, San, Sew].

2.2 Nomadic π-Calculus

We were looking for a calculus which would lay down a foundation for a
distributed programming language, suitable for describing infrastructure al-
gorithms for mobile agent systems. The asynchronous π-calculus described
above provides an abstract model of concurrent computation. The model is
based on a reduced set of concepts which allows expressing the dynamic gen-
eration of names and processes, communication on abstract channels, trans-
mission of channel names between processes, and a static scoping discipline.
However, the calculus does not provide support for modelling distributed pro-
gramming ; we are not able to express in it, e.g. the notion of computer nodes,
allocation of resources to these nodes, process mobility, and system failures.
Therefore, we proposed the Nomadic π-calculus, a calculus which captures
some of these formally, enough to provide a clean and efficient strategy for
the programming language design. Most notably, it identifies two levels of
abstraction suitable for formal reasoning about infrastructure algorithms.

In this section our two levels of abstraction are made precise by giving
two corresponding process calculi, the low- and high-level Nomadic π-calculi.
Their design involves a delicate trade-off — the distributed infrastructure
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algorithms that we want to express involve non-trivial local computation
within agents, yet for the theory to be tractable (particularly, for opera-
tional congruences to have tractable characterisations) the calculi must be
kept as simple as possible. The primitives for agent creation, agent migra-
tion and inter-agent communication that we consider do not suffice to allow
the required local computation to be expressed clearly, so we integrate them
with those of the asynchronous π-calculus presented above. The other com-
putational constructs that will be needed, e.g. for finite maps, can then be
regarded as lightweight syntactic sugar for π-processes. The advantage of se-
lecting the basic model of the π-calculus on which to add additional features
is that we will be able to inherit and state many of the results and proof
methods developed within the π-calculus theory.

The low- and high-level calculi are introduced in §2.2.1 and §2.2.2 re-
spectively. The operational semantics of the calculi are described informally
— the precise reduction semantics will be given in §2.2.3. For simplicity,
the calculi are presented without typing or basic values (such as integers and
booleans). Types and basic values will be introduced in chapter 3, describing
the Nomadic Pict language.

2.2.1 Low-Level Calculus

We begin with an example. Below is a term of the low-level calculus showing
how an applet server can be expressed. It can receive (on the channel named
getApplet) requests for an applet; the requests contain a pair (bound to a
and s) consisting of the name of the requesting agent and the name of its
site.

getApplet?∗[a s ]→
agent b =

migrate to s → (〈a@s 〉ack !b |B)
in

0

When a request is received the server creates an applet agent with a new
name bound to b. This agent immediately migrates to site s . It then sends
an acknowledgement to the requesting agent a (which is assumed to also
be on site s) containing its name. In parallel, the body B of the applet
commences execution.

The example illustrates the main entities represented in the calculus:
sites, agents and channels. Sites should be thought of as abstractions of
physical machines or, more accurately, as instantiations of the Nomadic Pict
runtime system on machines; each site has a unique name. The calculus does
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not explicitly address questions of site failure, network failure and reconfig-
uration, or security. Sites are therefore unstructured; neither network topol-
ogy nor administrative domains are represented in the formalism. Agents
are units of executing code; an agent has a unique name and a body con-
sisting of some process term; at any moment it is located at a particular
site. Channels support communication within agents, and also provide tar-
gets for inter-agent communication—an inter-agent message will be sent to a
particular channel within the destination agent. Channels also have unique
names.

The inter-agent message 〈a@s 〉ack !b is characteristic of the low-level cal-
culus. It is location-dependent—if agent a is in fact on site s then the
message b will be delivered, to channel ack in a; otherwise the message will
be discarded. In an implementation at most one inter-site message is sent.

Names As in the π-calculus, names play a key rôle. We take an infinite set
N of names, ranged over by a, b, c, d, e, f, s, x and y. Formally, all names are
treated identically; informally, a and b will be used for agent names, c, d, e, f
for channel names, and s for a site name. (A type system of the language
will allow these distinctions to be enforced.) The calculus allows new names
(of agents and channels) to be created dynamically.

Names are pure, in the sense of Needham [Nee89]; no information about
their creation is visible within the calculus and language (in our current im-
plementation they do contain site IDs, but could equally well be implemented
by any mechanism that allows globally-unique bit strings to be created lo-
cally, e.g. by choosing large random numbers).

Values We allow the communication of first-order values, consisting of
names and tuples.

u, v ::= x name
[v1 .. vn] tuple (n ≥ 0)

Patterns As in the π-calculus, values are deconstructed by pattern match-
ing on input. Patterns have the same form as values, with the addition of a
wildcard.

p ::= wildcard
x name pattern
[p1 .. pn] tuple pattern (n ≥ 0, no repeated names)
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Process terms The main syntactic category is that of process terms,
ranged over by P, Q. We will introduce the low-level primitives in groups.

agent a = P in Q agent creation
migrate to s →P agent migration

The execution of the construct agent a = P in Q spawns a new agent on
the current site, with body P . After the creation, Q commences execution,
in parallel with the rest of the body of the spawning agent. The new agent
has a unique name which may be referred to both in its body and in the
spawning agent (i.e. a is binding in P and Q). Agents can migrate to named
sites — the execution of migrate to s →P as part of an agent results in the
whole agent migrating to site s. After the migration, P commences execution
in parallel with the rest of the body of the agent.

P |Q parallel composition
0 nil

The body of an agent may consist of many process terms in parallel, i.e.
essentially of many lightweight threads. They will interact only by message
passing.

new c in P new channel name creation
c!v output v on channel c in the current agent
c?p→P input from channel c
c?∗p→P replicated input from channel c
if u = v then P else Q value equality testing

To express computation within an agent, while keeping a lightweight imple-
mentation and semantics, we include π-calculus-style interaction primitives
described in 2.1. Execution of new c in P creates a new unique channel
name; c is binding in P . An output c!v (of value v on channel c) and an
input c?p→P in the same agent may synchronise, resulting in P with the
names in the pattern p replaced by corresponding parts of v (the output
is asynchronous — note that we do not have c!p→Q in the syntax). A
replicated input c?∗p→P behaves similarly except that it persists after the
synchronisation, and so may receive another value. In both c?p→P and
c?∗p→P the names in p are binding in P . The conditional allows any two
values to be tested for equality.

wait c?p→P , n →Q input with timeout

For implementing infrastructures that are robust under some level of failure,
or support disconnected operation, some timed primitive is required. The
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low-level calculus includes a single timed input as above, with timeout value
n. If a message on channel c is received within n seconds then P will be
started as in a normal input, otherwise Q will be. The timing is approximate,
as the runtime system may introduce some delays.

iflocal 〈a〉c!v →P else Q test-and-send to agent a on current site

Finally, the low-level calculus includes a single primitive for interaction be-
tween agents. The execution of iflocal 〈a〉c!v →P else Q in the body of an
agent b has two possible outcomes. If agent a is on the same site as b, then
the message c!v will be delivered to a (where it may later interact with an
input) and P will commence execution in parallel with the rest of the body
of b; otherwise the message will be discarded, and Q will execute as part of b.
The construct is analogous to test-and-set operations in shared memory sys-
tems — delivering the message and starting P , or discarding it and starting
Q, atomically. It can greatly simplify algorithms that involve communication
with agents that may migrate away at any time, yet it is still implementable
locally, by the runtime system on each site.

Syntactic sugar Empty tuples and tuple patterns will generally
be elided, writing c! and c?→P for c![] and c?[]→P . Multi-
ple new channel bindings will be coalesced, writing new c, c ′ in P for
new c in new c ′ in P . Let-declarations will be used, writing let p = v in P
for new c in (c!v | c?p→P ) (where c is a name not occurring free in v or
P ).

Scope extrusion Channel names are first-class values and they can be
freely sent to processes which are located at other agents. As in the π-
calculus, names can be scope-extruded — here channel and agent names can
be sent outside the agent in which they were created. For example, if the
body of agent a is

agent b =
new d in

iflocal 〈a〉c!d → 0 else 0
in

c?x → x !

then channel name d is created in agent b. After the output message c!d has
been sent from b to a (by iflocal) and has interacted with the input c?x → x !
there will be an output d ! in agent a.
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We require a clear relationship between the semantics of the low-level
calculus and the inter-machine messages that are sent in the implementation.
To achieve this we allow direct communication between outputs and inputs
on a channel only if they are in the same agent — messages can be sent
from one agent to another only by iflocal. Intuitively, there is a distinct
π-calculus-style channel for each channel name in every agent. For example,
if the body of agent a is

agent b =
new d in

d?→ 0
| iflocal 〈a〉c!d → 0 else 0

in
c?x → x !

then after some reduction steps a contains an output on d and b contains an
input on d, but these cannot react. At first sight this semantics may seem
counter-intuitive, but it reconciles the conflicting requirements of expressive-
ness and simplicity of the calculus. An implementation creates the mailbox
datastructure — a queue of pending outputs or inputs — required to imple-
ment a channel as required; it could be garbage collected when empty. The
queue is part of an agent’s state which is transferred with every move of the
agent.

Communication of names between agents preserves locality of channels.
For example, if the body of agent a is

agent b =
new d in

(d?→ 0
| iflocal 〈a〉c!d → 0 else 0)

| e?y → y !
in

c?x → iflocal 〈b〉e!x → 0 else 0

then after some reduction steps agent b contains both an input and an output
on d which can synchronise according to the scope extrusion rule of the π-
calculus, as follows. In the second line, we create a fresh channel name d; the
name is bound in the process put in brackets. A message c!d is sent to agent
a (by iflocal) where it can interact with the input on c. After agent a has
obtained d from agent b, the name d is exported back to agent b, received on e
(outside the original scope of d), and used for communication with the input
following new d in . A sample execution is below (a grey arrow illustrates
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communication inside agent b).

a b b
���������9

c!d

XXXXXXXXXz

e!d

XXXXXXXXXz

d !

Syntax Summarizing, the terms of the low-level calculus are presented in
Figure 2.3. Note that the only primitive which involves network commu-

P, Q ::=
agent a = P in Q agent creation
migrate to s →P agent migration
P |Q parallel composition
0 nil
new c in P new channel name creation
c!v output v on channel c in the

current agent
c?p→P input from channel c
c?∗p→P replicated input from channel c
wait c?p→P , n →Q input with timeout
if u = v then P else Q value equality testing
iflocal 〈a〉c!v →P else Q test-and-send to agent a on

current site

Figure 2.3: Syntax of the Low-Level Nomadic π-Calculus

nication is migrate, which requires at most one (reliable) message to be
sent, asynchronously, between machines. Distributed implementation of the
low-level calculus is therefore straightforward, requiring no non-trivial dis-
tributed algorithms. It could be done either above a reliable datagram layer
or above TCP, using a lightweight layer that opens and closes streams as re-
quired. In the current implementation of Nomadic Pict we build upon TCP
connections.
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Two other useful forms of location-dependent output are expressible in
the calculus given.

〈a〉c!v output to agent a on the current site
〈a@s 〉c!v output to agent a on site s

The execution of an output 〈a〉c!v in the body of an agent b will either deliver
the message c!v to agent a, if agent b is on the same site as a, or will silently
discard the message, if not. The execution of an output 〈a@s 〉c!v in the body
of an agent will either deliver the message c!v to agent a, if agent a is on site
s, or will silently discard the message, if not. We regard these as syntactic
sugar for

iflocal 〈a〉c!v → 0 else 0

and

agent b = (migrate to s →(iflocal 〈a〉c!v → 0 else 0)) in 0

(where b is fresh) respectively. Since the primitives fail silently if a is not
where expected, they are usually used only where a’s location is predictable.
In an implementation, the first is implementable locally; the second requires
only one asynchronous network message. Note that one could optimize the
case in which the second is used on site s itself by trying iflocal first:

iflocal 〈a〉c!v →
0

else
agent b = (migrate to s →(iflocal 〈a〉c!v → 0 else 0)) in 0

2.2.2 High-Level Calculus

The high-level calculus is obtained by extending the low-level calculus with
a single location-independent communication primitive:

〈a@?〉c!v location-independent output to agent a

The intended semantics of an output 〈a@?〉c!v is that its execution will reli-
ably deliver the message c!v to agent a, irrespective of the current site of a
and of any migrations.
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2.2.3 Reduction Semantics

The informal descriptions of the primitives in §2.2.1, 2.2.2 can be made pre-
cise by giving them an operational semantics. We adopt a reduction se-
mantics, defining the atomic state-changes that a system of agents can un-
dergo by reduction axioms with a structural congruence, following the style
of [BB92, Mil92].

The process terms of the calculi in §2.2.1,2.2.2 only allow the source
code of the body of a single agent to be expressed. During computation,
this agent may evolve into a system of many agents, distributed over many
sites. The reduction relation must be between the possible states of these
systems, not simply between terms of the source calculi; we express such
states as configurations Γ, P . Here Γ is a location context that gives the
current site of any free agent names; P is a term of the (low- or high-level)
calculus extended with three new forms.

@a P P as part of agent a
new a@s in P new agent name a, currently at site s
waitt c?p→P , Q input with timeout at t (UTC)

Configurations may involve many agents in parallel. The form @a P denotes
the process term P as part of the body of agent a, so for example @a P |@b Q
denotes P as part of the body of a in parallel with Q as part of the body
of b. It will be convenient to allow the parts of the body of an agent to be
syntactically separated, so e.g. @a P1 |@b Q |@a P2 denotes P1 |P2 as part of
a in parallel with Q as part of b. Configurations must record the current sites
of all agents. For free agent names this is done by the location context Γ; for
the others, the form new a@s in P declares a new agent name a, which is
binding in P , and records that agent a is currently at site s.

We now give the detailed definitions. Process terms are taken up to
alpha-conversion throughout. Structural congruence ≡ includes the axiom

@a (P |Q) ≡ @a P |@a Q

allowing the parts of an agent a to be syntactically separated or brought
together, and the axiom

@a new c in P ≡ new c in @a P if c 6= a

allowing channel binders to be extruded past @a . It is otherwise similar
to a standard structural congruence for an asynchronous π-calculus, with



36 Model of Mobile Computation

scope extrusion both for the new channel binder new c in P and for the new
agent binder new a@s in P . In full, it is the least congruence satisfying the
following axioms.

P ≡ P | 0
P |Q ≡ Q |P

P |(Q |R) ≡ (P |Q) |R
P |new c in Q ≡ new c in P |Q if c not free in P

P |new a@s in Q ≡ new a@s in P |Q if a not free in P
@a (P |Q) ≡ @a P |@a Q

@a new c in P ≡ new c in @a P if c 6= a

A configuration is a pair Γ, P , where the location context Γ is a finite
partial function from N to N , intuitively giving the current site of any free
agent names in P , and P is a term of the (low- or high-level) extended
calculus. The initial configuration, for a program P of the (low- or high-level)
unextended calculus, to be considered as the body of an agent a created on
site s, is:

{a 7→ s}, @a P

We are concerned only with configurations that can arise by reduction of
initial configurations for well-typed programs. In these, any particle (i.e.,
agent, migrate, output, input, if , or iflocal) will be under exactly one @
operator, specifying the agent that contains it. (In this presentation of the
Nomadic π-calculus we do not give a type system, and so leave this informal.)
Other configurations have mathematically well-defined reductions but may
not be easily implementable or desirable, for example

Γ, @a (c?b→@b P )

receives an agent name and then adds P to the body of that agent.
We define a partial function match, taking a value and a pattern and

giving (where it is defined) a finite substitution from names to values.

match(v, ) = {}
match(v, x) = {x 7→ v}

match([v1 .. vm], [p1 .. pm]) = match(v1, p1) ∪ . . . ∪match(vm, pm)

match(v, [p1 .. pm]) undefined, if v is not of the form [v1 .. vm]

The natural definition of the application of a substitution from names to
values to a process term P is also a partial operation, as the syntax does
not allow arbitrary values in all the places where free names can occur. We
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write {v/p}P for the result of applying the substitution match(v, p) to P .
This may be undefined either because match(v, p) is undefined, or because
match(v, p) is a substitution but the application of that substitution to P is
undefined.

The reduction axioms for the low-level calculus are as follows.

Γ, @a agent b = P in Q −→ Γ,new b@Γ (a) in (@b P |@a Q)
Γ, @a migrate to s →P −→ (Γ⊕ a 7→ s), @a P
Γ, @a iflocal 〈b〉c!v →P else Q −→ Γ, @b c!v |@a P if Γ(a) = Γ(b)

−→ Γ, @a Q if Γ(a) 6= Γ(b)
Γ, @a (c!v |c?p→P ) −→ Γ, @a {v/p}P
Γ, @a (c!v |c?∗p→P ) −→ Γ, @a ({v/p}P |c?∗p→P )
Γ, @a if u = v then P else Q −→ Γ, @a P if u = v

−→ Γ, @a Q if u 6= v

To express the reduction axioms for an input with timeout, we need to write
the configuration as a triple Γ, t, P , where t is the global time UTC (Coor-
dinated Universal Time). The reduction axioms below are to illustrate the
language implementation issues — they do not currently form part of the No-
madic π-calculus operational semantics which is used for reasoning formally
within our model, e.g. in [Uny]. Thus, we can drop t in all other contexts.

Γ, t, @a wait c?p→P , n →Q −→ Γ, t + 1, @a waitt+n c?p→P , Q
Γ, t, @a waitt′ c?p→P , Q −→ Γ, t + 1, @a Q if t ≥ t′

Γ, t, @a (c!v |waitt′ c?p→P , Q) −→ Γ, t + 1, @a {v/p}P

The rules mentioning potentially-undefined expressions Γ(x) or {v/p}P in
their side-condition or conclusion have an implicit additional premise that
these are defined. Such premises should be automatically satisfied in deriva-
tions of reductions of well-typed programs.

Note that the only inter-site communication in an implementation will
be for the migrate reduction, in which the body of the migrating agent a
must be sent from its current site to site s.

The high-level calculus has the additional axiom below, for delivering
location-independent messages to their destination agent.

Γ, @a 〈b@?〉c!v −→ Γ, @b c!v
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Structural congruence:

P ≡ P | 0
P |Q ≡ Q |P

P |(Q |R) ≡ (P |Q) |R
P |new c in Q ≡ new c in P |Q if c not free in P

P |new a@s in Q ≡ new a@s in P |Q if a not free in P
@a (P |Q) ≡ @a P |@a Q

@a new c in P ≡ new c in @a P if c 6= a

Reduction semantics:

Γ,@a agent b = P in Q −→ Γ,new b@Γ (a) in (@b P |@a Q)
Γ,@a migrate to s→P −→ (Γ⊕ a 7→ s), @a P
Γ,@a iflocal 〈b〉c!v →P else Q −→ Γ, @b c!v |@a P if Γ(a) = Γ(b)

−→ Γ, @a Q if Γ(a) 6= Γ(b)
Γ,@a (c!v |c?p→P ) −→ Γ, @a {v/p}P
Γ,@a (c!v |c?∗p→P ) −→ Γ, @a ({v/p}P |c?∗p→P )
Γ,@a 〈b@?〉c!v −→ Γ, @b c!v
Γ,@a if u = v then P else Q −→ Γ, @a P if u = v

−→ Γ, @a Q if u 6= v

Γ, t, @a wait c?p→P , n→Q −→ Γ, t + 1, @a waitt+n c?p→P , Q
Γ, t, @a waitt′ c?p→P , Q −→ Γ, t + 1, @a Q if t ≥ t′

Γ, t, @a (c!v |waitt′ c?p→P , Q) −→ Γ, t + 1, @a {v/p}P
Q ≡ P Γ, t, P−→Γ′, t′, P ′ P ′ ≡ Q′

Γ, t, Q−→Γ′, t′, Q′
Γ, t, P−→Γ′, t′, P ′

Γ, t, P |Q−→Γ′, t′, P ′ |Q

(Γ, a 7→ s), t, P−→(Γ′, a 7→ s′), t′, P ′

Γ, t,new a@s in P−→Γ′, t′,new a@s ′ in P ′
Γ, t, P−→Γ′, t′, P ′ c 6∈ dom(Γ)

Γ, t,new c in P−→Γ′, t′,new c in P ′

Figure 2.4: Operational Semantics of the Nomadic π-Calculus
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Reduction is closed under structural congruence, parallel, new c in and
new a@s in , as specified by the rules below.

Q ≡ P Γ, t, P−→Γ′, t′, P ′ P ′ ≡ Q′

Γ, t, Q−→Γ′, t′, Q′
Γ, t, P−→Γ′, t′, P ′

Γ, t, P |Q−→Γ′, t′, P ′ |Q

(Γ, a 7→ s), t, P−→(Γ′, a 7→ s′), t′, P ′

Γ, t,new a@s in P−→Γ′, t′,new a@s ′ in P ′
Γ, t, P−→Γ′, t′, P ′ c 6∈ dom(Γ)

Γ, t,new c in P−→Γ′, t′,new c in P ′

All rules for the Nomadic π-calculus are grouped in Figure 2.4.

2.3 Related Models

Many different models of concurrent computation have been proposed in
the literature. They can be roughly classified into two groups: automata
models and process calculi. Below we briefly characterise a few process calculi
which are related to our work. A more elaborated analysis of two example
calculi will appear in the next chapter, where we discuss the design choices in
concurrent programming languages which are based on mobile process calculi.
In this section, we focus on the automata models and describe two of them:
I/O automata, which assume input/output-style of communication between
concurrent processes, and Mobile UNITY, which extends the shared-memory
model of UNITY with abstractions designed to study loosely-coupled and
mobile systems. We also describe two implementations, IOA and LIME,
which are formally based on these models.

We also attempt to discuss and compare some of the automata and π-
calculi features (the comparison, however, should be seen as a rough approx-
imation only, since the two automata models and process calculi represent
different philosophy).

2.3.1 Related Calculi

In recent years a number of process calculi have been introduced in order
to study some aspect of distributed and mobile agent computation. They
include:

• The πl calculus of Amadio and Prasad [AP94], for modelling the failure
semantics of Facile [TLK96] (see also discussion in §3.3.1).

• The Distributed Join Calculus of Fournet et al. [FGL+96], intended as
the basis for a mobile agent language (see also discussion in §3.3.2).
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• The language of located processes and the Dπ calculus of Riely and
Hennessy, used to study the semantics of failure [RH97, RH98] and
typing for control of resource use by mobile agents [HR98b, HR98a].

• The calculus of Sekiguchi and Yonezawa [SY97], used to study various
primitives for code and data movement.

• The dpi calculus of Sewell [Sew97a, Sew98], used to study a subtyping
system for locality enforcement of capabilities.

• The Ambient calculus of Cardelli and Gordon [CG98], used for mod-
elling security domains.

• The Seal calculus of Vitek and Castagna [VC98, VC99], focusing on
protection mechanisms including revocable capabilities.

There is a large design space of such calculi, with very different primitives
being appropriate for different purposes, and with many semantic choices. A
thorough comparison and discussion of the design space is beyond the scope
of this dissertation — a brief discussion can be found in [Sew]; here we
highlight only some of the main design choices:

Hierarchy We have adopted a two-level hierarchy, of agents located on
sites. One might consider tree-structured mobile agents with migration of
subtrees, e.g. as in [FGL+96]. The added expressiveness may be desirable
from the programmer’s point of view, but it requires somewhat more com-
plex infrastructure algorithms — migrations of an agent can be caused by
migrations of their parents — so we neglect it in the first instance.

Unique Naming The calculi of §2.2 ensure that agents have unique names,
in contrast, for example, to the Ambients of [CG98]. Inter-agent messages
are therefore guaranteed to have a unique destination.

Communication In our preliminary work [SWP98] the inter-agent com-
munication primitives were separated from the channel primitives used for
local computation. The inter-agent primitives were

〈a@?〉!v location-independent output of v to agent a
〈a@s 〉!v location-dependent output
?p→P input at the current agent



2.3 Related Models 41

These give a conceptually simpler model, with messages sent to agents rather
than to channels at agents, but to allow infrastructure encodings to be ex-
pressed it was necessary to add variants and local channels. This led to a
rather large calculus and somewhat awkward encodings.

2.3.2 I/O Automata

The input/output (I/O) automaton model [LT87, LT89] is a simple type of
state machine, designed to model reactive programs interacting with their
environments. Originally developed for specifying and verifying theoretical
distributed algorithms, I/O automata have also been applied to practical
communication services like TCP, distributed shared memory, and group
communication (see [GL98] for many references).

An I/O automaton consists of a set of actions, a set of states (including
a nonempty subset of start states), a set of transitions, and a set of tasks.
The actions are classified as either input, output, or internal. The inputs
and outputs are used for communication with the automaton’s environment,
while the internal actions are visible only by the automaton itself. Transitions
are triples (s, a, s′), of adjacent states s and s′ and action a which caused
the change of states. Tasks are sets of non-input actions. A composition
operation is defined by which I/O automata can be combined to form a larger
automaton representing a concurrent system. Concurrent reactive programs
are described by I/O automata that compose by synchronising an input with
an output action. The hiding operator is used to reclassify output actions as
internal so they cannot be used in further compositions.

For example, an asynchronous network architecture can be modelled as a
composition of processes and communication channels. A process i is mod-
elled as an I/O automaton which has output actions of the form send(m)i,j,
where j is an outgoing neighbour of i and m is a message, and inputs of
the form receive(m)j,i, where j is an incoming neighbour of i. The commu-
nication channels are also modelled as automata, allowing the specification
of various types of channel, e.g. reliable FIFO, reliable reordering channels,
channels with failures, etc. The channel automata interact with process au-
tomata by send(m)i,j and receive(m)j,i actions. For brevity, we omit here
specification of actions for processes and channels.

The operation of an I/O automaton is described by its executions, which
are alternating sequences of states and actions. As their notion of external
behaviour, they use simple linear traces of executions, which are sequences of
input and output actions. I/O automata admit a notion of implementation
based on inclusion of sets of traces. Some properties to be proved about I/O
automata are formulated as properties of their (fair) traces. Two important
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special types of trace property are safety and liveness properties.

Proofs for I/O automata typically involve compositional methods for rea-
soning about collections of interacting components, forward and backward
simulation relations for proving that one automaton implements another,
and invariant assertions for proving that a particular property is true in
all reachable states. A forward simulation [LV94] from automaton A to au-
tomaton B is a relation R between states of A and states of B that satisfies
two conditions: (1) each start state of A is R-related to some start state of
B, and (2) for each step (sA, a, s′A) of A and each state sB of B such that
(sA, sB) ∈ R, there exists an execution fragment (i.e., a sequence of steps)
of B that “corresponds” to the step in a particular way. Namely, it has the
same trace and leads to a state s′B with (s′A, s′B) ∈ R.

IOA Language IOA [GL] is a formal language for defining and stating
properties of I/O automata. Together with a design for a coordinated suite
of tools, it allows the validation of distributed algorithms expressed as IOA
programs, and — in a final stage — enables programs to be translated auto-
matically into the source code of an existing programming language, thereby
eliminating the need for a final coding step.

The language evolved from pseudo-languages used for describing dis-
tributed algorithms that are based on guarded commands, i.e. named, pa-
rameterized transition definitions containing preconditions and effects. An
effect can be described either operationally by simple imperative programs,
or assertionally in a form of a predicate relating pre- and post-states. In
moving from pseudocode to a formally defined programming language, the
authors of IOA have made several design choices. For example, data types
are defined axiomatically, in the style used by LP (Larch Prover) [GG91]
and other theorem provers. This provides a sound semantics and facilitates
translation into the theorem prover input language. The programmer can
also define new types using Larch. The IOA toolset supports a variety of an-
alytic tools which range from light-weight validation, formal proof, to Java
code generation for producing distributed implementations of the algorithms.
All the tools are based formally on I/O automata.

At the moment, the language is not very expressive. In [GL98], it is
postulated that in order to avoid complicating the semantics of IOA, any
additional programming features should be made as syntactic sugar (i.e.
there should be an unambiguous translation of the code with the additions
into code without them). In [GL], Garland and Lynch discuss a number of
potential extensions to IOA. It is not clear, however, how to formally define
all such extensions (e.g. a module system). Currently, the language lacks
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local naming conventions. For example, all action names in a composition
are global. Also, all of an automaton’s state variables are global to all of
its transition definitions. The current version of IOA does not have explicit
structures for specifying action order — however it is likely that such support
will be introduced in future[GL].

2.3.3 Mobile UNITY

A number of other concurrency models have been proposed, which are based
on different types of automata than presented above, with a different notion
of composition and external behaviour. Here we discuss Chandy and Misra’s
UNITY model [CM88] which is based on automata that combine via shared
variables instead of shared actions. Rather than dealing directly with execu-
tion sequences, the formal semantics of UNITY are given in terms of program
properties that can be proven from the text. Mobile UNITY [RMP97] is an
extension of the UNITY notation and logic with concepts designed to deal
with mobility. The model has been proposed to study problems such as:
decoupling, context dependencies, and location transparency in systems with
mobility. For example, it has been used in an exercise involving the specifi-
cation and verification of Mobile IP [MR97], and in modelling various forms
of program mobility [PRM97].

A UNITY program consists of three sections, called: declare,
initially, and assign. The first two define variable types and the initial
program conditions (such as the initial values of data structures), the last
section consists of a set of assignment statements. The types include also
abstract types, such as sets and queues. The assignment statements execute
atomically, and are selected for execution with an interleaving semantics in
a weakly fair manner — in an infinite computation each statement is sched-
uled for execution infinitely often. A larger system can be composed from
programs, by using either a simple union operator, or superposition. For ex-
ample, if we have two programs A and B, we can use the union operator [] to
construct a new system (denoted as A [] B), which consists of the following:
the union of all program variables (in such a way that variables with the
same name refer to the same physical memory), the union of all assignment
statements (interleaved for execution in a fair manner), and the intersection
of initial conditions. Communication between programs A and B will take
place via shared variables. Note, however, that reading and writing is not
synchronised — it is a fair interleaving execution, but not “in lock step”.
Thus, some values, e.g. written by A, may not be read by B, or B may read
the same value many times. Another way to compose systems is through the
use of superposition, which combines different components by synchronising
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statements rather than sharing variables. For example, we can superimpose
new statements and variables of B on an underlying program A, such that
the new statements do not assign to any of the original variables of A, and
each of the new statements is synchronised with some statement of A. This
kind of composition helps in building layered systems, where the underlying
layers are not aware of the higher layers.

In Mobile UNITY, a system consists of programs declared as in UNITY,
and two additional sections: components, where program declarations are in-
stantiated (i.e. free parameters of programs are bound by the instantiation),
and interactions, which defines transient interactions among program in-
stances. Mobile UNITY captures dynamic reconfiguration and disconnection
of system components. Essentially, components are capable of continuing op-
eration whilst disconnected. Components are located ; a predefined location
variable (say λ), initialised in the components section, will store the current
location of a program and can be freely used in assignment statements. The
type of this variable will depend on the application (e.g. location of a mobile
computer and location of a software agent are of different type). The model
assumes isolation of namespaces of individual components. It assumes that
variables associated with distinct components are distinct even if they bear
the same name. Therefore, to fully specify a variable in a global scope, its
name should be prefixed with the name of the component in which it appears
(e.g. A.x, or A.λ).

Interactions among components can be expressed in three possible ways,
by using: extra statements, reactions, and inhibitions. The simplest is to
use an extra assignment statement, which involves variables of different
components and is accompanied by a predicate, following when, treated
as a guard on the statement. For example, an assignment statement
receiver.x := sender.x when sender.λ = receiver.λ would be executed only
if components sender and receiver are co-located (the precise meaning of “at
the same location” depends on semantics of the location variable λ). Since
the execution of this statement is interleaved with other statements in a fair
but arbitrary order, we do not have much control on whether the assignment
will succeed or not while the location predicate is true. Therefore, the key
new concept is a reactive statement, which allows for specification of location-
and context-dependent side effects. It can be used, e.g. to detect and prop-
agate changes between components. For example, we can use the following
reactive statement receiver.x := sender.x reacts−to sender.λ = receiver.λ,
to guarantee that each and every value written to sender.x will also appear
at receiver.x whenever the predicate following reacts−to is true. The set of
reactive statements continues to execute until no statement would have an
effect if executed.
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Other programming constructs include inhibitions and transactions. The
inhibitor provides a mechanism for constraining the scheduler when execution
of some statement would be undesirable in a certain global context. The
effect of inhibit s when p is a strengthening of the guard on statement s by
conjoining it with ¬p and thus inhibiting execution of the statement when p
is true. Normally, the components in Mobile UNITY execute asynchronously.
If necessary, one can define a transient synchronisation construct, which is
a mechanism for synchronising pairs of statements when their components
are co-located. The inhibit clauses can further be used to prohibit the
statements from executing independently when the components are not co-
located. The transaction provides a form of sequential execution. A sequence
of assignment statements forming a transaction must be scheduled in the
specified order with no other nonreactive statements interleaved in between.

The UNITY and Mobile UNITY languages support statement and proof
of program properties (such as safety and liveness), using temporal logic
reasoning. Proofs of program simple properties involve a universal quantifi-
cation over the set of assignment statements; proofs of more complicated
progress properties are carried out inductively to show that the program
moves through a whole sequence of steps in order to achieve some goal.

The low-level primitives of Mobile UNITY presented above have been
used to formally express high-level language abstractions for communication
between mobile components by transient state sharing [MR98]. Based on a
paradigm of shared memory, the transient sharing constructs for read-only,
read-write, engagement and disengagement operations provide a mechanism
for expressing highly decoupled and context-dependent systems. For exam-
ple, they consider a queue of documents to be output on a printer. A laptop
computer paired with the printer via some wireless communication medium
can occasionally disconnect from the network (and so from the printer), and
connect again, so it has to maintain a local cache of this queue. Each time
the laptop re-connects, the state of the queue must be properly reconciled:
updates to the queue are atomically propagated, expressed as a transient
sharing of the queue. Operationally, both the laptop and printer maintain
two variables: a variable representing a local view of the queue, and a his-
tory variable, introduced for detecting changes, so that only new values are
propagated. The history variable models the previous state of the queue
seen at the counterpart. The propagation of changes is expressed by guarded
reactive statements which assign new values to variables and history vari-
ables. Additional statements are required to specify reintegration policies,
which indicate what values the queue variables should take on disconnection
(disengage) and when the connectivity is re-established (engage).
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LIME In [PMR99], Picco et al. describe LIME (Linda in a Mobile Envi-
ronment), a system designed to assist in the rapid development of dependable
mobile applications over wired and ad hoc networks. The authors intend to
describe the formal semantics of LIME using Mobile UNITY. In LIME, all
location-independent communication between mobile agents (that can reside
on mobile hosts) take place via transiently shared tuple spaces distributed
across the host machines. At the application level, agents and hosts perceive
movements as a sudden change of context. The set of tuples which are acces-
sible by agents residing on a given host is altered transparently in response to
the changes in the connectivity among mobile hosts. A prototype of LIME,
built upon IBM’s TSpaces, is under development [PMR99].

2.3.4 Brief Comparison

Below, we briefly compare I/O automata and process calculi. A similar
comparison of Mobile UNITY and process calculi is difficult since the models
are based on different philosophy. Instead, we briefly discuss some arbitrarily
selected issues (namely modularity and expressing mobility) in the context
of different models.

I/O automata and process calculi There arguably exist some similari-
ties between process calculi and automata models. Both models use a notion
of composition based on synchronising external actions. In the π-calculus,
the parallel operator composes processes which may synchronise (communi-
cate) if they share the same π-channels. A process expression beginning with
an input or an output may, in general, be part of several redexes that are
ready to be evaluated by a reduction step. According to the process expres-
sion chosen, reductions may yield different results. Synchronising external
actions of I/O automata may also exhibit non-determinism, yielding many
meaningful executions. This models the intrinsic behaviour of real concur-
rent programs; they may often yield different results depending on the order
in which various internal events occur. The basic intuition is that executions
(or traces) have a similar meaning to the chains of labelled transitions in
process calculi. The I/O automaton may have some input and output ac-
tions defined by which it can communicate with an external user; this allows
problems to be expressed in terms of traces at the “user interface”. In the
case of process calculi, we can define observational congruence, understood
as some (presumably rather coarse) congruence that is clearly induced by
top-level real-world observations.
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However, process calculi have a very different style and syntax from I/O
automata: they denote concurrent processes by algebraic expressions, and
actions by a small set of algebraic operators. The syntax and computable
operational semantics are formally defined. This helps in designing program-
ming languages based on the model. The way of describing action code in I/O
automata is not part of the model. Commonly natural language is used to
describe states and transitions, supported by arbitrary mathematical objects,
or, more recently the IOA language. However, one of the most important
differences between process calculi and automata models is that in process
calculi the state is implicit in the process term that one has reduced to. In
I/O automata a set of states is explicit, initialised in action encodings and
given in transitions which are triples of state, action, and state.

The authors of I/O automata introduce a notion of fairness, which spec-
ifies that all the system components (automata) get fair turns to perform
steps. It rules out the possibility that some components are permanently
denied turns to take steps. There is little work on formalising fairness rules
for the π-calculus, but Costa and Stirling’s work on fairness for CCS [CS87]
seems likely to generalise to the case of π-calculus ([PT97a], section 2.9).
The source of problems which, at the moment, make it difficult to define a
complete theory of fair π-calculus is that, although it is not hard to define fair
reductions, other semantics, e.g. “fair bisimulation”, gets quite complicated.
In practice, however, one can (with abstract machines, which are equipped
with some operational semantics) describe the behaviour of particular sched-
ulers, some of which enforce some fairness (see, e.g. the abstract machine of
Pict [Tur96]).

In the π-calculi, proofs typically use bisimulation techniques. We say
that two process expressions P and Q are bisimilar if every action of one
can be matched by a corresponding action of the other to reach a bisimilar
state. In practice, so-called weak bisimulation is often more useful, which re-
laxes the demand that the processes simulate each other’s behaviour “in lock
step” and instead regards arbitrarily many steps of internal communication
as equivalent to a single step. It is similar to the forward simulation relation
described in the I/O automata section.

Expressing Mobility Mobile UNITY has been proposed to model dy-
namically reconfiguring distributed systems, and attempts to address design
issues raised by mobile computing. I/O automata, because of the essentially
static structure of computation which can be expressed, are not very suitable
for addressing these problems. An original concern of the π-calculus was to
study systems with evolving connectivity structure, by enabling names of
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communication channels to be freely communicated along channels. This
departs from the static nature of the π-calculus’ direct predecessors: CSP
[Hoa78a] and CCS [Mil89]. Nevertheless, the calculus does not have the no-
tion of physical mobility. However, many extensions of the π-calculus have
been introduced in order to study some aspect of mobile agent computation
(e.g. our calculus and the calculi described earlier in this section).

Modularity In the π-calculus, there is no simple way of grouping processes
into named components, and so expressing boundaries between components
(required, e.g. to model firewalls). Therefore, network architecture, which
can easily be expressed in I/O automata by defining two classes of com-
ponents (see 2.3.2) would have to be modelled by a set of plain π-processes
which compose in the standard way using the parallel operator. On the other
hand, the Mobile UNITY language allows a system to be declared as a col-
lection of decoupled and mobile components which interact asynchronously.
However, there are also calculi which have some forms of modularity, e.g. the
Ambient calculus[CG98] used for modelling security domains. An ambient
is a named cluster of processes and subambients, which moves as a group.
Ambients can model a variety of concepts such as network nodes, packets,
channels, and software agents. Similarly, we can group concurrent processes
into named agents in the Nomadic π-calculus. Agents could possibly be used
for abstracting away reactive components of complex systems. In addition,
adopting into the model a tree-like hierarchy of agents would allow a hier-
archy of components to be built. Some features, which are only represented
in the π-calculi-like models, such as dynamic name and process generation
and local name extrusion, can facilitate non-trivial reasoning about system
reconfiguration and security.

Which model? A common dilemma in selecting a model is how abstract
we want the model to be. A model which is too abstract is not credible, as we
can lose many important details. On the other hand, if too many details are
exposed, reasoning in such a model becomes tedious. Concurrent programs
in Mobile UNITY are sets of assignment statements (often guarded by logical
predicates). Conversely, an action style of specifying the programs seems to
be closer to the intuitive informal description of how they actually execute.
It seems reasonable that it should be easier to produce executable code from
specifications expressed in a language which enjoys executable operational
semantics, e.g. based on actions. However, specifications expressed in the
Mobile UNITY logic are likely to be more concise than in the process calculi
(and so easier to grasp and proofs arguably easier to carry out), but they
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further abstract from details of the systems modeled. Thus, there is no
definite answer to the initial question — it all depends on the context in
which a model is used and some preferences, e.g. about proof techniques.

There are some tools designed for all the models described above. A
variety of UNITY validation tools have been developed, e.g.: HOL-UNITY
theorem prover [And92] (implemented as a library of HOL), and the UNITY
Verifier [Kal94] — a symbolic model checker for finite state UNITY programs.
Some tools have also been designed for the π-calculus, e.g. the Mobility
Workbench [Vic94]; the workbench can efficiently check open bisimulation
equivalences. Some proofs of formal specifications in I/O automata have
been carried out using interactive theorem provers, such as the Larch Prover
[GG91, Che98] and Isabelle [Pau94].
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Chapter 3

Programming Language

In this chapter we describe the Nomadic Pict language. It is designed to
allow infrastructure algorithms to be expressed as clearly as possible, as
translations from a high-level language to a low level. In §3.2, we describe
the principles and syntax of our language and some programming idioms
which are used in the infrastructure translations. We conclude the chapter
by describing Facile and the Join Language — two general-programming lan-
guages, which are based on mobile process calculi. We compare the design
choices, and argue that Nomadic Pict is more suitable for the specification
and experimenting with the infrastructure algorithms for mobile agent sys-
tems. We begin the chapter by presenting our motivations for building a new
programming language for mobile computation.

3.1 Motivations

With the emergence of the World-Wide Web and ubiquitous computing, a
number of new programming languages have been developed, such as Java
and scripting languages (e.g. Tcl, Python, and Perl). These languages are
usually interpreted or compiled to some architecture-independent bytecode,
which can be highly portable on current and future platforms. Java, the
most popular of these languages, has been used to build many mobile agent
systems. It is relatively easy to use Java, due to support offered by the
language for code mobility, architecture-independence, and secure program
execution. Aglets [LOKK97], Voyager [Gla98], Concordia [WPW98], and
Mole [SBH96] are examples of Java-based mobile agent systems. However,
the metaphor “mobile agent” was first introduced in Telescript [Whi96], an
object-oriented language designed specifically for mobile agent programming.
A few programming languages which support mobile computation appeared
as extensions of functional languages (such as Facile and JoCaml [CF99])
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3.1.1 Mobility in a Wide-Area Network

The main concern in the mobile agent community has been demonstrated
so far around problems of safety, security, scalability, fault-tolerance, and
efficiency of code manipulation and execution. The issues of a programming
language design for mobile agents appear seldom, and usually in the context
of high-level communication between intelligent agents. It is true, that many
of the technical problems mentioned above are still not well understood and
solved, however the main problem seems to be not only technological. In spite
of the potential benefits of using mobile agents in certain contexts, there are
very few real agent applications in use. Mobile agent technology itself simply
does not offer anything which could not be implemented in the traditional
client-server model. It may however, as a set of positive factors, enhance
some applications [CHK97]. Also, the importance of software mobility will
grow naturally as a consequence of pervasive mobile computing (enabled by
mobile computers, PDAs, etc.) However, deployment of mobile computa-
tion, especially in wide-area networks, may appear to be difficult. Mobility
complicates system management, because programs are no longer bound to
static locations and administrative domains. However, some authors argue
that mobile agents have the potential to provide a convenient, efficient and
robust programming paradigm for Internet applications, particularly when
computers have only intermittent access to the network [GKN+97]. They
predict that agent technology will be a critical near-term part of the Internet
[KG99]. It appears to us, however, that in order to exploit this potential
fully, there must be better programming language support than is offered at
present.

Knabe [Kna95] pointed out desirable properties of mobile agent lan-
guages: strong typing, remote resource access, automatic memory manage-
ment, security, authentication, support for manipulation, transmission and
execution of code-containing objects. Java and other languages used in cur-
rent mobile agent systems successfully meet some or all of these properties.
However, they do not necessary offer convenient programming metaphors for
building applications where agents must communicate and collaborate while
migrating. The construction of such applications would be made easier by
isolating the agent communication and collaboration from: low-level com-
munication, authentication protocols, tracking the agent whereabouts, and
lock-based concurrency control (if supported). One of the aims is to enable
developers, who are not necessarily experts in distributed systems and mo-
bile agents, to construct applications, but in such a way that they can still
be aware of the distribution concerns. This awareness seems essential in the
context of mobile agents; it facilitates the construction of applications which
are efficient, scalable, and secure.
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The programming languages used in current mobile agent systems are
rather traditional — they are based either on the object-oriented style, or
the imperative techniques of scripting languages. On this ground, system
developers added new primitives to support mobility of code. However, they
usually do not provide the suitable level of abstraction needed for express-
ing communication between mobile agents on the Internet. Communication
is usually made possible through current middleware systems or RPC-like
techniques. RPC is too low-level an abstraction — it does not support loca-
tion independence. Middleware, such as CORBA-compliant Object Request
Brokers, provide support for language-independent and location-transparent
method invocation. The main problem is, however, that they cannot ad-
equately provide scalability and flexibility, important issues in the case of
mobile agent systems. The proposition of Globe [vSHBT98], a worldwide lo-
cation service for distributed objects, offers better infrastructure for a wide-
area network, which can better cope with (occasional) mobility of objects.

We argue, however, that the transparent-object model simply does not
provide a suitable level of abstraction for expressing the (low-level) communi-
cation between mobile agents, which should not be made transparent to the
application intended for a wide-area network. The reason is simply because
a wide-area network is not like a local-area network: communication is very
asynchronous, delays and bandwidth fluctuations unpredictable, communica-
tion may have to cross administrative boundaries and firewalls, remote sites
are invisible, failures are indistinguishable from deliberate disconnected op-
eration of some machines, mobile computers can be moved between network
domains and have only intermittent access to the network, and so on. Any
global distributed infrastructure which would try to hide these issues to some
extent (if possible) by replication and fault-tolerant protocols, and provide
a uniform transparent-object model to the programmer would dramatically
slow down the whole Internet (besides it would be undesirable due to secu-
rity reasons). On the other hand, communication between mobile agents is
sufficiently above network protocols to make searching for new programming
abstractions worthwhile.

3.1.2 Verification of Mobile Computation

There is a natural demand for the most critical parts of systems to be anal-
ysed, verified, and proven correct (correctness informally means compliance
of program execution with our assumptions). Network protocols and dis-
tributed infrastructures are highly concurrent; testing can often be useful
to find common errors, but is not capable of guaranteeing correctness. The
activity of proving formally that a system is correct is called verification.
The verification of formally described protocols can, to some extent, be au-
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tomated using interactive tools, such as theorem provers. Nevertheless, the
process is costly, since one has to write an input for a standard theorem
prover from a program specification, and after proving it correct, must re-
code the program using a traditional programming language. This process is
difficult, error-prone, and the verification information is not readily reusable
as the system grows. The growing complexity of mobile protocols (such as
Mobile IP) and prevalent programming practice, will make such an approach
difficult and questionable. New methods are required, which would be easier
to use and less costly.

The solution would be to verify the actual code expressed in a program-
ming language rather than some abstraction of it, as this gives us more ac-
curate and reliable information about the way the system is going to behave
(it would also facilitate updating proofs after code revisions). The advan-
tage is that executable code could be generated from verified specifications
which are proven correct. This would save duplication of effort in all these
cases where formal verification is essential, and rule out the possibility of
introducing errors while coding. Unfortunately, the traditional programming
languages are not very suitable for formal verification. The solution would
be to use a programming language whose syntax is already quite abstract,
providing a concise set of semantically-clean primitives, which are however
efficiently implementable.

Although this is an ultimate goal, there are already examples of rigor-
ous verifications on the level of actual running code, without resorting to
approximate techniques. For example, Arts and Dam [AD99] demonstrate
a pragmatic approach to formalisation and verification based on an example
from industry, and discuss their experience with using a verification tool for
Erlang programs. Erlang [AWWV96] is a functional programming language
developed at Ericsson, which has been used for writing robust distributed
telecommunication applications. The “core” features of Erlang include: list
and number processing, dynamic process creation (also spawning processes
on remote hosts), and communication. They extract, from the real imple-
mentation in Erlang, a fragment implementing the protocol to verify, add
some additional code to provide a very simple simulated interface to parts
of the system that are irrelevant for the problem at hand, and verify the
program using the (interactive) verification tool. Erlang programs can be
seen as a very precise, and in some sense formal, description of the algorithm
(although the language semantics has not been formally defined).

In [GL98], it has been argued that the features which make a language
suitable for verification and proofs (e.g. nondeterminism, simplicity, declar-
ative style) are different from those that make it suitable for code generation
(e.g. determinism, expressive power, imperative style). Nondeterminism
helps to validate designs in a general form. Simplicity gives hope for simple
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semantics and simple proof rules, making designs described in such a lan-
guage easier to understand and verify. A declarative style would be easier to
translate into the input languages of standard theorem provers. On the other
hand, a deterministic language with an imperative style is easier to translate
to efficient executable code. The expressiveness of language primitives makes
programming easier. We believe that Nomadic Pict offers a good balance of
the trade-offs mentioned above. Although, Nomadic Pict is a general pro-
gramming language, it can also be used for informal but rigorous proofs, as
demonstrated in [Uny].

The language offers primitives that can be efficiently implemented yet not
at all far from a process calculi-like level of abstraction. The object and func-
tional programming concepts which are useful for general programming have
complex semantics, and therefore applying them to reasoning about mobile
computation (where partial failures may happen) must be done with care.
Our approach is as follows. We are first looking for convenient metaphors (or
concepts) which are basic in the general model of concurrent computation,
where each program is a set of agents or activities which co-exist and inter-
act with each other. Then, we add to this support for mobility and physical
distribution of agents. Distributed objects and functions, being the most
complex metaphors, may eventually be built on top, if required. Objects
and functions known traditionally from sequential programming can be seen
as deterministic subsets of that more general model.

In our work we build on process calculi. Process calculi offer a small
set of operators accompanied by computable operational semantics, which
altogether form a clean design path for the construction of programming
languages. The expressive power of a language is achieved by additional pro-
gramming idioms, such as data structures, higher-order programming, and
concurrent objects. They can be formed by adding a layer of convenient syn-
tactic sugar and a static type system to a tiny core. For example, translations
of high-level idioms, like functions and objects, into π-calculus processes have
been given a rigorous theoretical treatment (e.g. [San99, San98], see also ob-
jects in Pict [PT95, LSN96]). The Nomadic π-calculus, an extension of the
π-calculus, formed a foundation for the Nomadic Pict language design. The
advantage of our calculus is that, although the model is nicely tractable the-
oretically, there is only a small gap between the model abstractions and the
real system implementation. Therefore, we hope that any results of reasoning
formally in the (quite intricate) mathematical model of mobile communicat-
ing agents should be easily transferable into the real system. This should
guarantee a good level of confidence that the system and applications devel-
oped in it will meet the specification, and help in understanding what the
system actually does. It may also facilitate construction of tools such as de-
buggers, monitors, and optimised compilers for programming with mobility.
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3.1.3 Infrastructure Design and Specification

In distributed systems with mobile hosts and code mobility, chunks of dis-
tributed computation may have only intermittent access to the network; they
are no longer static but can freely migrate to other physical locations while
exchanging messages. Designers of mobile agent systems usually assume that
mobile agents are autonomous, solitary programs which can migrate from site
to site and perform tasks on behalf of their users. The agents communicate
at visiting sites (“meeting places”) with other resources or agents. They can
also open RPC connections to services which are on remote sites. On top of
that, there are mechanisms provided for tracking locations of mobile agents
and message delivery. In our language, the act of communication between
agents rose to the rank of a single language primitive, which may greatly
simplify building applications. We have defined semantics of this primitive
precisely within our calculi-based model and provided a number of imple-
mentations. We wanted to be able to express the infrastructure algorithms
in a form that is clean and easy to understand. Also, we wanted to prototype
the algorithms and simple examples of agent applications in a distributed
environment. At the time of starting the project, there were few languages
which supported location-independent communication as a primitive, with
a formally specified semantics (e.g. Facile and the Join Language described
in §3.3). These systems, however, are closed. They do not offer convenient
language metaphors for location-dependent communication, and do not pro-
vide a means for expressing and supplying the infrastructure algorithms for
location-independent language primitives. Therefore, we decided to imple-
ment our own light-weight runtime system and language, where this would
all be possible. In our system, the agent programming abstractions can be
factored into hierarchical translations of the higher into the lower level lan-
guage, thus customising the agent system. An arbitrary infrastructure can
be deployed dynamically, on application start-up, using agent migration —
this makes it straightforward to experiment with a wide range of infrastruc-
ture algorithms for applications with different migration and communication
patterns. Also, a simple message passing discipline of the low-level language,
freed from the burden of marshalling and unmarshalling parameters of net-
work and middleware protocols, makes it easy and straightforward to verify
results of reasoning formally about message-passing algorithms in the pres-
ence of mobility.

Nomadic Pict has been designed to validate our model of mobile compu-
tation with highly-concurrent agents. The system is currently less suitable
for building serious applications, due to the lack of sufficient support for ap-
plication interoperability; we plan to extend the language to meet some of
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these requirements in future. Services, traditionally provided by operating
systems and some “middleware” (such as object brokers and lookup service),
are assumed to be delivered as translations in Nomadic Pict. This allows
complex distributed systems to be built while at the same time remaining
inside a coherent, integrated framework. Therefore one can easily prototype
new algorithms, because the system services can be customized and their
source code is highly readable. The semantics of all external and internal
services can therefore be understood within a single coherent model.

3.2 Nomadic Pict

In the following sections, we describe the Nomadic Pict language and pro-
gramming idioms. We conclude the chapter presenting two general-purpose
programming languages supporting code mobility, Facile and Join-calculus,
which also grew up from process calculi.

3.2.1 Language Principles

We have designed and implemented Nomadic Pict as a vehicle for explor-
ing distributed infrastructure. It builds on the Pict language of Pierce and
Turner [PT97a, PT97b, Tur96], a concurrent (but not distributed) language
based on the asynchronous π-calculus [MPW92, HT91, Bou92]. Pict sup-
ports fine-grain concurrency and the communication of asynchronous mes-
sages. To these Low-Level Nomadic Pict adds primitives for agent creation,
the migration of agents between sites, and the communication of location-
dependent asynchronous messages between agents. The high-level language
adds location-independent communication; an arbitrary infrastructure can
be expressed as a user-defined translation into the low-level language. The
combination of low-level language and facilities for defining a translation thus
embody the design principle:

A wide-area programming language should provide a level of ab-
straction that makes distribution and network communication
clear; higher levels should be provided and implemented using
the modularisation facilities of the language. It should be possi-
ble to deploy such infrastructure dynamically.

Such a language can have a standardised low-level runtime system that is
common to many machines, with divergent high-level facilities chosen and
installed on demand. The levels of abstraction can be made precise by giv-
ing process calculi equipped with rigorous operational semantics. Preliminary
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definitions of the (low and high-level) Nomadic π-calculi were given in chap-
ter 2. They have since been extended to large fragments of the language, for
use in correctness proofs, but are not described here (see [Uny]).

We have focussed on the simplest language that allows us to study the
core problem of location-independent communication introduced in chapter
1, rather than attempting to produce an industrial-strength language. In
particular, we study a single representative location-independent primitive,
that of delivering a message to an agent on an arbitrary site. We believe
that analogous work could be carried out for other high-level primitives, e.g.
multicasts, and for many other concurrent languages.

A further simplification is the adoption of a fixed two-level architecture,
rather than a general purpose module system. The utility of a rich module
system for structuring communication protocols, in the absence of mobil-
ity, has been demonstrated in the FOX project [HLP98]; see also Ensemble
[Hay98]. In future work we intend to integrate an ML-style module system
with a Nomadic Pict language.

In this section we introduce enough of the language for the example ap-
plication and infrastructures given in the following chapters. The language
extends primitives of the Nomadic π-calculus with some convenient syntactic
sugar and a type system. The operational semantics of the primitives have
been described in §2.2.

3.2.2 Low-Level Language

Below is a program in the low-level language showing how mobile agents
can be expressed; it extends the applet server in §2.2.1 with programming
constructs such as types and functions. Inside the agent a (which is assumed
to be on site s’) we define a function spawn; the function accepts two formal
parameters s and prompt, and creates a new fresh agent named b

newnewnew answer : ^String
defdefdef spawn [s:Site prompt:String] =

(agentagentagent b =
(migratemigratemigrate tototo s
<a@s’>answer!(sys.read prompt))

ininin
())

( spawn ! [s1 "How are you? -" ]
| spawn ! [s2 "When does the meeting start? -" ]
| answer ?* s = print!s
...
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In the body of the agent a, we have two parallel invocations of the function
spawn, creating two agents b (with different names) which immediately mi-
grate to remote sites s1 and s2, print a prompt on the current console, and
read from a standard input. A message containing the string read from the
console is sent to the spawning agent a. The agent a can receive the messages
on the channel named answer (carrying values of type String) and print the
reply on the screen. Functions (process abstractions) are syntactic sugar;
they can be replaced by channel communication internal to the agent (we
will explain it in §3.2.4). The sites, agents, and channels are typed; the lan-
guage types are described below. The language is built above asynchronous
messaging, both within and between sites; in the current implementation
inter-site messages are sent on TCP connections, created on demand, but
our algorithms do not depend on the message ordering that could be pro-
vided by TCP.

Types The language inherits a rich type system from Pict, including simple
record types [label1=T1...labeln=Tn], higher-order polymorphism, sim-
ple recursive types (recrecrec X =..X..) and subtyping. It has a partial type
inference algorithm. Pict’s four basic channel types are classified as follows:
^T (the type of input/output channels carrying values of T) is a subtype of
both !T (output channels accepting T) and ?T (input channels yielding T).
That is, a channel that can be used for both input and output may be used
in a context where just one capability is needed. Also /T (responsive output
channels carrying T) is a subtype of !T.

Nomadic Pict adds new base types Site and Agent of site and agent
names, a variant type for expressing variants, and a type Dyn of dynamic val-
ues (to date only partially implemented) for implementing traders. The vari-
ant type {label1>T1...labeln>Tn} denotes all values {label>v:T} such as
(label, T ) ∈ {(label1, T1), ..., (labeln, Tn)}.

In this thesis we make most use of Site, Agent, the base type String

of strings, Int of integers, Bool of Booleans, the type ^T of channel names
that can carry values of type T, tuples [T1...Tn], variants, and existential
polymorphic types such as [#X T1...Tn] in which the type variable X may
occur in the field types T1...Tn. We also use a type operator Map from the
libraries, taking two types and giving the type of maps, or lookup tables,
from one to the other (we will explain maps in §3.2.4).

Values Channels allow the communication of first-order values: names
a,b,. . . , strings, tuples [v1...vn] of the n values v1...vn, packages of exis-
tential types [#T v1...vn], and elements of variant types {label>v}. The
language does not support passing of processes (except for the migration
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of whole agents) or of higher-order functions. Patterns p are of the same
shapes as values, with the addition of a wildcard.

Core Language Syntax The main syntactic category is that of processes.

c!v output v on channel c in the current agent
c?p = P input from channel c
c?*p = P replicated input from channel c
( P | Q ) parallel composition
( Dec P ) local declaration
() null process
ififif v thenthenthen P elseelseelse Q conditional

iflocaliflocaliflocal <a>c!v thenthenthen P elseelseelse Q test-and-send to agent a on this site
waitwaitwait c?p=P timeouttimeouttimeout n -> Q input with timeout
<a>c!v send to agent a on this site
<a@s>c!v send to agent a on site s

Declarations Dec are used to introduce new channels, agents, and express
migration; they form a separate syntactic category.

newnewnew c:T P new channel name creation
agentagentagent a=P ininin Q agent creation
migratemigratemigrate tototo s P agent migration

All bound variables (and wildcards) are explicitly typed. In practice, how-
ever, many of these type annotations can be inferred automatically by the
compiler. Therefore we did not include them in the syntax above. Types
are required in definitions, e.g. execution of newnewnew c:^T creates a new unique
channel name for carrying values of type T.

In the language implementation, we use environments to store bindings of
names to values instead of an explicit substitution. For example, an output
c!v and an input c?p=P in the same agent may synchronise, resulting in P

with the appropriate parts of the value v bound to the formal parameters in
the pattern p.

3.2.3 High-Level Language

The high-level language is obtained by extending the low-level with a single
location-independent communication primitive:

c @ a ! v location-independent output to channel c
at agent a
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The low-level communication primitives are also available, for interacting
with application agents whose locations are predictable. Other low- and
high-level communication primitives may be added in future, e.g. in order
to support stream communication.

Summarising, agents located on a particular site can freely change loca-
tion by migrating to a new site. Channels created inside an agent are local
within the agent but can also be used for communication between agents,
providing that the sender and receiver use the same channel name (which
has been defined in common lexical scope or dynamically extruded). The
location-independent output will require some distributed infrastructure to
deliver messages reliably. In distributed operating and “middleware” sys-
tems, this kind of infrastructure is a hard-wired part of the system. In
Nomadic Pict, the distributed infrastructure for location-independent com-
munication, and addressing schemes can be anything whatever, since all have
to be explicitly encoded in the low-level language.

Expressing Encodings The language for expressing encodings of high-
level language primitives allows the translation of each interesting phrase (all
those involving agents or communication) to be specified and type checked;
the translation of a whole program (including the translation of types) can
be expressed using this compositional translation. A rudimentary module
system allows encodings of any new phrases of the high-level language to be
expressed as macro definitions. We can use the macros in programs writ-
ing dododo "macroname" parameter ininin P. Here, the type of parameter is not
known until the macro definition is applied and the type information can
be inferred. We omit in this section the concrete syntax of the language for
expressing encodings; the example infrastructures in chapters 4 and 6 should
give the idea (see also Appendix).

3.2.4 Examples and Idioms

We give some syntactic sugar and programming idioms that will be used
in the translations. Most are standard π-calculus idioms; some involve dis-
tributed communication. The syntax for process abstractions, value declara-
tions, and applications has been introduced in Pict and described informally
below (see [PT97b] for a formal description of the source-to-source transla-
tions and more syntactic sugar).

Syntactic sugar (a) In Pict, we can define process abstractions via the
declaration keyword defdefdef, as in

defdefdef f [x:T1 y:T2] = (x!y | x!y)
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and instances are created using the same syntax as output expressions, as in
f![a b] (f is a channel — a process abstraction is translated into a channel
declaration newnewnew f and a replicated receiver on f). Recursive and mutually
recursive definitions

defdefdef f [..] = ... g![..] ...
andandand g [..] = ... f![..] ...

are also allowed.
(b) The syntactic category of values is extended with declaration values

of the form (Dec v), as in

c!(newnewnew d:T d)

The complex value is always evaluated to yield a simple value, which is
substituted for the complex expression; the process above creates a fresh
channel d and sends it off along c, as in (newnewnew d:T c!d).

(c) A declaration

valvalval p=v

evaluates a complex value v and names its result. Formally, a valvalval declaration
(valvalval p=v e) is translated using the continuation-passing translation, so that
the body e appears inside an input prefix on the continuation channel which
is used to communicate a simple value evaluated from the complex value v.
This means that valvalval declarations are blocking : the body e cannot proceed
until the bindings introduced by the valvalval have actually been established.

(d) In value expressions, we allow the application syntax (v v1 ...
v2). For example, we can define a process abstraction

defdefdef double [i:Int r:/Int] = +![i i r]

and then, in the scope of the declaration, write (double i) as a value, drop-
ping the explicit result channel r, e.g. printi!(double 2) would compute
4 and print it out on the console, using the library channel printi.

(e) A functional style is supported in Pict by a small extension to the syn-
tactic class of abstractions. For example, we can replace a process abstrac-
tion defdefdef f [a1:T1 a2:T2 r:/T] = r!v, where v is some complex value, by
a ‘function definition’

defdefdef f (a1:T1 a2:T2) : T = v

and avoid explicitly giving a name to the result channel r.
(f) The idiom “invoke an operation, wait for a signal (i.e. a null value [])

as a result, and continue” appears frequently, so it is convenient to introduce
; (semi-colon), as in
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(v1 ...); (v2 ...)

for the sequence of operations v1 and v2.
(g) In Nomadic Pict we introduced variants and a new type Dyn. In the in-

frastructure translations, we use a variant type {label1> T1 ... labeln>
Tn} so often, that it is convenient to introduce a new process form switchswitchswitch,
as follows

c?v= switchswitchswitch v ofofof
(
{label1> p1} -> P1
...
{labeln> pn} -> Pn

)

that matches a variant type value v with all the variants, chooses the one
which has the same label as v, and proceeds with a process P of the matched
variant.

(h) We can compare dynamic values at runtime via the process keyword
typecasetypecasetypecase, as in

c?v= typecasetypecasetypecase v ofofof
s:String -> print!s
[s:String d:^String] -> d!s

elseelseelse print!"Type not recognised."

where c has type ^Dyn. Instances of dynamic values are created using
(dynamic v). For example, c!(dynamic ["ala" x]) in parallel with the
process term above may synchronise, resulting in “ala” being sent along the
channel x, c!(dynamic "ala") would print “ala”, but any other (dynamic)
value sent on c would print an error message. The translations of switchswitchswitch

and typecasetypecasetypecase use the value equality testing primitive.

Process Abstractions in Agent Programming A name f of process
abstraction defdefdef f x:T=P in agent a has type /T. In the current implementa-
tion, the name f can be extruded outside a and used for remote invocations,
as in f@a!.... However, we usually use standard channels for inter-agent
communication (e.g. in ‘procedures’ described below). The type /T of f

guarantees that there is exactly one receiver on f. Therefore it is not sen-
sible to use f outside agent a for a local output because this would never
synchronise. In the future, the type system may enforce types /T to be used
within a single agent only (this would require the introduction of new types
and sub-typing rules for channels which are intended to be used for inter-
agent communication). We neglect it for a while so as not to complicate the
type system.
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However, functions from Nomadic Pict libraries are treated in a special
way; they can be effectively used in all agents defined in a user program (so
formally it looks as though each agent has a private copy of each library
function it might ever use). Declarations of library modules precede lexically
the program declarations, therefore the library function names are visible
inside any agent in a normal way, just as any other names defined in the
lexical scope.

A plausible extension of the Nomadic π-calculus would be a higher-order
nomadic calculus, in which agents could communicate higher-order values,
such as process abstractions, not just names and simple values. If efficiency
is not critical, it would be very easy to extend the current implementation
of Nomadic Pict to support higher-order values, by simply extending a type
of standard Nomadic Pict messages to allow any higher-order value to be
transmitted, and sending a local environment with messages. On the receiver
side, the higher-order value would be interpreted as any other agent process.

Procedures Within a single agent one can express ‘procedures’ in Nomadic
Pict as simple replicated inputs. Replicated inputs are useful to express
server agents. Below is a first attempt at a pair-server, that receives values
x on channel pair and returns two copies of x on channel result, together
with a single invocation of the server.

newnewnew pair : ^T
newnewnew result : ^[T T]
( pair?*x = result![x x]
| pair!v
| result?z = ... z ... )

This pair-server can only be invoked sequentially—there is no association
between multiple requests and their corresponding results. A better idiom
is below, in which new result channels are used for each invocation. The
pair-server has a polymorphic type (X is a type variable), instantiated to Int
by a client process.

typetypetype (Res X) = ^[X X]
newnewnew pair : ^[#X X (Res X)]
( pair?*[#X x r] = r![x x]
| (newnewnew result:(Res Int) (pair![1 result] | result?z =... z ...))
| (newnewnew result:(Res Int) (pair![2 result] | result?z =... z ...)))

The example can easily be lifted to remote procedure calls between agents.
We show two versions, firstly for location-dependent RPC between static
agents and secondly for location-independent RPC between agents that may
be migrating. In the first, the server becomes
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newnewnew pair : ^[#X X (Res X) Agent Site]
pair?*[#X x r b s] = <b @ s>r![x x]

which returns the result using location-dependent communication to the
agent b on site s received in the request. If the server is part of agent
a1 on site s1 it would be invoked from agent a2 on site s2 by

newnewnew result : (Res Int)
( <a1 @ s1>pair![7 result a2 s2]
| result?z = ...z... )

If agents a1 or a2 can migrate this can fail. A more robust idiom is easily
expressible in the high-level calculus—the server becomes

newnewnew pair : ^[#X X (Res X) Agent]
pair?*[#X x r b] = r@b![x x]

which returns the result using location-independent communication to the
agent b. If the server is part of agent a1 it would be invoked from agent a2
by

newnewnew result : (Res Int)
( pair@a1![3 result a2]
| result?z= ...z... )

Locks, methods and objects The language inherits a common idiom for
expressing concurrent objects from Pict [PT95]. The process

newnewnew lock:^StateType
( lock!initialState
| method1?*arg = (lock?state = ... lock!state’ ...)
...
| methodn?*arg = (lock?state = ... lock!state’’ ...))

is analogous to an object with methods method1. . .methodn and a state of
type StateType. Mutual exclusion between the bodies of the methods is
enforced by keeping the state as an output on a lock channel; the lock is free
if there is an output and taken otherwise. For more detailed discussion of
object representations in process calculi, the reader is referred to [PT95].

Finite maps The algorithms given in the following chapters involve finite
maps from Nomadic Pict standard library — in the first, there is a daemon
maintaining a map from agent names to site names; in the second, there
are daemons maintaining maps from agent names to lock channels. The
translations make use of the following constructs:



66 Programming Language

c!(map.make eq)

outputs the empty map on channel c (where eq is a comparing function over
the keys),

(map.add m a v)

returns a map containing the same binding as m, plus a binding of a to v; if
a was already bound in m, its previous binding disappears,

switchswitchswitch (map.lookup m a) ofofof
(
{ Found> p } -> P
{ NotFound> _ } -> Q

)

looks up a in map m. Our calculi are sufficiently expressive to allow these
to be expressed directly, in a standard π-calculus style — formally we can
regard the constructs as syntactic sugar for π-calculus process terms, as in
[SWP99]; in Nomadic Pict, maps are defined using the built-in library List.

The Map library contains four additional functions, for removal, testing,
and iterations: (4) (remove m k) returns a map containing the same binding
as m, except for k which is unbound in the returned map, (5) (present m

k) returns truetruetrue if there is binding of k in m, or falsefalsefalse otherwise, (6) (iter

m f) applies f to all bindings in map m, discarding the results; f receives
the key as first argument and the associated values as second argument; the
order in which the bindings are passed to f is unspecified, (7) (fold m f a)

computes (f kn vn ... (f k1 v1 a) ... ), where k1 ... kn are the
keys of all bindings in m, and v1 ... vn are the associated data; the order
in which the bindings are presented to f is not specified.

3.3 Related Languages

A large number of other programming languages which are based on some
formal model have appeared over the years. They include purely functional
languages based on lambda-calculus (e.g. Haskell), “impure” functional lan-
guages (e.g. Scheme and ML [Mil84, MTHM97]), and languages which com-
bined the concurrency primitives of process calculi with some more tradi-
tional features for sequential programming (e.g. Amber [Car86], Concurrent
ML [Rep93], and open source industry languages based on object or func-
tional model, e.g. Obliq [Car95] and Erlang [Lab98]). A main motivation for
using such languages (apart from making it easier to write distributed appli-
cations) is that they integrate different computational paradigms in a clean
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and well understood programming model, which has the potential to auto-
mate some formal reasoning about the behaviour and properties of programs
expressed in these languages (e.g. in proofs of program correctness).

Below, we describe Facile and the Join Language , two general-purpose
programming languages which support code mobility. In both cases, process
calculi have been successfully used in the specification of language semantics
and on different stages of the language design and implementation. Since all
the system and middleware services for code mobility and communication are
tightly integrated within one single framework, Facile and the Join Language
can also facilitate formal reasoning about programs.

3.3.1 Facile

Facile [GMP89, PGM90, TLG93] is a higher-level, strongly-typed, modular,
distributed programming language. The industry-strength implementation
of Facile at ECRC [TLP+93] provided concurrency and synchronous channel
communication extensions to Standard ML of New Jersey [AM91]. As an
extension of ML, Facile brings all the concepts and techniques from advanced
language research to the fore. It offers a strong but flexible type system (with
polymorphism and type inference), convenient primitives for manipulation
of complex data structures, lexical scoping and higher-order programming
(e.g. functions can be defined in any scope and passed to other functions or
returned as results). In Facile, all these features are seamlessly integrated
with a simple interface to distributed programming.

The computational model of Facile consists of a collection of nodes, possi-
bly located on different host machines, each node running zero or more Facile
processes. A node can be thought of as a virtual processor with a shared ad-
dress space1. Processes execute by evaluating expressions (in a functional
style), and can communicate values between each other by synchronising
over typed abstract channels. New nodes, channels, and processes can be
created dynamically, processes can be spawned on a given node and exe-
cute a given script. Communication on channels is reliable and synchronous
(both the server and receiver processes are blocked until communication can
be completed). Any data, including process scripts, channel names, and
node identifiers, which are first-class values, can be sent over channels. Im-
portantly, they can be sent to a remote site, while preserving type safety.
A non-deterministic selection of ready communications over a dynamically
specified list of channels can be made by using guarded choice. A timeout

1Facile processes running on the same node can be thought of as light-weight threads.
They share an address space and execute concurrently under control of a preemptive
scheduler of the Facile run-time system.
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mechanism and exception handling support writing fault-tolerant applica-
tions. The module system of Standard ML has been extended with supplying
and demanding constructs for dynamic connection of applications that were
started independently. Applications may store modules by supplying them to
servers on the network, and other applications may retrieve these modules by
demanding them based on an interface specification (a signature). Descrip-
tion of the language constructs can be found in a Facile tutorial [TLK96].

A formal model of Facile is an extension of λ-calculus with primitives
for concurrency, channel communication, and distribution. The concurrency
model of Facile is based on CCS and its higher order and mobile exten-
sions (CHOCS [Tho93] and the π-calculus). Furthermore, constructs for dis-
tributed computing are based on results from timed process algebra and true
concurrency theory. The semantics of Facile has been studied extensively,
either focusing on defining the (abstract) execution of programs in terms
of transition systems, reduction systems or abstract machines, or being con-
cerned with the development of program equivalences. Concurrent functional
programming has been studied in a framework of a simply typed λ|| calculus
(Amadio, Leth, and Thomsen [ALT95], see also [Ama94]), which comprises
three basic ingredients of Facile: (1) call-by-value λ-calculus extended with
the parallel evaluation of expressions, (2) a notion of channels and primi-
tives for synchronous input/output (communications are performed as side
effects of expression evaluation), (3) the possibility of dynamic generation
of new channels. The calculus includes CHOCS and a simply sorted part
of the (synchronous) π-calculus as its sub-calculi. In addition, Amadio and
Prasad [AP94] study issues related to physical distribution, namely locations
and failures. In their πl-calculus, basic resources are nodes (locations), and
channels and processes located at these nodes. A node can fail (in a fail-
stop fashion); the consequence of node failure is that all processes located
at that node abruptly terminate and the communication channels allocated
there become unavailable to other processes. At the semantic level, this ob-
viously means that processes that could normally be considered equivalent
in a calculus without locations, may turn out to exhibit different behaviours
when complex allocations and failures are allowed. The work on modelling
mobility, initiated in Facile, has been continued by Amadio [Ama97, Ama].

In [ALT95, AP94], the authors gave simple translations of both calculi
into the π-calculus, thus proving (at least in theory) that reasoning about
Facile distributed applications can be carried out in the familiar interleaving
semantics of the π-calculus (e.g. by using a barbed bisimulation). We sketch
the translations in turn. The basic idea of translating the λ|| calculus into
the π-calculus is to represent a function by means of a replicated input on
a channel and to transmit channel names (pointers) instead of functions (a
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similar translation has been used to desugar functions in concurrent but non-
distributed Pict). However, in the real distributed implementation, process
scripts (possibly containing functions) are sent between nodes together with
their local execution environments. In case of the πl-calculus translation,
each node is represented by a special process, which interacts by means of a
simple protocol with any process of the original program wanting to access
resources depending on that location.

Discussion The Facile project has proven that formal reasoning can be suc-
cessfully employed in designing a complex system. Also, people working on
theory can benefit from a closer insight into practical problems encountered
in system development. In Facile, the assumptions about system functional-
ity have been exemplified by defining a formal model based on process calculi.
It also became clear that the initial design choices in the model have a far
going impact on system implementation, including efficiency and scalability.
Therefore, it is important to precisely define a range of application targets
and the future environment, while designing the system model. We have
been much aware of this fact when designing Nomadic Pict, whose model
has been guided by concrete assumptions about applications which we would
like to support.

Facile uses synchronous channels for communication between concurrent
processes (possibly running on networked machines). A function send takes
channel and value as arguments, and returns unit value after communication
is completed. A hand-shake protocol is used for delivering messages between
networked machines. If the remote site is not reachable, a timeout exception
can be handled by the sender process (which is blocked on send). The syn-
chronous model better matches the concept of functions (a function returns
after the computation is finished), thus leading to a natural integration of
function invocations and primitives for channel communication. While some
process A is blocked on send, other concurrent processes of the same ap-
plication can continue execution unless they have pending communications
with A. This communication dependency between processes may create a
problem if processes are distributed in wide area networks, where links can
be slow or broken. Thus, programmers may prefer to spawn new Facile pro-
cesses each time there is some value to send across the network. A more
asynchronous model is also required for applications executing in a mobile
environment, where mobile devices can often work in a disconnected mode.
Nomadic Pict supports asynchronous channels on top of standard network
protocols. Such a simple communication model allows us to experiment with
different concurrency control policies and levels of synchrony (the algorithms
can be expressed as translations and used in applications).
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From a conceptual point of view, a channel is a synchronisation point
allowing many concurrent processes to communicate. In Facile, the concept
has been extended to a distributed world. In the implementation, a channel
is represented as a data structure. Each process attempting to communicate
over a channel leaves a request on it. A decentralised approach for channel
management has been adopted, in which a programmer has got control over
the node on which channels are created. A channel manager (one per chan-
nel) takes care of matching senders and receivers using a particular channel.
The manager can communicate with Facile processes using links (e.g. sock-
ets). Channel implementations reside in the nodes where they have been
created. If a node fails, channels created on this node disappear (the system
can still communicate over channels created on other nodes, though). The
channel access mechanism utilizes location hints in (globally unique) channel
identifiers and as a fall-back mechanism, a hash table that maps each channel
identifier to its current implementation.

One of the initial goals of Facile was to seamlessly extend the functional
and concurrent primitives to distributed computing. This has been done
while showing much care to preserve the semantic difference between dis-
tributed and concurrent (but within the same shared address space) com-
putation. The issues of locating processes and being aware of failures and
distribution is in sharp contrast with the popular object-oriented approaches
which attempt to deliver full transparency. Nevertheless, implementing one
single policy of distributed channels can be controversial. Synchronisation
between the sender and receiver processes may be expensive in terms of ad-
ditional control messages, especially if the two processes, located on different
nodes, have to share a channel created on some third node, and thus they
end up talking to this third node. Also, some further work can be needed by
the channel managers to coordinate communications that stem from choices.
Efficiency problems caused by using distributed channels in some applica-
tions have been noticed by Facile designers and future work was planned,
e.g. to establish fast audio/video connections.

Currently, a programmer can choose the nodes where channels will be
created, thus leading to improved efficiency in particular cases. Some ap-
plications, however, may require even more flexibility, which cannot easily
be achieved with a static implementation of channels. An example is mobile
communicating agents, which may migrate often and while migrating want to
preserve any pending communications with other agents on the same chan-
nels. In those agent applications, which can span nodes distributed on the
whole Internet, it would be desirable to optimise message communication
(i.e. reduce the number of forwarding pointers or aliasing) and, in particu-
lar, avoid (if possible) any long distance queries to some third parties (here
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channel structures). However, it has been demonstrated that Facile can be
successfully used to build Mobile Service Agents (MSAs) [TKLC95], which
can be understood in the usual way, i.e. as self-contained pieces of software
which can serve as local representatives for remote services, provide interac-
tive access to data they accompany, and carry out tasks for a mobile user
temporarily disconnected from the network.

A follow-up of work on Facile and the Join Language (described be-
low) is the π1-calculus, an asynchronous calculus with uniqueness of the
receptor [Ama]. It assumes that every channel name is associated with a
unique process which receives messages addressed to that name (communica-
tion becomes point-to-point). Such asynchronous point-to-point communica-
tion does not require synchronisation between possibly distant processes and
therefore it makes minimal assumptions on the capabilities of the distributed
system. As a consequence of receptor uniqueness, any received names will
have a send only capability.

In contrast, our best effort approach allows for unrestricted communi-
cation on π-channels in all those cases which do not constrain efficiency of
the implementation, so they can be freely used, e.g., for a local computation
within the shared address space of an agent. However, in the case of com-
munication between migrating agents, the use of channels is restricted (see
§2.2.1). At the same time, our approach is liberal, i.e. although we admit
that there is no implementation of distributed channels that is efficient for all
possible applications, we do not try to evade the problem. Instead, we offer
a programmer the possibility of encoding distributed channels for particular
applications, as translations on top of agents.

3.3.2 The Join Language

The Join Language [FGL+96] is a distributed programming language based
on the join-calculus, a calculus of concurrent processes that communicate
through named, one-directional channels [FG96]. Concerns about mobility
and distribution resulted in abandoning the π-calculus channel communi-
cation and integrating the input action and receiving process within one
language primitive called a join-pattern; the join-pattern additionally allows
many inputs (from many sending processes) to be synchronised in one action.
In many important respects, the join-calculus resembles the π-calculus, e.g.
a channel name can be communicated through channels, possibly outside the
lexical scope of its definition. However, only the process that creates a chan-
nel can receive messages on the channel (so here channel names can better
mimic, e.g. Amoeba port identifiers).
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Below is an example process term of the join-calculus showing the main
syntactic categories of processes, definitions, and join-patterns.

def (x〈y〉|t〈〉¤ P ) ∧ (x〈z〉|t〈〉¤ Q) in x〈a〉|t〈〉|x〈b〉

The main process x〈a〉|t〈〉|x〈b〉 is a parallel composition of three outputs
on channels x and t. The definition (x〈y〉|t〈〉 ¤ P ) ∧ (x〈z〉|t〈〉 ¤ Q) can
receive some value (a or b in our example) on the channel named x and a
null value on channel t, and continue with either some guarded process P
or Q (∧ denotes a non-deterministic choice). The guarded process can be
executed only if there are inputs available on both channels x and t in the
corresponding join-pattern x〈 〉|t〈〉. Since we have two outputs on x but only
one output on t, the execution of P and Q is mutually exclusive. Below, we
explain the syntactic forms in more detail.

A join-pattern J is a non-empty list of message patterns, denoted
J1|J2|..|Jn, where each message pattern Ji is of the form xi〈y1, ..., ymi

〉
(1 ≤ i ≤ n). A join-pattern J is much like a guard for a definition J ¤P . Let
us consider first a simple case where J is a single message input x〈y1, ..., ym〉.
In this case, process P can only execute if there is some message matching
join-pattern J (i.e. some value v has been sent on x, and v has arity m).
The names y1, ..., ym are bound in P , and should all be distinct. The name
x is also bound in P — intuitively, it is the name of a polyadic channel that
is being defined. The novelty of the join-calculus stems from the fact that a
number of synchronous inputs can be grouped together and represented by
a join-pattern of the form J1|J2|..|Jn, where each Ji (1 ≤ i ≤ n) is a single
input. In this case, process P in definition J ¤ P will block until the whole
join-pattern can be triggered, i.e. there are values matched by all inputs
J1..Jn. If there are a number of messages matching J then accordingly a
number of instances of P may execute concurrently.

In addition to definitions D of the form J ¤ P , the language allows
definitions of the form D ∧ D′. In particular, a conjunction such as
x〈y〉 ¤ P ∧ x〈z〉 ¤ Q, where the same name x appears in more than one
definition D, is also legal, and if there is a message on x, then either P or Q
will be nondeterministically chosen for execution.

A process P is the asynchronous output (such as x〈y〉), definition of port
names def D in P , or parallel composition of processes P1|..|Pn. Definitions
obey lexical scoping rules. In particular, given a process def D in P , a chan-
nel name defined in D is recursively bound in the whole process, including
D.
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In order to express distributed programs and mobile agents, the Join
Language uses explicit locations and primitives for mobility defined in the
distributed join-calculus [FGL+96]. Intuitively, a location resides on a physi-
cal site and contains a group of processes. Locations form a tree of locations
with a meta-location as a root. Children of the root location abstract away
physical machines. To introduce new locations, the syntax of definitions is
extended with a new location constructor a[D : P ], which creates a sublo-
cation of the current location containing the unique definition D and the
unique running process P (the initialisation of location a). There are some
assumptions about the uniqueness of location and channel names, such as a
channel name defined in a definition can only appear in the join-patterns of
one location. We can atomically move locations between sites: the migration
primitive go〈b, κ〉 invoked inside location a will cause a and its subtree to
move in the tree of locations so that a will become a sublocation of b. On
arrival, the continuation κ〈〉 can trigger other computations.

The failure semantics of the join-calculus assumes the fail-stop model of
locations. There are two primitives halt and fail in the calculus to model
failures. The former primitive executed at location a will make the location
permanently inert, while fail〈a, κ〉 triggers κ〈〉 after it detects that a has
failed, i.e. that a or one of its parent locations has halted.

Discussion Join-patterns may simplify writing of distributed protocols
which have to synchronise receipt of messages from many sources. The non-
trivial synchronisation can be expressed concisely by using only one language
primitive (definition), which has a well-defined semantics. Since join-patterns
are meant to be used heavily in the Join Language programs, as the only syn-
chronisation primitive available, their compilation requires much care. The
deterministic finite-state automata modelling the synchronisation of message
receipts tend to be rather complicated (however some optimisations are pos-
sible, as described in [ML98]). In Facile and Nomadic Pict, the composite
synchronisation has to be expressed using more elementary language primi-
tives which have a more straightforward interpretation.

A definition x〈y〉¤P , which contains a join-pattern with a single message
input, resembles a process abstraction defdefdef x y = P in Pict, which denotes
a replicated input on polyadic channel x with a guarantee (forced by a type
system) that channel x is not used for input in any other place; x and y are
bound in process P (see also §3.2.4).

Formal encoding of the non-distributed choice-free join-calculus into the
π-calculus (described, e.g. in [FG96]) is rather simple, because the join-
calculus is somehow the π-calculus with restrictions on communication pat-
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terns. However, some care is needed in the formal translation to prevent the
context of the (typeless) π-calculus from reading on channels they receive
from the translation.

The reverse translation (i.e. from the π-calculus to join-calculus) is less
straightforward; it assumes that we associate with each channel x of the π-
calculus two names xo and xi, for an output and input, and an enclosing
definition that matches output and input. The sender simply sends values
on xo; the receiver defines a name for its continuation, and sends it as a
reception offer on xi (see [FG96] for details).

In a translation from the join-calculus to Nomadic π-calculus, agents
could possibly be used to build “firewalls” to prevent the context from in-
terfering with the translation, and also to model locations. Intuitively, a
process def x〈p〉|y〈z〉¤ P in x〈v〉|y〈w〉 could be encoded using a replicated
input abstraction inside an agent, and location-independent communication,
e.g. as new x , y in agent a = x?∗p→ y?z →[[P ]] in (〈a@?〉x !v | 〈a@?〉y !w).
The conjunction of definitions might be translated into a parallel compo-
sition of (replicated) input abstractions (however, the order of inputs in
each branch of a parallel composition is then important and some care
is needed to avoid deadlock). Locations could be encoded using agents
(which explicitly maintain the corresponding tree structure when migrat-
ing). Intuitively, a process def a[x〈p〉 ¤ P : Q] in R could be encoded as
new c in agent a = (new x in (x?∗p→[[P ]]|[[Q]])) in [[R]], where process Q
(after performing some initialisation of location a) must explicitly extrude
name x to R on continuation channel c. A fully abstract translation would
have to be more subtle though.

The most important difference between the join-calculus and Nomadic
π-calculus is that, in the former calculus, migrating agents can only commu-
nicate by location-independent messages. In any distributed implementation
of the join-calculus, messages must be transparently and reliably routed to
migrating agents (or “locations” in the join-calculus terminology). Thus, the
Join Language corresponds to a first approximation to High Level Nomadic
Pict, together with a suitable infrastructure encoded in Low Level Nomadic
Pict.

In order to fully implement the semantics of the join-calculus, in partic-
ular location-independent communication and migration of nested locations,
a sophisticated infrastructure is required (to deliver messages transparently,
atomically migrate the whole subtree of locations, and prevent race condi-
tions from arising between migrating locations). Such an infrastructure can
be difficult to implement efficiently, especially in wide-area networks.

The “strong asynchronous” model of the join-calculus failure semantics
assumes that we can observe location failure and no messages will be deliv-
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ered from a location which is detected as failed. A basic impossibility result
in distributed systems states that we cannot achieve distributed consensus
(such as agreeing on which sites have failed) in a system which consists of
a collection of asynchronous processes [FLP85]. Thus, complete accuracy of
failure detection by non-faulty processes in an asynchronous system where
failures may happen is impossible. In practice, however, a good approxi-
mation is provided by some degree of synchrony and failure detection, but
the algorithms required are costly. Fortunately, the semantics of the join-
calculus does not require that all locations have to maintain a consistent
view on which locations have failed (i.e. some locations can detect failure,
other locations do not). Thus, simpler algorithms can be used. For ex-
ample, the “weak asynchronous” model [FGL+96], implemented in the Join
Language as testing-equivalent of the join-calculus “strong asynchronous”
model, assumes only that location a suspected as failed cannot respond to
messages; this can be enforced by blocking output to a from all locations
which detected a as failed (or have received messages which are causally
depended on this failure detection). We argue, however, that the fail-stop
model of location failure may not be convenient in the practice of distributed
programming, especially for applications in networks where partitions can
happen (e.g. caused by disconnected operation). A location which has been
partitioned from other locations, and then suspected as failed, is supposed to
terminate silently. Therefore, after the network heals (or after reconnection),
the “failed” location may have to recreate its state under a new location name
and join the application explicitly, so that all locations will get to know the
new location name. This may not be practical in computation which involves
many locations.

To summarise, the join-calculus offers a set of interesting primitives for
synchronised patterns of communication, expressing locations, and modelling
failures. The ability to transparently and atomically move a whole collection
of locations from one place to another may also be convenient in some appli-
cations (e.g. when a server is about to shut down). Criticism of the approach
is concerned with the difficulty of providing any efficient and scalable imple-
mentations of the model semantics in wide-area networks. In contrary, the
primitives offered by Nomadic Pict have been explicitly designed for writing
applications in wide-area networks with mobility. Such applications require
primitives which have simple failure semantics, and efficient, straightforward
implementations, immediately above present day computer networks. The
language architecture should also allow the system to be split into layers, one
of which deals with infrastructure algorithms (including a layer which deals
with fault detection and failure semantics), and reason about the algorithms
implementing each layer formally.
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To sum up, Facile and the Join Language offer a lot of expressiveness
through a small set of higher-level primitives, whereas our approach is aimed
at a small number of low-level primitives that can be implemented efficiently,
together with an easy way of encoding more expressive primitives on top.
The implementations of Facile and the Join Language have evolved from
toy systems to more industrial-strength distributions (like Facile Antigua
Release [TLP+93] and JoCaml [CF99]), which support extensive libraries,
optimised runtime systems, and have been used to write various applications.
The Nomadic Pict language has currently only one implementation, which is
described as part of this thesis.



Chapter 4

Infrastructure for
Location-Independent
Communication

In chapter 1, we introduced the problem of distributed infrastructure, re-
quired for location-independent message delivery to migrating agents. In
this chapter, we describe the space of algorithms which might be useful for
building such infrastructures. These are simple, generic versions of the al-
gorithms which are used in real distributed systems with object mobility
and in mobile networks. In §4.1, we use natural language to describe the
algorithms. However, natural language descriptions are often ambiguous (as
demonstrated in the last section, §4.3, of this chapter). Therefore, in §4.2,
we present two algorithms in detail, expressed as translations in Nomadic
Pict.

4.1 Algorithms

Let us define the space of algorithms for location-independent message de-
livery to migrating agents. The algorithms should support two operations:
“migrate”, facilitating the move of an agent to a new site, and “deliver”,
locating a specified agent and delivering a message. The tasks of minimizing
the communication overhead of these two operations appear to be in conflict.

Awerbuch and Peleg [AP95] (see also Mullender and Vitányi [MV88])
stated the analogous problem of keeping track of mobile users in a distributed
network (they consider two operations: “move”, facilitating the move of a
user to a new destination, and “find”, enabling one to contact a specified
user at its current address). They first examined two extreme strategies.
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The full-information strategy requires every site in the network to main-
tain complete up-to-date information on the whereabouts of every user. This
makes the “find” operation cheap. On the other hand, “move” operations
are very expensive, since it is necessary to update information at every site.
In contrast, the no-information approach does not assume any updates while
migrating, thus the “move” operation has got a null cost. On the other hand,
the “find” operation is very expensive because it requires global searching
over the whole network. However, if a network is small and migrations fre-
quent, the strategy can be useful. In contrary, the full-information strategy is
appropriate for a near-static setting, where agents migrate relatively rarely,
but frequently communicate with each other. Between these two extreme
cases, there is space for designing intermediate strategies, that will perform
well for any or some specific communication to migration pattern, making
the costs of both “find” and “move” operations relatively cheap.

Awerbuch and Peleg [AP95] introduced the graph-theoretic concept of
regional matching, and demonstrated how finding a regional matching with
certain parameters enables efficient tracking of mobile users in a distributed
network. The communication overhead of maintaining a distributed directory
server used to keep track of mobile users is within a polylogarithmic factor of
the lower bound. This result is important in the case of mobile computing,
where the infrastructure should perform well, considering all mobile users
and their potential communication to migration patterns. These patterns
can vary, depending on people.

The choice of infrastructure algorithm(s) for a given application with mo-
bile agents will depend strongly on many characteristics of the application
and target network, especially on the expected statistical properties of com-
munication and migration. In many mobile agent applications, however, we
know the communication to migration pattern of mobile agents precisely.
This enables the design of algorithms which are optimal for these special
cases and simpler than the directory server mentioned above. In contrast,
the design of an adaptive customized infrastructure for mobile computing de-
pends on probabilistic assumptions about the estimated behaviour of mobile
users. The infrastructure should therefore support all migration and commu-
nication scenarios, and optimise those scenarios which are likely to happen
more often.

The task of deciding on a mobile agent infrastructure may involve many
criteria. In our examination, we expand the space for interesting algorithms
to many dimensions, considering not only the communication cost but also
other factors, such as scalability, interoperability, and fault-tolerance. In
wide area applications, sophisticated distributed algorithms will be required,
allowing for dynamic system reconfigurations such as adding new sites to
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the system, migrating parts of the distributed computation before shutting
down some machines, tracing locations of different kinds of agents, and imple-
menting tolerance of partial failures. The space of feasible algorithms and the
trade-offs involved require detailed investigation. We are not giving a quan-
titative theoretical or empirical view of the algorithms, however, because it
would be too hard to take under consideration all these factors. In chapter
6, we take an example application and define assumptions about the target
network and behaviour of all agents involved. Then, we design an infrastruc-
ture which behaves well for our application (although other infrastructures
would also be plausible). Any change of assumptions (e.g. about failures in
the system) will require the infrastructure to be extended accordingly.

Different infrastructures can be characterised by a number of properties
such as scalability, and tolerance of failures. An infrastructure is scalable if
adding new sites or agents, or expanding the system to wide-area networks
does not severely degrade overall system performance (in these terms, we
consider two different kinds of scalability which explore either the numerical
or geographical dimensions). Fault-tolerance is costly; the level of fault-
tolerance and methods which can be used will depend on the target network
and application demands. Below, we describe the algorithms and give some
hints about the infrastructure scalability and fault-tolerance, where possible.

4.1.1 Central Server

Central Forwarding Server The server records the current site of every
agent. Before migration an agent A informs the server and waits for
ACK (containing the number of messages sent from the server to A).
It then waits for all the messages due to arrive. After migration it tells
the server it has finished moving.

If B wants to send a message to A, B sends the message to the server,
which forwards it. During migrations (i.e. after sending the ACK) the
server suspends forwarding.

Central Query Server The server records the current site of every agent.
Migration support is the same as in the case of a Central Forwarding
Server (except that ACK from the server to A would have to contain
globally unique IDs of all messages which were included in the queries
about A’s location since A’s last migration). The difference is in how
locations communicate. The application messages will be delivered
directly to destinations without any forwarding.
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If B wants to send a message to A, B sends a query (containing the
message ID) to the server asking for the current site of A, gets the
current site s of A and sends the message to s. During A’s migration
(i.e. after sending the ACK to A) the server postpones replying to all
queries about A’s location until it gets confirmation from A that A has
migrated. Before sending the ACK, the query server can send a current
record about A’s location (say s). The name s can be used again for
direct communication with A. If a message arrives at a site that does
not have the recipient then a message is returned saying ‘you have to
ask the name server again’.

Home Server Each site s has a server (one of the above) that records the
current site of some agents — usually the agents which were created
on s. Agent names contain an address of the server which maintains
their locations.

On every migration agent A synchronises with the server whose name
is part of A’s name. If B wants to send a message to A, B resolves A’s
name and contacts A’s server. Other details are as above.

Discussion Central Forwarding and Query Servers do not scale. If the
number of agents is growing and communication and migration are frequent,
the server can be a bottleneck. Home servers can improve the situation. The
infrastructure can work fine for small-to-medium systems, where the number
of agents is small.

If migrations are rare and also in the case of stream communication or
large messages, the Query Server seems the better choice.

The algorithms do not support locality of agent migration and communi-
cation, i.e. migration and communication involve the cost of contacting the
server which can be far away. If agents are close to the server, the cost of
migration, search, and update is relatively low.

The server is a single-point of failure. In this and other algorithms we can
use some of the classical techniques of fault-tolerance, e.g. state checkpoint-
ing, message logging and recovery [JZ88]. We can also replicate the server
on different sites to enhance system availability and fault-tolerance. Group
communication can provide adequate multicast primitives for implementing
either primary-backup or active replication [GS96].

Mechanisms similar to Home Servers have been used in many systems
which support process migration, e.g. in Sprite [DO91]. Caching has been
used, e.g. in LOCUS [PW85], and V [Che88], allowing operations to be sent
directly to a remote process without passing through another site. If the
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cached address is wrong a home site of the process is contacted (LOCUS) or
multicasting is performed (V).

In §4.2.1, we describe the Central Server algorithm in detail, as a trans-
lation in Nomadic Pict. In chapter 6, we begin with a centralised algorithm
with caching, which evolves to match application demands of scalability (ex-
ecution on wide-area networks) and support for disconnected operation (on
laptop computers). In the translations, we shall use explicit acknowledge-
ments instead of piggybacking. For example, the server simply does not
acknowledge A’s migration until it has received confirmation that all mes-
sages to A have been delivered. We obtain an algorithm which is a bit less
asynchronous and optimised, but easier to understand.

4.1.2 Forwarding Pointers

Algorithm There is a forwarding daemon on each site. The daemon on site
s maintains a current guess about the site of agents which migrated from s.
Every agent knows the initial home site of every agent (it is part of an agent’s
name). If A wants to migrate from s1 to s2 it leaves a forwarding pointer
at the local daemon. Communications follow all the forwarding pointers.
If there is no pointer to agent A, A’s home site is contacted. Forwarding
pointers are left around forever.

Discussion There is no synchronisation between migration and commu-
nication as there was in centralised algorithms. A message may follow an
agent which frequently migrates, leading to a race condition. A chain of
forwarding pointers is sometimes used in combination with other infrastruc-
tures, e.g. hierarchical directory [AP95], where it is ensured (using locking in
the directory) that the search will eventually be able to reach the migrating
agent, even if the agent repeatedly moves.

The Forwarding Pointers algorithm is not practical for a large number of
migrations to distinct sites (a chain of pointers is growing, increasing the cost
of search). Some “compaction” methods can be used to collapse the chain,
e.g. movement-based and search-based. In the former case, an agent would
send backward a location update after performing a number of migrations
(i.e. “move” operations); in the latter case, after receiving a number of
messages (i.e. after a fixed number of “find” operations occurred).

Some heuristics can be further used such as search-update. A plausible
algorithm can be as follows. On each site there is a daemon which maintains
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forwarding addresses for all agents which ever visited this site. A forwarding
address is a tuple (timestamp, site) in which the site is the last known loca-
tion of the agent and timestamp specifies the age of the forwarding address.
Every message sent from agent B to A along the chain of forwarding point-
ers contains the latest available forwarding address of A. The receiving site
may then update its forwarding address for the referenced agent, if required.
Given conflicting guesses for the same agent, it is simple to determine which
one is most recent using timestamps. When the message is eventually deliv-
ered to the current site of the agent, the daemon on this site will send an
ACK to the daemon on the sender site, containing the current forwarding
address. A similar algorithm has been used in Emerald [JLHB88], where the
new forwarding address is piggybacked onto the reply message in the object
invocation. Fowler [Fow85] has shown that it is sufficient to maintain the
timestamp as a counter, incremented every time the object moves.

A single site fail-stop in a chain of forwarding pointers breaks the chain. A
solution is to replicate the location information in the chain on k consecutive
sites, so that the algorithm is tolerant of a failure of up to k − 1 adjoint
sites. Stale pointers should be eventually removed, either after waiting a
sufficiently long time, or purged as a result of a distributed garbage collection.
Distributed garbage collection would require detecting global termination of
all agents that might ever use the pointer, therefore the technique may not
always be practically useful. Alternatively, some weaker assumptions could
be made and the agents decide arbitrarily about termination, purging the
pointers beforehand.

An analytical comparison of many pointer-based, centralised and dis-
tributed location management schemas for mobile computing can be found
in [Kri96].

4.1.3 Broadcast

Data Broadcast Sites know about the agents that are currently present.
An agent notifies a site on leaving and a forwarding pointer is left over
until agent migration is finished.

If agent B wants to send a message to A, B sends the message to all
sites in a network (domain). A site s discards or forwards the message
if A is not at s (we omit details).

Query Broadcast Sites know about agents that are currently present. An
agent notifies a site on leaving and a forwarding pointer is left over
until agent migration is finished.
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If agent B wants to send a message to A, B sends a query to all sites
in a network (domain) asking for the current location of A. If site
s receives the query and A is present at site s, then s suspends any
migration of A until A receives the message from B. A site s discards
or forwards the query if A is not at s.

Notification Broadcast Every site in a network (domain) maintains a cur-
rent guess about agent locations. After migration A distributes in the
network (domain) information about its new location.

If site s receives a message whose recipient is not at s (because it has
already migrated or the initial guess was wrong), it waits for informa-
tion about the agent’s new location. Then s forwards the message.
Location information is time-stamped. Messages with stale location
information are discarded.

Discussion Broadcasts are not scalable to a large network (broadcasting
in a large region is impractical), however some algorithms may be scalable
to many agents on a small network.

The cost of communication in Query and Data Broadcasts is high (pack-
ets are broadcast in the network) but the cost of migration is low. Query
Broadcast saves bandwidth if messages are large or in the case of stream
communication.

Notification Broadcast has a high cost of migration (the location message
is broadcast to all sites) but the communication cost is low and similar to
forwarding pointers with pointer chain compaction.

In Data and Notification Broadcasts, migration can be fast because there
is no synchronisation involved (in Query Broadcast migration is synchro-
nised with communication); the drawback is a potential for race conditions
if migrations are frequent. Site failures do not disturb the algorithms.

Although we usually assume that the number of sites is too large to
broadcast anything, we may allow occasional broadcasts within, e.g. a local
Internet domain, or local Ethernet. Broadcasts can be accomplished effi-
ciently in bus-based multiprocessor systems. They are also used in radio
networks. A realistic variant is to broadcast within a group of sites which
belong to the itinerary of mobile agents known in advance.

Broadcast has also been used in Emerald [JLHB88] to find an object, if a
node specified by a forwarding pointer is unreachable or has stale data. To
reduce message traffic, only a site which has the specified object responds to
the broadcast. If the searching daemon receives no response within a time
limit, it sends a second broadcast requesting a positive or negative reply from
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all other sites. All sites not responding within a short time are sent a reliable,
point-to-point message with the location request.

The Jini lookup and connection infrastructure [AWO+99] uses multicast
in the discovery protocol. A client wishing to find a Lookup Service sends
out a known packet via multicast. Any Lookup Service receiving this packet
will reply (to an address contained in the packet) with an implementation of
the interface to the Lookup Service itself.

4.1.4 Group Communication

Algorithm The agents forming a group maintain a current record about
the site of every agent in the group. Agent names form a totally ordered set.
We assume communication which takes place within a group only.

Before migration an agent A informs the other agents in the group about
its intention and waits for ACKs (containing the number of messages sent
to A). It then waits for all the messages due to arrive and migrates. After
migration it tells the agents it has finished moving. Multicast messages to
each agent within a group are delivered in the order sent (using a first-in-
first-out multicast).

If B wants to send a message to A, B sends the message to site s which
is A’s current location. During A’s migrations (i.e. after sending the ACK
to A) B suspends sending any messages to A.

If two (or more) agents want to migrate at the same time there is a conflict
which can be resolved as follows. Suppose A and C want to migrate. If B
receives migration requests from A and C, it sends ACKs to both of them
and suspends sending any messages to agents A and C (in particular any
migration requests). If A receives a migration request from C after it has
sent its own migration request it can either grant ACK to C (and C can
migrate) or postpone the ACK until it has finished moving to a new site.
The choice is made possible by ordering agent names.

Discussion The advantage of this algorithm is that sites can be stateless
(the location data are part of agent state).

However, in a system with failures the algorithm is more complicated than
above. Agents are organised into groups, corresponding to multicast delivery
lists, that cooperate to perform a reliable multicast (i.e. if one agent on the
delivery list receives a reliable multicast message, every agent on the delivery
list receives the message). A precise meaning to the notion of delivery list can
be given by using virtual synchrony defined for non-movable groups [BJ87].
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The current list of agents to receive a multicast is called the group view. The
group view is consistent among all agents in the group. Processes are added
to and deleted from the group via view changes. If agent A is removed from
the view, the agents remaining in the view would assume that A has failed.
Virtual synchrony guarantees that no messages from A will be delivered in
the future (if A has not failed it must rejoin the group explicitly, using a
membership protocol).

A problem is how agents can dynamically join the group, which can
change sites. One solution is to leave forwarding pointers, such that agents
which want to join (or rejoin) the group can follow them and “catch up” with
at least one group member. Another solution is to have one agent within a
group (a coordinator or manager) which never migrates. The algorithm for
inter-group communication could then use the pointers or coordination agent
for delivering messages that cross group boundaries.

The algorithm is suitable for frequent messages (or stream communica-
tion) between mobile agents and when migrations are rare. Agent failures
and network partitions will not disturb agents which are alive; however, there
are detailed subtleties which depend on the semantics of the algorithm im-
plementing virtual synchrony. The group service algorithms for non-movable
processes which have been originally proposed, e.g. in ISIS, are costly in
terms of control messages and hard to use in networks larger than a LAN.
However, they are also examples of scalable group membership and commu-
nication services implementing the virtual synchrony semantics, designed for
wide-area networks [KSMD99].

4.1.5 Hierarchical Directory

Algorithm A tree-like hierarchy of servers forms a location directory (sim-
ilar to DNS). Each server in the directory maintains a current guess about
the site of some agents. Sites belong to regions, each region corresponds to
a sub-tree in the directory (in the extreme cases the sub-tree is simply a
leaf-server for the smallest region, or the whole tree for the entire network).
The algorithm maintains an invariant that for each agent there is a unique
path of forwarding pointers which forms a single branch in the directory; the
branch starts from the root and finishes at the server which knows the actual
site of the agent (we call this server the “nearest”).

Before migration an agent A informs the “nearest” server X1 and waits
for ACK. After migration it registers at a new “nearest” server X2, tells X1

it has finished moving and waits for ACK. When it gets the ACK there is
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already a new path installed in the tree (this may require installing new and
purging old pointers within the smallest sub-tree which contains X1 and X2).

Messages to agents are forwarded along the tree branches. If B wants to
send a message to A, B sends the message to the B’s “nearest” server, which
forwards it in the directory. If there is no pointer the server will send the
message to its parent.

Discussion The algorithm above has a translation similar to the Forward-
ing Pointers translation (see 4.2.2), in which daemons would be replaced by
directory servers. Certain optimisations are plausible, e.g. if an agent mi-
grates very often within some sub-tree, only the root of the sub-tree would
contain the current location of the agent (the cost of a “move” operation
would be cheaper).

Different variants of the directory infrastructure can be proposed. A hier-
archical directory was first proposed by Awerbuch and Peleg [AP89, AP95],
for online tracking of mobile users. A proposition of Globe [vSHT99] uses
a hierarchical location service for worldwide distributed objects [vSHBT98].
In [Mor99], Moreau describes an algorithm for routing messages to migrating
agents which is also based on distributed directory service.

The Hierarchical Directory scales better than Forwarding Pointers and
Central Servers. Also, some kinds of fault can be handled more easily (see
[AP95], and there is also a lightweight crash recovery in the Globe system
[BvST99]).

4.1.6 Arrow Directory

Some algorithms can be devised for a particular migration pattern. Below
we describe the Arrow Distributed Directory protocol proposed by Demmer
and Herlihy [DH98] for distributed shared memory systems. The protocol
assumes that the whole object is always sent to the object requester.

Algorithm The arrow directory is given by a minimum spanning tree for
a network, where the network is modelled as a connected graph. Each ver-
tex models a node (site), and each edge a reliable communication link. A
node can send messages directly to its neighbours, and indirectly to non-
neighbours along a path. The directory tree is initialised so that following
arrows (pointers) from any node leads to the node where the object resides.

When a node wants to acquire exclusive access to the object, it sends a
message find which is forwarded via arrows and sets its own arrow to itself.
When the other node receives the message, it immediately “flips” the arrow
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to point back to the immediate neighbour who forwarded the message. If the
node does not hold the object, it forwards the message. Otherwise, it buffers
the message find until it is ready to release the object to the object requester.
The node releases the object by sending it directly to the requester, without
further interaction with the directory.

If two find messages are issued at about the same time, one will eventually
cross the other’s path and be “diverted” away from the object, following
arrows towards the node (say v) where the other find message was issued.
Then, the message will be blocked at v until the object reaches v, is accessed
and eventually released.

Discussion The directory imposes an optimal distributed queue of object
requests, with no point of bottleneck.

The arrow directory protocol was motivated by emerging active network
technology [LWG98], in which programmable network switches are used to
implement customized protocols, such as application-specific packet routing.

Naimi, Trehel, and Arnold [NTA96] describe a distributed mutual exclu-
sion algorithm which is also based on a dynamically changing distributed
directed graph. In the algorithm, when a node receives a message, it flips its
edge to point to the node from which the request originated, instead of to
the immediate source of the message as above.

4.2 Example Translations in Nomadic Pict

Due to limited space, we present only two translations in Nomadic Pict of
the infrastructure algorithms described above. They will be the Central For-
warding Server and Forwarding Pointers infrastructure. Assumptions about
the system are described in §2.2. The translations are taken almost verbatim
from a program which can be executed by the Nomadic Pict system.

The first is one of the simplest algorithms possible, highly sequential and
with a centralized server daemon; the second is one step more sophisticated,
with multiple daemons maintaining forwarding-pointer chains. The algo-
rithms have been chosen to illustrate the model, and the use of the language
— algorithms that are widely applicable to actual mobile agent systems would
have to be yet more delicate, both for efficiency and for robustness under par-
tial failure.

Even the simplest of our algorithms, however, requires delicate synchro-
nization that is easy to get wrong; expressing them as translations between
well-defined low- and high-level languages provides a solid basis for discussion
and algorithm design, subject to stated assumptions about the behaviour of
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externally-provided network services. In the end of this section we discuss
alternative descriptions.

A formal correctness proof of these two algorithms within our Nomadic
π-calculus framework will appear in the complementary work by Unyapoth
[Uny], who extended the Nomadic π-calculus with a labelled transition sys-
tem and suitable techniques based on bisimulation.

4.2.1 A Central-Server Infrastructure Translation

The Central-Forwarding-Server algorithm presented in this section in-
volves a central daemon that keeps track of the current sites of all agents and
forwards any location-independent messages to them. The daemon is itself
implemented as an agent which never migrates; the translation of a program
then consists roughly of the daemon agent in parallel with a compositional
translation of the program. For simplicity we consider only programs that
are initiated as single agents, rather than many agents initiated separately on
different sites. (Programs may, of course, begin by creating other agents that
immediately migrate). The precise definition is given in Figures 4.1 and 4.2.
Figure 4.2 defines a top-level translation [[]]Top . For each term P of the high-
level language, considered as the body of an agent named a and initiated at
site s, the result [[P]]Top

[a s] of the translation is a term of the low-level language.

The definition of [[]]Top involves the body Daemon of the daemon agent (given
in Figure 4.2) and an auxiliary compositional translation [[P]][a D SD], defined
phrase-by-phrase, of P considered as part of the body of agent a, where the
daemon agent D is assumed to be at site SD. The compositional translation
is given in Figure 4.1.

Let us look first at the daemon. It contains three replicated inputs, on the
register, migrating, and message channels, for receiving messages from
the encodings of agents. The daemon is essentially single-threaded — the
channel lock is used to enforce mutual exclusion between the bodies of the
replicated inputs, and the code preserves the invariant that at any time there
is at most one output on lock. The lock channel is also used to maintain
the site map — a finite map from agent names to site names, recording the
current site of every agent. The body of each replicated input begins with
an input on lock, thereby acquiring both the lock and the site map.

Turning to the compositional translation [[ ]][a D SD], only three clauses are
not trivial — for the location-independent output, agent creation, and agent
migration primitives. We discuss each, together with their interactions with
the daemon, in turn.
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[[ c@b!v ]][a D SD]
def
= <D@SD>message![b c v]

[[agentagentagent b=P ininin Q]][a D SD]
def
= currentloc?s=

(agentagentagent b =
( deliver?*[#X c:^X v:X] = ( <D@SD>dack![] | c!v )
| <D@SD>register![b s]
| ack?_= iflocaliflocaliflocal <a>ack![] thenthenthen

( currentloc!s
| [[P]][b D SD] )

elseelseelse ())
ininin

ack?_= ( currentloc!s
| [[Q]][a D SD] ))

[[migratemigratemigrate tototo s P]][a D SD]
def
= currentloc?_=

( <D@SD>migrating!a
| ack?_ = ( migratemigratemigrate tototo s

( <D@SD>migrated!s
| ack?_ = ( currentloc!s

| [[P]][a D SD])
)))

Figure 4.1: A Central-Server Translation: The Compositional Translation
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Location-independent output A location-independent output in an
agent a is implemented simply by using a location-dependent output to send
a request to the daemon D, at its site SD, on its channel message:

[[ c@b!v ]][a D SD]
def
= <D@SD>message![b c v]

The corresponding replicated input on channel message in the daemon

| message?*[#X a:Agent c:^X v:X]= lock?m=
switchswitchswitch (map.lookup m a) ofofof
{Found> s:Site} ->
( <a@s>deliver![c v]
| dack?_ = lock!m)

{NotFound> _} -> ()

first acquires the lock and current site map m, then looks up the target agent’s
site in the map and sends a location-dependent message to the deliver

channel of that agent. It then waits to receive an acknowledgement (on the
dack channel) from the agent before relinquishing the lock. This prevents the
agent migrating before the deliver message arrives. Note that the NotFound
branch of the lookup will never be taken, as the algorithm ensures that
all agents register before messages can be sent to them. The inter-agent
communications involved in delivery of a single location-independent output
are illustrated below.

a D b

XXXXXXXXXz

message![b c v]

XXXXXXXXXz

deliver![c v]

���������9
dack!

Creation In order for the daemon’s site map to be kept up to date, agents
must register with the daemon, telling it their site, both when they are
created and after they migrate. Each agent records its current site internally
as an output on its currentloc channel. This channel is also used as a lock,
to enforce mutual exclusion between the encodings of all agent creation and
migration commands within the body of the agent.
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The encoding of an agent creation in an agent a

[[agentagentagent b=P ininin Q]][a D SD]
def
=

currentloc?s=
(agentagentagent b =

( deliver?*[#X c:^X v:X] = ( <D@SD>dack![] | c!v )
| <D@SD>register![b s]
| ack?_= iflocaliflocaliflocal <a>ack![] thenthenthen

( currentloc!s
| [[P]][b D SD] )

elseelseelse ())
ininin

ack?_= ( currentloc!s
| [[Q]][a D SD] ))

first acquires the lock and current site s of a, and then creates the new agent
b. The body of b sends a register message to the daemon and waits for
an acknowledgement. It then sends an acknowledgement to a, initializes the
lock for b and allows the encoding of the body P of b to proceed. Meanwhile,
in a the lock is kept until the acknowledgement from b is received. The body
of b is put in parallel with the replicated input

| deliver?*[#X c:^X v:X] = ( <D@SD>dack![] | c!v )

which will receive forwarded messages for channels in b from the daemon,
send an acknowledgement back, and deliver the value locally to the appro-
priate channel.

The replicated input on register in the daemon

| register?*[a s]= lock?m=
( lock!(map.add m a s)
| <a@s>ack![])

first acquires the lock and current site map, replaces the site map with an
updated map, thereby relinquishing the lock, and sends an acknowledgement
to the registering agent. The inter-agent communications involved in a single
agent creation are illustrated below.

a b D

agentagentagent b = ...
sXXXXXXXXXz

register![b s]

���������9
ack!

¾ack!
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Migration The encoding of a migratemigratemigrate in agent a

[[migratemigratemigrate tototo s P]][a D SD]
def
= currentloc?_=

( <D@SD>migrating!a
| ack?_ = ( migratemigratemigrate tototo s

( <D@SD>migrated!s
| ack?_ = ( currentloc!s

| [[P]][a D SD])
)))

first acquires the lock for a (discarding the current site data). It then sends
a migrating message to the daemon, waits for an ack, migrates to its new
site s, sends a migrated message to the daemon, waits again for an ack, and
releases the lock (with the new site s). The replicated input on migrating
in the daemon

| migrating?*a= lock?m= switchswitchswitch (map.lookup m a) ofofof
({Found> s:Site} ->

( <a@s>ack![]
| migrated?s’ =

( lock!(map.add m a s’)
| <a@s’>ack![]))

{NotFound> _} -> ())

first acquires the lock and current site map, looks up the current site of a1 and
sends an ack to a at that site. It then waits to receive the new site, replaces
the site map with an updated map, thereby relinquishing the lock, and sends
an acknowledgement to a at its new site. The inter-agent communications
involved in a single migration are shown below.

a D

XXXXXXXXXz

migrating!a

���������9
ack!

migratemigratemigrate tototo s
XXXXXXXXXz

migrated!s

���������9
ack!

The top level Putting the daemon and the compositional encoding to-
gether, the top level translation, defined in Figure 4.2, creates the daemon

1Alternatively, the current site of a could be sent in the migrating message.
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newnewnew register : ^[Agent Site]
newnewnew migrating : ^Agent
newnewnew migrated : ^Site
newnewnew message : ^[#X Agent ^X X]

newnewnew dack : ^[]
newnewnew deliver : ^[#X ^X X]
newnewnew ack : ^[]
newnewnew currentloc : ^Site

[[P]]Top
[a s]

def
=

(agentagentagent D = Daemon ininin
valvalval SD = s
( deliver?*[#X c:^X v:X] = ( <D@SD>dack![] | c!v )
| <D@SD>register![a s]
| ack?_ = (currentloc!s | [[P]][a D SD])))

Daemon
def
=

(newnewnew lock : ^(Map Agent Site)
(lock!(map.make ==)
| register?*[a s]= lock?m=

( lock!(map.add m a s)
| <a@s>ack![])

| migrating?*a= lock?m=
switchswitchswitch (map.lookup m a) ofofof (
{Found> s:Site} ->

( <a@s>ack![]
| migrated?s’ =

( lock!(map.add m a s’)
| <a@s’>ack![]))

{NotFound> _} -> ())
| message?*[#X a:Agent c:^X v:X]= lock?m=

switchswitchswitch (map.lookup m a) ofofof (
{Found> s:Site} ->

( <a@s>deliver![c v]
| dack?_ = lock!m)

{NotFound> _} -> ())
))

where the newnewnew-bound names, SD, and D, do not occur in P.

Figure 4.2: A Central-Server Translation: The Top Level and the Daemon
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agent, installs the replicated input on deliver for a, registers agent a to
be at site s, initializes the lock for a, and starts the encoding of the body
[[P]][a D SD].

4.2.2 A Forwarding-Pointers Infrastructure Transla-
tion

In this section we give a more distributed Forwarding-Pointers algorithm, in
which daemons on each site maintain chains of forwarding pointers for agents
that have migrated. It removes the single bottleneck of the centralised-server
solution in the preceding section; it is thus a step closer to algorithms that
may be of wide practical use. The algorithm is more delicate; expressing it
as a translation provides a more rigorous test of the framework.

As before, the translation consists of a compositional encoding of the
bodies of agents, given in Figure 4.3, daemons, defined in Figure 4.4, and a
top-level translation putting them together, given in Figure 4.5. The top-
level translation of a program, again initially a single agent, creates a daemon
on each site mentioned by the agent. These will each maintain a collection
of forwarding pointers for all agents that have migrated away from their site.
To keep the pointers current, agents synchronize with their local daemons
on creation and migration. Location independent communications are im-
plemented via the daemons, using the forwarding pointers where possible. If
a daemon has no pointer for the destination agent of a message then it will
forward the message to the daemon on the site where the destination agent
was created; to make this possible an agent name is encoded by a triple of an
agent name and the site and daemon of its creation. Similarly, a site name is
encoded by a pair of a site name and the daemon name for that site. There
is a translation of types with clauses

[[Agent]]
def
= [Agent Site Agent]

[[Site]]
def
= [Site Agent]

We generally use lower case letters for site and agent names occurring in the
source program and upper case letters for sites and agents introduced by its
encoding.

Looking first at the compositional encoding, in Figure 4.3, each agent uses
a currentloc channel as a lock, as before. It is now also used to store both
the site where the agent is and the name of the daemon on that site. The
three interesting clauses of the encoding, for location-independent output,
creation, and migration, each begin with an input on currentloc. They are
broadly similar to those of the simple Central-Server translation.
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[[ c@b!v ]]A
def
= currentloc?[S DS]=

iflocaliflocaliflocal <DS>message![b c v] thenthenthen
currentloc![S DS]

elseelseelse currentloc![S DS]

[[ agentagentagent b=P ininin Q ]]A
def
= currentloc?[S DS]=

agentagentagent B =
(valvalval b = [B S DS]
( currentloc![S DS]
| <DS>register!B
| ack?_= iflocaliflocaliflocal <A>ack![] thenthenthen [[P]]B elseelseelse () ))

ininin
valvalval b = [B S DS]
ack?_= (currentloc![S DS]

| [[Q]]A)

[[ migratemigratemigrate tototo u P ]]A
def
= currentloc?[S DS]=

(valvalval [U DU] = u
ififif (&& (== #Agent DS DU) (== #Site S U)) thenthenthen

( currentloc![U DU]
| [[ P ]] A )

elseelseelse
( <DS>migrating!A
| ack?_=

(migratemigratemigrate to U
( <DU>register!A
| ack?_=

( <DS@S>migrated![A [U DU]]
| ack?_=

( currentloc![U DU]
| [[ P ]] A ))))))

[[ iflocaliflocaliflocal <b>c!v thenthenthen P elseelseelse Q ]]A
def
=

(val [B _ _] = b
iflocaliflocaliflocal <B>c!v thenthenthen [[P]]A elseelseelse [[Q]]A)

Figure 4.3: A Forwarding-Pointers Translation: The Compositional Transla-
tion
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Daemon[S DS]
def
=

(newnewnew lock : ^(Map Agent ^[Site Agent])
(lock!(map.make ==)
| register?*B:Agent=

lock?m= switchswitchswitch (map.lookup m B) ofofof (
{Found> Bstate:^[Site Agent]} ->

Bstate?_=
( Bstate![S DS]
| lock!m
| <B>ack![])

{NotFound> _} ->
(newnewnew Bstate : ^[Site Agent]
( Bstate![S DS]
| lock!(map.add m B Bstate)
| <B>ack![])))

| migrating?*B:Agent=
lock?m= switchswitchswitch (map.lookup m B) ofofof (
{Found> Bstate:^[Site Agent]} ->

Bstate?_=
( lock!m
| <B>ack![])

{NotFound> _} -> ())
| migrated?*[B:Agent [U:Site DU:Agent]]=

lock?m= switchswitchswitch (map.lookup m B) ofofof (
{Found> Bstate:^[Site Agent]} ->

( lock!m
| Bstate![U DU]
| <B@U>ack![])

{NotFound> _} -> ())
| message?*[#X [B:Agent U:Site DU:Agent] c:^X v:X]=

lock?m= switchswitchswitch (map.lookup m B) ofofof (
{Found> Bstate:^[Site Agent]} ->

( lock!m
| Bstate?[R DR]=

iflocaliflocaliflocal <B>c!v thenthenthen
Bstate![R DR]

elseelseelse (<DR@R>message![#X [B U DU] c v]
| Bstate![R DR]))

{NotFound> _} ->
( lock!m
| <DU@U>message![#X [B U DU] c v]))))

Figure 4.4: A Forwarding-Pointers Translation: The Daemon
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Turning to the body of a daemon, defined in Figure 4.4, it is parametric
in a pair s of the name of the site S where it is and the daemon’s own name
DS. It has four replicated inputs, on its register, migrating, migrated,
and message channels. Some partial mutual exclusion between the bodies
of these inputs is enforced by using the lock channel. The data stored on
the lock channel now maps the name of each agent that has ever been on
this site to a lock channel (e.g. Bstate) for that agent. These agent locks
prevent the daemon from attempting to forward messages to agents that
may be migrating. Each stores the site and daemon (of that site) where the
agent was last seen by this daemon — i.e. either this site/daemon, or the
site/daemon to which it migrated from here. The use of agent locks makes
this algorithm rather more concurrent than the previous one — rather than
simply sequentialising the entire daemon, it allows daemons to process inputs
while agents are migrating, so many agents can be migrating away from the
same site, concurrently with each other and with delivery of messages to
other agents at the site.

Location-independent output A location-independent output c@b!v in
agent A is implemented by requesting the local daemon to deliver it. (Note
that A cannot migrate away before the request is sent to the daemon and a
lock on currentloc is released.)

The message replicated input of the daemon gets the map m from agent
names to agent lock channels. If the destination agent B is not found, the
message is forwarded to the daemon DU on the site U where B was created.
Otherwise, if B is found, the agent lock Bstate is grabbed, obtaining the
forwarding pointer [R DR] for B. Using iflocaliflocaliflocal, the message is then either
delivered to B, if it is here, or to the daemon DR, otherwise. Note that the
lock is released before the agent lock is requested, so the daemon can process
other inputs even if B is currently migrating.

A single location-independent output, forwarded once between daemons,
involves inter-agent messages as below. (Communications that are guaran-
teed to be between agents on the same site are drawn with thin arrows.)

A DS DS’ B

-message![b c v]
XXXXXXXXXz

message![b c v]

-c!v
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Creation The compositional encoding for agentagentagent is similar to that of the
encoding in the previous section. It differs in two main ways. Firstly the
source language name b of the new agent must be replaced by the actual
agent name B tupled with the names S of this site and DS of the daemon
on this site. Secondly, the internal forwarder, receiving on deliver, is no
longer required: the final delivery of messages from daemons to agents is
now always local to a site, and so can be done using iflocaliflocaliflocal. An explicit
acknowledgement (on dack in the simple translation) is likewise unnecessary.

A single creation involves inter-agent messages as below.

A B DS

agentagentagent B = ...
sXXXXXXXXXz

register!B

»»»»»»»»»9
ack!

¾ack!

Migration Degenerate migrations, of an agent to the site it is currently
on, must now be identified and treated specially; otherwise the Daemon can
deadlock. An agent A executing a non-degenerate migration now synchronises
with the daemon DS on its starting site S, then migrates, registers with the
daemon DU on its destination site U, then synchronises again with DS. In
between the first and last synchronisations the agent lock for A in daemon
DS is held, preventing DS from attempting to deliver messages to A.

A single migration involves inter-agent messages as below.

DS A DU

»»»»»»»»»9

migrating!A

XXXXXXXXXz

ack!

migratemigratemigrate tototo U
XXXXXXXXXz

register!A

»»»»»»»»»9
ack!

���������9

migrated![A [U DU]]

XXXXXXXXXz

ack!
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newnewnew register : ^Agent
newnewnew migrating : ^Agent
newnewnew migrated : ^[Agent [Site Agent]]
newnewnew message : ^[#X [Agent Site Agent] ^X X]
newnewnew ack : ^[]
newnewnew currentloc : ^[Site Agent]

[[P]]Top
[a s1 ... sn]

def
=

(newnewnew daemondaemon : ^Site
newnewnew nd : ^[Site Agent]
agentagentagent A =

(daemondaemon?*S:Site=
(agentagentagent D =
(migratemigratemigrate tototo S

( Daemon[S D]

| <A@s1>nd![S D]))
ininin ())

| daemondaemon!s1 | nd?s1=
...
(daemondaemon!sn | nd?sn=

(valvalval [S1 DS1] = s1
valvalval a = [A S1 DS1]
(currentloc!s1
| <DS1>register!A
| ack?_= [[ P ]]A

))))
ininin ())

where P is initiated on site s1, the free site names in P are s1 .. sn, and
the newnewnew-bound names, S1, DS1, and A do not occur in P.

Figure 4.5: A Forwarding-Pointers Translation: The Top Level
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Local communication The translation of iflocaliflocaliflocal must now extract the
real agent name B from the triple b, but is otherwise trivial.

The top level The top-level translation of a program P, given in Figure 4.5,
dynamically creates a daemon on each site mentioned in P. Each site name si
is re-bound to the pair [si DSi] of the site name together with the respective
daemon name. A top-level agent A is created and initialised; the agent name
a is re-bound to the triple [A S1 DS1] of the low-level agent name A together
with the initial site and daemon names.

4.3 Alternative Descriptions

Distributed infrastructure algorithms can usefully be expressed as transla-
tions between the two-levels of the Nomadic Pict language. Almost the en-
tire encoding of the Forwarding-Pointers protocol can be given in 2.5 pages,
rather concise for a non-trivial executable distributed infrastructure. The
code fragments are taken almost verbatim from the executable source, with
some minor sugar. In our experience with designing such algorithms we have
found that the language provides a good level of abstraction at which po-
tential problems (such as deadlocks and lost messages) can be seen rather
clearly. The uniform treatment of concurrency and asynchronous messages
both within agents and between machines is a significant gain.

Below, we mention about other possible ways of describing distributed al-
gorithms — we briefly consider diagrammatic, natural language, pseudocode,
and automata based approaches.

The diagrams used in §4.2.1, 4.2.2 convey basic information about the
algorithms — the messages involved in isolated transactions — but they are
far from complete descriptions and can be misleading. The correctness of
the algorithms depends on details of synchronisation and locking that are
precisely defined by the translation but are hard to express visually. For
example, a message flow diagram of the agentagentagent b=P ininin Q encoding would
have to be parametrised on actual sites and conditional upon behaviour of
the body P of b, thus leading to complicated multi-diagrams.

Natural language descriptions, as given in §4.1, are often ambiguous. For
example, in the case of the Forwarding-Pointers translation (see Figure 4.3),
if we replace in the compositional translation of agentagentagent a line

| ack?_= iflocaliflocaliflocal <A>ack![] thenthenthen [[P]]B elseelseelse ()

by a following line

| ack?_= ( <A>ack![] | [[P]]B )
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then we get a following definition of agent creation which is erroneous

[[ agentagentagent b=P ininin Q ]]A
def
= currentloc?[S DS]=

(valvalval A = A
agentagentagent B =

(valvalval b = [B S DS]
( currentloc![S DS]

line 6: | <DS>register!B
line 7: | ack?_= ( <A>ack![] | [[P]]B ) ))

ininin
valvalval b = [B S DS]

line 10: ack?_= (currentloc![S DS]
| [[Q]]A))

However, both definitions might well be described informally using exactly
the same text, as follows:

The body of b sends a register message to the daemon (see line
6) and waits for an acknowledgement (line 7). It then sends an
acknowledgement to a and allows the encoding of the body P of
b to proceed (line 7). Meanwhile, in a the lock is kept until the
acknowledgement from b is received (line 10).

What is missing are possible interactions between the encoding of agentagentagent

and user program P. In the original definition we have a guarantee that the
encoding of the body P of b will not proceed before the acknowledgement to a

is actually sent and delivered. In the definition above, the acknowledgement
to a is sent in parallel with the execution of P. Therefore, it does not prevent
b from migrating away to a new site (e.g. if P would proceed with migratemigratemigrate)
and sending a local message ack on that new site. In that case, a would stay
locked and wait for ack forever.

For a pseudocode description to provide a clear (if necessarily informal)
description of an algorithm the constructs of the pseudocode must themselves
have clear intuitive semantics. This may hold for pseudocodes based on
widespread procedural languages, such as Pascal. Infrastructure algorithms,
however, involve constructs for agent creation, migration and communication.
These do not have a widespread, accepted, semantics — a number of rather
different semantic choices are possible — so more rigorous descriptions are
required for clear understanding.

Automata-based descriptions have been widely used for precise specifi-
cation of distributed algorithms, for example in the text of Lynch [Lyn96].
Automata do not allow agent creation and migration to be represented di-
rectly, so for working with a mobile agent algorithm one would either have
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to use a complex encoding or consider only an abstraction of the algorithm
— a non-executable model, rather than an executable complete description.

The modelling approach has been followed by Amadio and Prasad in
their work on IP mobility [AP98]. They consider idealizations of protocols
from IPv6 proposals for mobile host support, expressed in a variant of CCS,
and prove correctness results. There is a trade-off here: the idealizations
can be expressed in a simpler formal framework, greatly simplifying correct-
ness proofs, but they are further removed from implementation, inevitably
increasing the likelihood that important details have been abstracted away.



Chapter 5

Infrastructure Design for
Mobile Agents

In this chapter, we describe several kinds of application using mobile agents
in order to improve locality of computation, support disconnected operation,
avoid transferring large volumes of data, facilitate fault-tolerance, and adapt
to changes in the network characteristics and in the user environment. For
each kind we define a simple example application and describe an appropriate
infrastructure for location-independent communication and migration in a
wide-area network. In the previous chapter, we characterised the algorithms
for delivering location-independent messages to migrating entities and assess
their usefulness in a general case. Below, we apply this knowledge and use
some of the algorithms and techniques in the design of infrastructures which
are application-specific.

The goal of this chapter is to demonstrate a variety of simple infrastruc-
tures which are useful for specific applications. It can be observed that in
many different applications, the pattern of agent migration is different and
often limited, e.g. agents migrate only once or twice, migration is within a
local-area network or between a few sites which are known in advance, agents
can only migrate to or from a central site, and between a mobile computer
and the network, etc. We do not attempt to specify all the infrastructures for-
mally, so we use natural language descriptions. In the next chapter, however,
we describe the design of a suitable infrastructure for an example application
in more detail, presenting an almost complete executable description of the
infrastructure in Nomadic Pict.
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5.1 Resource Monitoring

Mobile agents (or mobile code) can be useful as monitors, i.e. programs that
are dispatched to remote sites, where they monitor a set of sensors or data
streams, and take some actions whenever certain prescribed conditions ap-
ply. For example, agents can be dispatched to a remote server and control a
unique piece of external equipment (we assume here that the latency in net-
work transmission is high compared to real-time constraints imposed by the
external equipment, so RPC cannot be used). In other applications, agents
can be sent to stock market sites, auction sites, vendors’ e-commerce sites,
or other data stores, and notify their clients that some event has happened
(e.g. share prices dropped below some threshold or a new book of a favourite
author has been published).

The advantage of mobile agents over the client-server and event systems
is the higher level of customization possible: both prescribed conditions and
triggered actions are defined by the client and dispatched as an autonomous
mobile agent. The remote site provides access only to raw data which can
be trusted and verified on demand (e.g. a stock-market server would publish
a list of companies and current share prices).

Moreover, bringing computation to the source of data has two potential
benefits. Firstly, mobile agents acting on behalf of a user can react im-
mediately, irrespective of network delays and broken links (so, for example,
agents in the ticket reservation system could book specified flights as soon as
they become available). Secondly, the client can stay disconnected while the
mobile agents perform their actions, and only reconnect to collect results.

5.1.1 Migration and Communication Pattern

At the application level, we would like to think of agent migration as “one-
hop” between the client and resource sites. However, in many applications
we may not have direct access to the resource sites (e.g. because they are
hidden behind firewalls, or they are temporarily disconnected from the net-
work). Instead, mobile agents migrate to some host machines where they are
authenticated and stored in a queue. The system can periodically allow the
agents from the queue to migrate from the host machine to the resource site.
In some applications, agents may have to migrate forth and back between
the host machine and resource sites (e.g. if the resource site needs to be
temporarily disconnected, or the agent expired and the client has to pay for
service continuation). In such situations, it is convenient to move both code
and thread of control between machines; therefore we use mobile agents, not
mobile code.
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Clients may not be aware of the low-level migration between many ma-
chines; they use location-independent asynchronous messages for communi-
cating with monitoring agents. The client may stay disconnected, and only
connect to collect the data.

5.1.2 Example Infrastructure

The concept of waiting room forms a main building block of our infrastruc-
ture. The “waiting room” is a site where agents can be received, registered,
and typechecked to prevent malicious behaviour, but not executed. The
agents are queued and forwarded for execution to other sites upon request.

Such a two-tier mechanism of migration is useful when the destination
sites may be: (1) temporarily disconnected from the network, (2) located
inside firewalls, or (3) have unknown addresses. A similar mechanism in
Aglets, called Agent Boxes, is described in [AO98]. The “waiting room” can
provide a secure mechanism for accepting agents inside firewalls and secu-
rity domains (since agents are first authenticated and then pulled out from
the “waiting rooms”, which are located outside the firewalls or domains; the
agents in the “waiting room” queue are inactive and thus malicious agents
cannot harm the server). The mechanism can also facilitate managing agents
(e.g. agents whose lifetime expired might have to move back to the “waiting
room” and wait there until the client collects results and/or pays for the ser-
vice continuation). Eventually, the “waiting room” may coordinate sharing
and distribution of agents (e.g. to improve load balancing).

Encodings In the infrastructure translation, the primitive migratemigratemigrate is en-
coded as low-level migrations between the client site, “waiting room”, and
resource sites. Communication with mobile agents is forwarded through a
daemon, located in the “waiting room”, which will know current agent lo-
cations. The daemon maintains the queue of agents sitting in the “waiting
room” and manages the extraction of agents from the “waiting room”.

The naming scheme is as follows. Before creating mobile monitors, we
look up the name (say D) of the database or resource to be monitored. This
name should allow resolving the address of the daemon dedicated for this
particular database or resource (e.g. using a local trader mechanism of the
agent system). Mobile agents are created dynamically and their names, used
for communicating with the agents, would contain either D or simply the
daemon address resolved from D.
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5.2 Mobile Devices

The use of mobile agents makes a lot of sense in the case of applications
launched from mobile devices, as described below. Mobile devices such as
laptops, notebooks and personal communicators are only intermittently con-
nected to a network, hence they have only intermittent access to a server.
The connection with a server can often be via low-bandwidth, high-latency,
high-cost connections (wireless or dial-up links). Applications running on
mobile devices can react to a drop in network bandwidth by moving network-
intensive computations to a well-connected proxy site. Example applications
include remote access to data repositories. The client can develop an agent
request — possibly while disconnected — launch the agent during a brief
connection session, and then immediately disconnect. The response, if any,
is collected during a subsequent connect session from a proxy client left at
the edge of the network. The user could spawn mobile agents from thin
clients like Personal Digital Assistants (PDAs) and cellular phones, and be
notified about certain events through the phone or e-mail (e.g. in [JJ99], a
weather alarm application is described, where the alarm conditions can be
programmed on a mobile phone, using a simple scripting language, and sent
to a remote server which monitors the weather; if the alarm is triggered, a
notification is sent to the client).

5.2.1 Example Infrastructure

In [GKN+96], a docking system has been described, which allows an agent to
transparently move between mobile computers, regardless of when the com-
puters connect to the network. Below, we describe a similar infrastructure
to support disconnected operation, however, with less transparency. The
“waiting room” described in §5.1.2 will serve as a docking station for agents
who want to migrate from a stable part of the network to a mobile computer.
However, communication in the opposite direction remains under application
control. We focus on the semantics of location-independent communication
between clients and monitoring agents.

Communication from a stable part of the network to clients executing on
mobile computers is as follows. The high-level location-independent output
would be encoded as either sending a message (or the agent carrying the
message) directly to the client if it is connected, or otherwise, sending the
message (or agent) to the “waiting room” (and possibly saving their state on
disk), so that it can be fetched by the client upon reconnection.
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Communication initiated from mobile devices requires a bit more consid-
eration. It has to be decided whether connection and reconnection should be
made transparent to the application (and the user) or not. For example, the
CODA distributed file system [Kis93] supports transparent access to remote
files from mobile clients, and the client performing some operations (such as
writing to a remote file) may not be aware of disconnection — the operation
is serviced by a local server emulator which will complete the operation when
the client machine reconnects. On the other hand, in some applications the
client must be aware of any changes between the “connect” and “disconnect”
states, so that it can react accordingly (e.g. informing the user who wants to
read e-mail from a mobile phone that it is not possible at that time because
of some problems with connecting the mobile to the network, etc.; the user
may not wish to see the e-mail pop up later when the connection is resumed).

There is a range of choices for the infrastructure support of location-
independent communication from mobile devices. It would be good if we have
support for two kinds of disconnection “triggers”: an intentional or software
trigger (such as switching a mobile device to the “power save” mode), and in-
advertent (such as connection failure, e.g. when a physical obstruction blocks
the signal from a cellular modem). The software trigger can be delayed, but
the latter is out of our control. We might try our best to deliver a message
if the “trigger” can be delayed. In order to delay the software “trigger”, the
underlying operating system should support some mechanism for blocking
disconnection (at least for some time), e.g. using semaphores. Then, the
encoding of the location-independent message output might use this mecha-
nism and block system-controlled disconnection until the message is actually
sent off. Otherwise, if message sending fails (after a few attempts to deliver
the message), some exception would be generated to be handled by the ap-
plication. All messages which are not delivered would either be discarded by
the application or queued to try again (depending on the application logic).

In the docking system of [GKN+96], a fully transparent solution has been
adopted, where all agents which did not succeed in being sent off from the
mobile device are silently stored on disk under the control of the system dock-
master. The dock-master continually monitors the network status and will
attempt to transfer all waiting agents, e.g. during a brief reconnection period.
It is assumed that the mobile device will eventually reconnect. In our opinion,
however, complete transparency may not be good for some applications (e.g.
we might want to know if and when eventually the agents are sent off to
the network, and be able to cancel all pending communications, e.g. if the
application is about to terminate). Thus, there should be the possibility of
checking and deleting agents from the queue maintained by the dock-master.
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5.3 Information Retrieval

Mobile agents can be used in data-mining and retrieving context-based in-
formation from multiple resources (such as data repositories and the World-
Wide Web). In [OPL94], Oates et al. discuss benefits of viewing information
gathering as distributed problem solving (which subsumes distributed pro-
cessing). The approach, called Cooperative Information Gathering (CIG),
involves concurrent and asynchronous access and composition of associated
information spread across a network of information servers by a group of
intelligent agents. Top level queries drive the creation of partially elaborated
information gathering plans, resulting in the employment of multiple coop-
erative agents for the purpose of achieving goals and subgoals within these
plans. For example, intelligent agents of the Vacation Planner search multi-
ple databases – weather, car rental, hotel and “places of interest” – to plan
an appropriate vacation for the user. Each agent searches its assigned re-
source independently but uses partial results from the other agents to adjust
its search criteria when needed. For example, the place agent might assume
good weather initially, but then redo portions of its search when the weather
agent tells it that bad weather is forecast for a particular area. Eventually
the agents arrive at a consistent vacation plan.

The potential advantage of using mobile agents for information retrieval
is the generic interface which they provide, and the possibility of saving
network bandwidth (which is important if the application is launched from a
mobile device). In the client-server approach, the client may sometimes have
to download large volumes of data from many data repositories in order to
perform some more customized filtering locally. Mobile agents can perform
filtering at the repository which is optimal for the query. For example, let
us suppose we want to apply a query x to data retrieved from databases A
and B as a result of performing two queries, respectively q1 at A and q2 at
B (neither interface to A nor to B supports query x). If one of the queries
q1 and q2 (say q1) returns a very large volume of data, we could save the
network bandwidth as follows. First, we send two agents to A and B where
they locally collect results of the queries q1 and q2. Then, they communicate
and agree that the agent carrying the results of query q2 (as lower in quantity)
could migrate to database A, where the query x would be performed on both
sets of retrieved data and the final result sent back to the client.

The example showed the advantage of using mobile agents over tradi-
tional SQL-based interfaces. In database systems, we can specify an arbi-
trary query, expressed as an SQL program, executed as a transaction which
is distributed and highly optimised. However, we cannot easily access data
that are not maintained by SQL-servers. Moreover, the agents can migrate or
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clone themselves on new sites and repeat querying, without necessarily occu-
pying resources on sites previously visited (they also do not require the client,
who launched the query, to be connected). The flexibility offered by mobile
agent interface seems a valuable feature on the Internet, where e-commerce
applications may span many domains which are administered or managed
separately. A typical e-commerce transaction may require access to different
data repositories which almost certainly do not support the same interface
(e.g. SQL). Mobile agents can retrieve various data (e.g. represented as Web
documents, objects, or relational tuples, etc.) and filter them together in a
common context. Plausible actions include: notifying the client about any
progress in searching, user-customized on-the-fly generation of Web links,
etc. Below, we describe a simple example of the net search application and
propose a good infrastructure for it.

5.3.1 Migration and Communication Pattern

A client enters a query which is semantically reformulated, so as to iden-
tify the domain and goals of searching. The yellow page directory or net
search engines are used to identify target servers for performing information
gathering locally. We assume that the target servers advertise themselves
somehow, specifying the interface and access control. A first group of mobile
agents is dispatched to target servers, where the agents cooperatively gather
information, asking the client for additional attributes of the search process,
getting some feedback on the quality of partial data retrieved, and dynami-
cally dispatching themselves to new target servers if necessary (in practice,
probably not more than once or twice).

It is assumed that communication is frequent and is mostly between the
client and agents, or between adjacent agents (e.g. a parent and child). The
volume of data depends on who is the sender. The client may send short
messages (e.g. queries) to mobile search agents, but the agents may send
back large portions of data to the client.

5.3.2 Example Infrastructure

Agents clone themselves (i.e. create child agents with the same or similar
functionality). The clones migrate to new sites carrying partial results if
necessary, the spawning agents remain on their sites. So, the style of agent
migration is one-hop. The agents form a tree with the client as a root of
the tree. The tree-like pattern of agent creation and communication suggest
the Hierarchical Directory infrastructure (such as in §4.1.5). However, since
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there are few agents involved and migrations are rare, the Home Server in-
frastructure (as in §4.1.1) would be good enough. We can combine these two
techniques, as below. Since agents migrate only once, server daemons are
not necessary and the infrastructure can be more light-weight.

The agents spawned on new sites must bind to local resources. The search
agents look up local resource names using a local name service (the name of
the local name server, or trader, would be known on each runtime system, so
that agents landing on a new site can easily invoke this server and ask, e.g.
for the interface to the local database). The agents expire after the search is
completed (a termination message may need to be sent by the client, or they
just expire after some sufficiently long timeout).

Messages from the client (root) to the search agents might be forwarded
along the branches of the tree and anonymously broadcast to all clones in the
branch (if required). Or, the client might want to contact only the current
leaves of the tree. Then, the message is distributed in the tree as before
but ignored by clones which are not leaves. Thus, agents can serve as active
forwarding proxies, forwarding messages to their clones if required. Finally,
a search agent might be contacted directly by the client if the client knows
the agent name. The client is assumed not to migrate, otherwise, “waiting
rooms” (described before) or proxy clients might be used. The proxy client
would forward to the client all messages received from search agents.

Encodings The infrastructure should support creation of two kinds of
agents: stationary agents which never migrate, and one-hop agents which
can migrate only once. For convenience, we may introduce a new high-level
language construct for creating one-hop agents. The execution of spawn a s

= P in Q would create a new agent a on the current site, with body P (using
agentagentagent), and immediately spawn the agent on site s (using migratemigratemigrate). After
migration, Q commences execution, in parallel with the rest of the body of
the spawning agent. An agent name a is binding in P and Q. The agent name
a would be encoded by a pair of the actual agent name and the address of s.

Agents in a user program communicate using location-independent mes-
sages. The encoding is as follows. An agent a which wants to send a message
to b first tries to send the message locally, if this fails then the message is
sent directly to the site recorded in b’s name. Since agents cannot migrate
once they are spawned, the message will be delivered.

The advantage of such an infrastructure is good scalability and good in-
teroperability (since the infrastructure is deployed dynamically and does not
depend on any global service for tracking locations). Agents of the same
application manage their locations by themselves, forwarding messages from
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other agents if required (no daemons necessary). The disadvantage is that
agents can only migrate once. Some higher order communication mecha-
nisms can be built on top of forwarding agents like active tuplespace (such
as proposed in [CLZ98]). Agents can record some context-based data on sites
they visit and enable incoming agents (of the same application) to retrieve
these data.

5.4 Fault-Tolerance

The semantics of application operations (e.g. time related), may have a great
impact on the design of infrastructure and tolerance of system failures. For
example, the information gathering process is idempotent — if something
goes wrong, we can interrupt the process (losing partial results) and start
it again. The result of a new search might be more accurate or not, but
usually it does not matter (since the client cannot observe any difference).
However, if the computation is long-running we may want to occasionally
store partial results and agents to a non-volatile store and recover the state
of computation after failure when the system is restarted. On the other hand,
the monitoring process requires real-time, continuous access to the resources
monitored. It may not be desirable to stop this long-running process in the
middle (e.g. selling and buying shares would depend on the fluctuations of
the stock market; the stock agents are expected to react at the right moment).
The resource servers have to be replicated in order to provide high availability
in spite of failures. Different levels of fault tolerance are therefore required
to satisfy the different semantics.

A simple method to achieve fault-tolerance in a distributed system is
through process checkpointing, message logging, and recovery after failures.
Checkpointing means recording the process state from time to time on a
stable store. After a failure occurs and the machine is restarted, we recover
the process from this state (called the process checkpoint). Processes must
restart computation in a consistent state. That is, the restarting state of
one process should not causally depend on the restarting state of another
process. The problem is to ensure that after distributed recovery, there will
be no orphan messages observed (i.e. messages which are received without
having been sent), and no messages that have been sent but not delivered.
A way to handle these problems is to roll back the execution of the processes
until a consistent global checkpoint is found.

A recovery algorithm based on repeatedly rolling back processes to earlier
checkpoints may lead to a number of problems that have to be sorted out by
the algorithm. Cascading rollbacks may lead to a total failure when the only
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consistent state is the initial state. A computation that is made fault resilient
by checkpointing and recovery might exhibit stuttering, i.e. producing the
same output or asking for the same input twice. Messages in transit from
failed or rolled-back processes cause a problem of message duplication (see,
e.g. [CJ97] for references).

The method of distributed checkpointing and recovery requires that the
processes executing on each site have access to stable storage on that site and
if the site fails, it will be restarted. Below, we present a solution where we
do not require all machines to have access to stable storage; host machines
are chosen from a pool of available machines and can fail-stop (except those
doing checkpoints, which must be recoverable).

5.4.1 Mobile Agent Support for Checkpointing

Our motivation is that mobile agents could reduce the dependency on some
host machines and network connections, by moving computation around if
necessary. For example, processes that execute on unreliable machines or
computers connected ad-hoc by wireless connections, might want to leave
these machines at some critical points of execution (e.g. a period of fre-
quent communication), and move the distributed computation state to one
machine (called a “meeting place”), where they could exchange messages
locally, with no need for communication over the network. After the com-
munication is finished, processes could migrate back to their host sites, and
continue computation and interaction with the users. If the “meeting place”
site is reliable and allows process checkpointing but the other sites are not
reliable and do not allow access to a disk store, the “meeting place” may
facilitate the building of fault-tolerant applications as described below.

We define a communication transaction in process A to be finite com-
putation during which A will frequently output or input messages (e.g. the
application code of some finite negotiation protocol might be defined as a
communication transaction). Our transaction is local to the process where it
has been defined — in particular, the communication transaction T defined
in agent A is independent of any transactions defined in processes communi-
cating with A.

Processes of the communication transaction that execute on unreliable
host machines could migrate to the “meeting place”, checkpoint their state,
execute the communication transaction, checkpoint again and migrate back
to their host machines (or some other machine if the host machine failed). If
a host machine fails, we recover processes which have been executing on this
machine from their last checkpoints stored at the “meeting place”. Since this
checkpoint is guaranteed to be consistent (processes on the failed machine
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did not communicate over network), there is no need to roll back processes
executing on other machines. Thus, we can avoid problems of distributed
checkpointing and recovery because the most critical part of the algorithm
is localised (i.e. the consistent global checkpoint is found locally). Moreover,
traditional techniques of checkpointing and recovery would be of no use, since
we assumed that some host machines do not have access to stable storage
(therefore, with every failure we would have to restart computation from the
beginning).

Below, we consider an example of a large-scale parallel computation where
mobility allows for the dynamic deployment of the application. Then, we
propose a suitable infrastructure for it, which tolerates machine and link
failures. Another similar application of mobility is dynamic relocation of
computation from a site which is about to shut down.

5.5 Large-Scale Parallel Computation

We have long-running, parallel computation spawned on a large number of
host machines in a wide-area network. Parallel computation can utilize the
CPU power of many single computers and thus improve the overall perfor-
mance. Examples of such computations are large-scale scientific computa-
tions built on top of MPI (the Message-Passing Interface standard) or PVM
(Parallel Virtual Machine).

5.5.1 Migration and Communication Pattern

Concurrent processes of the computation may occasionally want to commu-
nicate (e.g. exchange partial results). Communication is infrequent. The
host computers are generally unreliable. They may fail, be switched off, or
rebooted at any time. Processes executing on a machine which failed are
lost. The computation is a repeatable process and it does not necessarily
require specific resources (i.e. host machines can be chosen from a pool of
free machines). However, it would be undesirable to have to repeat the com-
putation from the beginning, each time some failure occurred. It may take
a long time to complete the computation. Therefore, we should ensure that
distributed computation will make progress in spite of machine failures and
broken links. Since the host computers do not have access to stable storage,
standard methods of checkpointing and recovery cannot be used. Due to
a very large number of computers and processes, other techniques, such as
process replication on distinct machines, may not be practically useful nor
efficient in wide-area networks.
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5.5.2 Example Infrastructure

Let the computation be deployed as a collection of mobile agents, each ex-
ecuting a number of concurrent processes. The agents are spawned from a
machine which is assumed to be reliable and having access to a stable store
(we call this site a “meeting place”). A star-like pattern of migration sug-
gests a centralised infrastructure, such as the Central Server infrastructure
described in §4.1.1, where the server would be a meeting place. Below we
first describe the general idea of the infrastructure, then the encoding of
agent creation and location-independent output. We assume there is a dae-
mon agent in the “meeting place” which knows current agent locations and
is responsible for agent checkpointing and recovery.

If agent A executing on a remote site wants to communicate with some
agent B, it will first migrate to the “meeting place” and call for B. The
agent B must suspend execution at some point and migrate to the “meeting
place” (unless it is already there), and then agents A and B can perform
the communication transaction locally. The application programmer should
ensure that there would not be any frantic migrations forth and back. They
can do that by grouping frequent input and output operations into a sin-
gle programming block — the communication transaction. For example, a
given process might execute the protocol for exchanging partial results as
one communication transaction. Mobile agents involved in the transaction
will be called up to the “meeting place” in a lazy way (i.e. when they are
needed). After the transaction has completed, the agent would migrate to
the remote site, which would be either the previous site, or a site chosen from
a pool of available non-failed sites (e.g. if the previous site failed). If we were
to adopt some scheduling policy of choosing sites, it would even be possible
to balance the workload on host machines by scheduling agent migrations to
sites which are free (or less loaded).

Encodings The application is initially spawned from the “meeting place”
— a site which is assumed to be reliable. Agents are created dynamically
whenever required. However, each time a new agent is created it has to be
correctly checkpointed. Therefore, the encoding of agentagentagent would require the
spawning agent to first migrate to the “meeting place” (if not there), where
a new child agent is created, registered at the daemon, and checkpointed.
Then, both agents can migrate back to the remote site.

The application programmer uses location-independent messages for com-
munication, and two high-level language operations dododo "start" and dododo

"commit and migrate to" s for expressing a communication transaction,
encoded as follows. The execution of dododo "start" as part of an agent results
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in the whole agent migrating to a “meeting place”. The execution of dododo
"commit and migrate to" s results in checkpointing the whole agent state
on the current site and migration of the agent to site s, or some arbitrary
site if none is specified. The location-independent output is encoded as fol-
lows. We first migrate to the “meeting place” (unless we were already there,
e.g. performing dododo "start" earlier). Then, we send locally. If this fails, the
“meeting place” daemon calls for the message recipient to migrate and then
the output can be finished locally. After the message has been delivered, the
sender and receiver either migrate to their previous sites, or if the output or
input is part of some transaction, the agent executing it will continue at the
“meeting place” until dododo "commit and migrate to" s is performed. On
departure from the “meeting place” site, agents leaving the site are always
checkpointed.

If a remote site or agent on that site has been suspected of failure (e.g. as
a result of calling for the agent), all agents on the suspected site (or only the
affected one) are recovered from the last checkpoint stored at the “meeting
place” and executed locally or sent to a free site (or to the same site after
it recovers). Agents are given incarnation numbers which are incremented
each time the agent is recovered from the last checkpoint. Any agents arriv-
ing to the “meeting place” from a site which has been incorrectly suspected
of failure, will be first examined by a daemon and discarded if some new
incarnations of these agents (with higher numbers) have already been recov-
ered from local checkpoints. The daemon will know all agent locations and
incarnation numbers.

5.6 Event-Driven Mobility

In this section, we describe two applications of event-driven mobility: multi-
media and collaborative work (CSCW) in the local-area network, and video-
conferencing and chat applications in the wide-area network. In the first ap-
plication, mobility results from physical movements of people, in the second
one, mobility is a tool for adapting to variations in network characteristics.
An event here is an asynchronous message or signal, which may trigger some
actions.

In a teleporting system [RBM+94], a user application interface follows
the user. The current physical location of the user is monitored by an active
badge location system [HH94]. Each user wears a badge which periodically
transmits a unique infra-red signal. A network of detectors allows the physi-
cal location of the user to be detected. When a user is near some machine and
clicks a button on their active badge, their current session shows up on the
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new machine. The teleporting is based on the X-windows system. Only the
user interface follows a user; applications do not themselves migrate. Bacon,
Bates and Halls [BBH97], extend the idea and describe using an event system
for multimedia and CSCW applications, which are able to move around a
network, remapping user interfaces and stream-based endpoints like cameras,
microphones, and speakers to the user’s current location. In general, applica-
tions could use some event infrastructure and register their interest in some
events. The infrastructure would notify its clients of any events which match
their interests. The clients may then trigger some actions, such as dispatch-
ing code on the machine which is near the user, or summoning mobile agents
to a new site. The advantage of using mobility is a dynamic deployment
of the application on new machines, possibly with automatic redirection of
communications.

A different approach to using event-driven mobility is represented in
[BPR98], where code mobility is used in a videoconference system as a means
to achieve better system customization. It is achieved by: (1) enabling users
to dynamically upload the conference server with code describing some cus-
tomized processing (e.g. coding algorithms, QoS policy, etc.), (2) enabling
the server to enhance its performance through server migration or cloning
on a different site, triggered by changes in the network conditions. The
videoconference server is an example of network-aware mobile programs, i.e.
programs that can use mobility as a tool to adapt to variations in network
characteristics. Mobility allows applications to recover from a poor initial
placement of some data-structures (services, etc.) used by the application
by repositioning it to a more suitable location. The advantage of a mobility-
based strategy over replicating these structures at all suitable points in the
network, is that it allows services used for a short time only to be set up
without requiring extensive server placement.

Network-awareness inspired several applications, e.g. a chat server
[RASS97], capable of enhancing its performance through server code migra-
tion. It allows multiple users to have an online conversation. To ensure that
all participants see the same conversation and that new participants can dy-
namically join ongoing conversations, a central server is used to serialise and
broadcast the contributions. The desired behaviour of the chat application
is to provide a rapid response time to all participants so that a conversation
can make quick progress. The response time for a particular participant de-
pends on the latency between it and the central server. The application can
take advantage of the mobility support to place the chat server so as to min-
imise the maximum response time seen by any participant. It is sensitive to
changes in the latency of a link over a period of time, so that the server can
change its location during conversations. Network-awareness also provided
the rationale for exploiting active networks [TSS+97].
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5.6.1 Mobile Agent Support for Events

The event system must provide support for event registration and notifica-
tion. Before clients can receive event notification, they should first register
with the event manager by sending the manager a list of types of all events
which they want to be notified about, together with the location information
about where the clients wish the notifications to be sent. The event man-
ager filters each event it receives by notifying only those clients that have
registered to receive events of that type. This mechanism can be extended to
group-oriented events, i.e. events that are reliably sent to a group of clients.
The clients forming the group have to register with the event manager.

One could imagine that mobile agents are clients who register at the event
manager and are notified about events. For example, Concordia [WPWD97]
supports events and event groups to enable mobile agents to collaborate.
The system offers two kinds of event groups for collaboration: basic and
persistent (in the latter, group membership survives site failures, and reliable,
transparent recovery from failures via proxy objects is provided; the details
are not given). In our model, we could build the event infrastructure just
above the infrastructure supporting location-independent messages. Then,
the event manager may use location-independent messages for sending event
notifications to mobile agents. For event groups, the event manager should
reliably broadcast events to all agents that form a group1.

In some applications, mobile agents may only be interested in receiving
certain events while executing on a given site. After moving to a new site,
the events from previous locations are irrelevant, and the agents might want
to register again at the local event manager. In that case we can think
of infrastructure, where a mobile agent registering with the event manager
specifies the location where the event notifications should be sent (usually it
would be the agent’s current site). The event manager can now use location-
dependent communication for sending event notifications to the agent. If
the agent migrated away, the event system would not make any attempt
to deliver the event; the event would be discarded and the agent silently
unregistered from the (local) event system.

1The reliable broadcast (see, e.g. [HT94]) guarantees three properties: (1) all non-
faulty processes agree on the set of events they deliver, (2) all events broadcast by non-
faulty processes are delivered, and (3) no spurious events are ever delivered. While these
properties may suffice for many applications, sometimes the order in which events are
delivered is important (e.g. first-in-first-out, causal, and total order broadcasts would be
required).
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5.6.2 Migration and Communication Pattern

Network-aware applications, such as chat and videoconference servers, could
dynamically spawn monitoring agents to predefined sites, where the agents
would register at the local resource monitors. These agents would be in-
formed about variations in local network characteristics by receiving events
from the local resource monitors. If performance conditions, e.g. network
latency from the clients, were not satisfactory, the chat or videoconference
servers might interrogate the monitoring agents and migrate to a different
site, which received more than a threshold score. The server would use
location-dependent communication to monitoring agents (they do not mi-
grate a second time). The clients would use location-independent communi-
cation to communicate with the network-aware server as it migrated.

5.6.3 Example Infrastructure

The monitoring agents migrate to predefined sites where they register at
the local resource managers. The address of the manager daemon would
be obtained from a local trader, maintained by the agent system (all public
names, such as local daemon names are assumed to be registered in the local
trader when the daemon starts up). The event registration message would
contain the agent current location (this site should not change — in the case
of site failures, the application server would have to spawn the monitoring
agent again). The monitoring agents collect events about the local network
characteristics and compute a summary for the application server.

The infrastructure for location-independent communication between the
server and monitoring agents can be such as described in §5.1. Also, it
would be convenient to abstract away from the location information when
expressing the application protocol of the communication between the server
and clients (i.e. participants of the videoconference or Internet chat). Note,
that some infrastructure algorithms, such as forwarding pointers, are clearly
not appropriate here, because they would still depend on congested sites and
links. Instead, the server might synchronise their moves with all the clients
(as in the Group Communication infrastructure, described in §4.1.4). Since
migration is infrequent, the infrastructure should perform well. Similarly, the
client could synchronise with the server while migrating (it does not need to
synchronise with other counterparts since we assume that the architecture
is centralised and the whole communication flow between the conference or
chat participants is forwarded through the server).



5.6 Event-Driven Mobility 119

It also has to be decided how new users could register at the server and
join the conference. The server should either leave forwarding pointers from
some initial site (forwarding messages along a chain of sites is acceptable
here since registration takes place only once), or in some other way make it
possible for the new participants to know its current location.
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Chapter 6

The PA Application and
Infrastructure Design

In this chapter we discuss a small example application, the Personal Assis-
tant (PA), and the design of an infrastructure suited to it in more detail (a
preliminary discussion appeared in [WS99]). The focus is on demonstrating
the benefits of a multi-level architecture based on clearly defined levels of
abstraction; we have therefore chosen a somewhat idealised example applica-
tion. The required infrastructure is still far from trivial, however. Expressing
it as a Nomadic Pict translation allows us to include an almost complete ex-
ecutable description, making the details of concurrency, synchronisation and
distribution clear and precise. By considering the migration and commu-
nication patterns of the application we can argue that this infrastructure
algorithm is a practicable choice, whereas many others, including those in
chapter 4, would not be.

We begin with a simple centralised algorithm in §6.2.1, which is further
extended to provide support for disconnected operation (§6.2.2). Then, we
extend the original algorithm of §6.2.1 to obtain a scalable infrastructure
(§6.2.3). Finally, we discuss informally how to merge the algorithm of §6.2.2
with the scalable architecture described in §6.2.3, so as to enable mobile
computing in wide-area and ad-hoc networks.

In order to give a feeling of “mobile agent world”, we have implemented
the Mobile-Chat-Room application, and asked people in different offices to
try our demo. The Mobile-Chat-Room uses a somewhat simplified idea of
the PA application, where we have only a single PA agent, which stores the
whole state of people’s conversation and can migrate on demand. The users
can summon the PA agent to their site using a summoner agent. The static
summoners (one per site) are dynamically spawned on all sites when the ap-
plication starts. The migrating agent carries the history log of the messages
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typed by users on different machines. We tested the program on different
machines connected to the Computer Laboratory network; different architec-
tures were involved (Alpha and ix86). The application communicates with
the user by an X-windows interface, implemented using a simple graphical
library of Nomadic Pict.

6.1 Application

We consider the support of collaborations within (say) a large computer sci-
ence department, spread over several buildings. Most individuals will be
involved in a few collaborations, each of 2–10 people. Individuals move fre-
quently between offices, labs and public spaces; impromptu working meetings
may develop anywhere. Individuals may also travel to other institutions, and
continue collaboration from there over a wide-area network, as well as be-
ing involved in any new collaborations locally. They would therefore like
to be able to summon their working state (which may be complex, consist-
ing of editors, file browsers, tests-in-progress etc.) to any machine. These
transfers should preserve any communications that they are engaged in, for
example audio/video links with other members of the project. It should also
be possible to summon the working state to a mobile computer, work in a
disconnected mode, and later reconnect to the network (possibly in an other
institution), and complete all pending communications.

To achieve this, the user’s working state can be encapsulated in a mobile
agent, an electronic personal assistant (PA), that can migrate on demand.

6.1.1 High-Level Architecture

We implement the PA application in High-Level Nomadic Pict with three
classes of agents: the PAs themselves, which migrate from site to site; sum-
moner agents, which are static (one per site) and are used to call the PAs;
and name server agents, also static, which maintain a lookup table from
the textual keys of PAs to their internal agent names. They interact using
location-independent communication on channel names.

registPA : ^[ String Agent ] moveOn : ^Site
summonPA : ^[ String Agent Site ] notFound : ^[]
mid : ^String

A sample PA is below. It has 4 parallel components; a registration message, a
message sent to another PA, a replicated input that receives data from other
PAs and prints it, and a replicated input that receives migration commands
and executes them.
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agentagentagent PA1 =
( registPA @ NameServer ! ["pawelsPA" PA1]
| mid @ PA2 ! "Outgoing data stream"
| mid ?* d = print!(+$ "Incoming data:" d )
| moveOn ?* s =

( migratemigratemigrate tototo s (print!"Hello Pawel! Your PA has arrived...")))

For simplicity, we assume a single name server. The name server below
maintains a map from strings to agent names; it receives new mappings on
registPA. The map is stored as an output on the internal channel names.
Summon requests are received on summonPA, containing a textual key and
the name/site of the summoner. If the key has been registered the name
server sends a migration command to the corresponding PA agent, otherwise
it sends an error message to the summoner.

agentagentagent NameServer =
newnewnew names : ^(Map String Agent)
( names ! (Map.make ==)
| registPA ?* [descr PA] = names ? m = names!(map.add m descr PA)
| summonPA ?* [descr Su s] = names ? m =

(switchswitchswitch (map.lookup m descr) ofofof (
{Found> PA : Agent} -> moveOn @ PA ! s
{NotFound> _} -> notFound @ Su ! [])

| names!m))

The summoner at site s is as below. It gets strings from the local console,
sending them as requests to the name server.

agentagentagent Summoner =
valvalval PAkey = (sys.read_line [])
( summonPA @ NameServer![PAkey Summoner s]
| notFound?_= print!(+$ PAkey " not found!"))

In the actual implementation the top-level encoding launches summoners dy-
namically, using the standard migration primitive, onto the list of active sites.
For simplicity the implementation uses location-independent communication
throughout, despite the fact that the name server and summoners are static.

6.1.2 Migration and Communication Pattern

A usable infrastructure for the PA application can only be designed in the
context of detailed assumptions, both about the system properties and about
the expected behaviour of the high-level agents.

For the former, in the first stage we assume that the application is running
over a large LAN, in which reliable messaging can be provided by lower-level
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protocols1 and all machines are at roughly the same communication cost
distance from each other. Machines are also basically reliable, although from
time to time it is necessary to reboot or turn off. The LAN is under a single
management, with no internal firewalls.

As for the assumptions about the expected behaviour of the high-level
agents, we suppose that the number of PA agents is of the same order as the
number of people in the lab. Each PA will migrate infrequently, with minutes
or hours between migrations. The path of migrations is unpredictable — it
may range over the whole LAN. The migrations of different PAs are essen-
tially uncorrelated in time. It is common for people to work for extended
periods at machines out of their offices. PAs communicate between each
other frequently, with significant bandwidth — e.g. audio/video messages or
streams, and other data (that must be delivered reliably).

These assumptions are not wholly appropriate — the application also
demands disconnected operation (on laptops) and a higher level of fault-
tolerance. Therefore, in the second stage we also assume that PAs can mi-
grate to laptop computers. A user can disconnect the computer from the
network, work in a disconnected mode for extended periods, and later re-
connect in the same or other network domain. All messages that cannot be
delivered to a laptop or sent out from the laptop due to disconnection will be
transparently delivered upon reconnection. A migration from a disconnected
computer fails, causing an exception in the high-level program. In the last
stage, we assume migration and communication in a wide-area network, so
the system should scale well. We discuss infrastructure design addressing the
problems of disconnected operation and scalability in §6.2.2 and §6.2.3, but
for the sake of a clear example infrastructure we neglect them for now.

6.2 Design of Appropriate Infrastructure

We develop our infrastructure in several steps, beginning with the two ex-
tremely simple algorithms described precisely in §4.2. The Central Server
algorithm has a single server that records the current site of every agent;
agents synchronise with the server before and after migrations; application
(location-independent) messages are sent via the server. The Forwarding
Pointers algorithm has a daemon on each site; when an agent migrates away
it leaves a pointer to the site that it is going to (and the daemon there).
Application messages are delivered by the daemons, following the pointers.

1We do not deal with the unreliable case here so as not to complicate the encoding
too much, however a simple algorithm for disconnected operation, described in 6.2.2, can
tolerate some message losses; it should give the feel of this style of working.
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Neither of these algorithms suffice for the PA application. The central server
is a bottleneck for all inter-PA communication; further, all application mes-
sages must make two hops (and these messages make up the main source of
network load). The forwarding pointers algorithm removes the bottleneck,
but there application messages may have to make many hops, even in the
common case.

Adapting the Central Server so as to reduce the number of application-
message hops required, we have the Query Server algorithm. As before, it has
a server that records the current site of every agent, and agents synchronise
with it on migration. In addition, each site has a daemon. An application
message is sent to the daemon which then queries the server to discover the
site of the target agent; the message is then sent to the daemon on the target
site. If the agent has migrated away, the message is returned to the original
daemon to try again. In the common case application messages will here take
only one hop. The obvious defect is the large number of control messages
between daemons and the server; to reduce these each site’s daemon can
maintain a cache of location data.

The Query Server with Caching does this. When a daemon receives a
mis-delivered message, for an agent that has left its site, the message is
forwarded to the server. The server both forwards the message on to the
agent’s current site and sends a cache-update message to the originating
daemon. In the common case application messages are therefore delivered in
only one hop.

This may seem well-suited to the PA application, but the textual descrip-
tion omits many critical points — it does not unambiguously identify a single
algorithm. To do so, and to develop reasonable confidence in its correctness
and performance, a more precise description is required, ideally in an exe-
cutable form. We give such a description, as a Nomadic Pict encoding, in
§6.2.1.

These algorithms clearly explore only a part of the design space — one
can envisage e.g. splitting the servers into many parts (one dealing with
agents created for each user), forwarding pointers in which long chains are
collapsed, and server-less algorithms in which the agents of a collaborative
group synchronise among themselves. An exhaustive discussion is beyond the
scope of this dissertation. One can also analyse the application further — in
fact, the migrations of each user’s PA may usually be within a small group of
machines, e.g. those of a research group. More sophisticated infrastructures
might use some heuristics to take advantage of this. For a critical application
a quantitative analysis may be required.

A closely related application for multimedia CSCW is described in
[BHB97], implemented (with real video support) using the Tube Mobile
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Agent System. A low-level multimedia stream library was used; streams
were reconnected on movement at the application level. Moving this into
the infrastructure would involve synchronisation between the source and all
sinks of a stream on any migration.

6.2.1 Example Infrastructure: The QSC Algorithm

In this section we describe the Query Server with Caching (QSC) algorithm
as a Nomadic Pict encoding, thereby making all the details of concurrency
and synchronisation precise.

An encoding consists of three parts, a top-level translation (applied to
whole programs), an auxiliary compositional translation [[P]] of subprograms
P, defined phrase-by-phrase, and an encoding of types. The QSC encoding
involves three main classes of agent: the query server Q itself (on a single
site), the daemons (one on each site), and the translations of high-level ap-
plication agents (which may migrate). The top-level translation of a program
P launches the query server and all the daemons before executing [[P]]. The
query server, and the code which launches daemons (which is assumed to
be part of agent toplevel on site firstSite), are given in Figure 6.1; the
interesting clauses of the compositional translation are in the text below.

The messages sent between agents fall into three groups, implementing
high-level agent creation, agent migration, and location-independent mes-
sages. Typical executions are illustrated in Figure 6.2 and below.

Each class of agent maintains some explicit state as an output on a lock
channel. The query server maintains a map from each agent name to the site
(and daemon) where the agent is currently located. This is kept accurate
when agents are created or migrate. Each daemon maintains a map from
some agent names to the site (and daemon) that they guess the agent is
located at. This is updated only when a message delivery fails. The encoding
of each high-level agent records its current site (and daemon).

To send a location-independent message the translation of a high-level
agent simply asks the local daemon to send it. The compositional translation
of c@b!v, ‘send v to channel c in agent b’, is below.

[[c @ b ! v]][a Q SQ]
def
=

currentloc?[S DS]=
iflocaliflocaliflocal <DS>try_message![b c v] thenthenthen

currentloc![S DS]
elseelseelse ()

This first reads the name S of the current site and the name DS of the local
daemon from the agent’s lock channel currentloc, then sends [b c v] on
the channel try message to DS, replacing the lock after the message is sent.
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Once the lock is released, the agent is free and may, for example, migrate
away while the message is delivered. The translation is parametric on the
triple [a Q SQ] of the name a of the agent containing this phrase, the name Q
of the query server, and the site SQ of the query server — for this phrase, none
of those is used. We return later to the process of delivery of the message.

To migrate while keeping the query server’s map accurate, the translation
of a migratemigratemigrate in a high-level agent synchronises with the query server before
and after actually migrating, with migrating, migrated, and ack messages.

[[migratemigratemigrate tototo u P]][a Q SQ]
def
=

currentloc?[S DS]=
valvalval [U DU] = u
( <Q @ SQ>migrating!a
| ack?_ = migratemigratemigrate tototo U

( <Q @ SQ>migrated![U DU]
| ack?_ = ( currentloc![U DU]

| [[P]][a Q SQ])))

A sample execution is below.

a@S Q@SQ

XXXXXXXXXz

migrating!a

���������9
ack!

migratemigratemigratetototo U

XXXXXXXXXz

migrated![U DU]

���������9
ack!

The query server’s lock is kept during the migration. The agent’s own record
of its current site and daemon must also be updated with the new data [U

DU] when the agent’s lock is released. Note that in the body of the encoding
the name DU of the daemon on the target site must be available. This is
achieved by encoding site names in the high-level program by pairs of a site
name and the associated daemon name; there is a translation of types

[[Agent]]
def
= Agent

[[Site]]
def
= [Site Agent]
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agentagentagent Q = (* the query server *)
newnewnew lock : ^(Map Agent [Site Agent])
(lock!(map.make ==) (* initialise the lock *)
| register?*[a [S DS]]= (* register a new agent *)

lock?m=
( lock!(map.add m a [S DS])
| <a@S>ack![])

| migrating?*a= (* lock during a migration *)
lock?m= switchswitchswitch (map.lookup m a) ofofof (
{Found> [ S:Site DS:Agent ]} ->

( <a@S>ack![]
| migrated?[S’ DS’] =
( lock!(map.add m a [S’ DS’])
| <a@S’>ack![]))

{NotFound> _} -> ())
| message?*[#X DU U a:Agent c:^X v:X]= (* deal with a lost msg *)

lock?m= switchswitchswitch (map.lookup m a) ofofof (
{Found> [R : Site DR : Agent]} ->

( <DU @ U>update![a [R DR]]
| <DR @ R>try_deliver![Q SQ a c v truetruetrue]
| dack?_ = lock!m)

{NotFound> _} -> ()))

daemondaemon?*S:Site= (* launch a daemon on site S *)
agentagentagent D =

migratemigratemigrate tototo S
newnewnew lock : ^(Map Agent [Site Agent]) (* the daemon body *)
( <toplevel@firstSite>ndack![S D]
| lock!(map.make ==)
| try_message?*[#X a:Agent c:^X v:X]=

lock?m= switchswitchswitch (map.lookup m a) ofofof (
{Found> [R : Site DR : Agent]} ->

( <DR @ R>try_deliver![D S a c v falsefalsefalse]
| lock!m )

{NotFound> _} ->
( <Q @ SQ>message![D S a c v]
| lock!m))

| try_deliver?*[#X DU:Agent U:Site a:Agent c:^X v:X ackme:Bool] =
iflocaliflocaliflocal <a>c!v thenthenthen
ififif ackme thenthenthen <DU @ U>dack![] elseelseelse ()

elseelseelse <Q @ SQ>message![DU U a c v]
| update?*[a s] = lock?m= lock!(map.add m a s))

Figure 6.1: Parts of the Top Level in the QSC Algorithm – The Query Server
and Daemon Daemon
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The best scenario: good guess in the D cache. This should be the common
case.

a@S D@S DR@R b@R

-try message![b c v]
XXXXXXXXXz

try deliver![D S b c v false]

-c!v

No guess in the D cache.

a@S D@S Q@SQ DR@R b@R

-try message![b c v]
XXXXXXXXXz

message![D S b c v]

���������9
update![b [R DR]]

XXXXXXXXXz

try deliver![Q SQ b c v true]

���������9
dack!

-c!v

The worst scenario: wrong guess in the D cache.

a@S D@S DU@U Q@SQ DR@R b@R

-try message![b c v]
XXXXXXXXXz

try deliver![D S b c v false]

XXXXXXXXXz

message![D S b c v]

���������

XXXXXXXXXz

try deliver![Q SQ b c v true]

���������9
update![b [R DR]]

���������9
dack!

-c!v

Horizontal arrows are synchronised communications within a single machine
(using iflocaliflocaliflocal); slanted arrows are asynchronous messages.

Figure 6.2: The Delivery of Location-Independent Message c@b!v from a to
b in the QSC Algorithm
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Similarly, a high-level agent a must synchronise with the query server
while creating a new agent b, with messages on register and ack.

[[agentagentagent b = P ininin P’]][a Q SQ]
def
=

currentloc?[S DS]=
agentagentagent b =

( <Q @ SQ>register![b [S DS]]
| ack?_= iflocaliflocaliflocal <a>ack![] thenthenthen

( currentloc![S DS]
| [[P]][b Q SQ])

elseelseelse () )
ininin

ack?_= ( currentloc![S DS]
| [[P’]][a Q SQ])

The current site/daemon data for the new agent must be initialised to [S

DS]; the creating agent is prevented from migrating away until the registra-
tion has taken place by keeping its currentloc lock until an ack is received
from b. A sample execution is below.

a@S b@S Q@SQ

agentagentagent b = ...

sXXXXXXXXXz
register![b [S DS]]

���������9
ack!

¾ack!

Returning to the process of message delivery, there are three cases (see
Figure 6.2). Consider the implementation of c@b!v in agent a on site S, where
the daemon is D. Suppose b is on site R, where the daemon is DR. Either D

has the correct site/daemon of b cached, or D has no cache data for b, or it
has incorrect cache data. In the first case D sends a try deliver message to
DR which delivers the message to b using iflocaliflocaliflocal. For the PA application
this should be the common case; it requires only one network message.

In the cache-miss case D sends a message message to the query server,
which both sends a try deliver message to DR (which then delivers suc-
cessfully) and an update message back to D (which updates its cache). The
query server’s lock is kept until the message is delivered, thus preventing b

from migrating until then.
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Finally, the incorrect-cache-hit case. Suppose D has a mistaken pointer
to DU@U. It will send a try deliver message to DU which will be unable to
deliver the message. DU will then send a message to the query server, much
as before (except that the cache update message still goes to D, not to DU).

Refinements and Extensions The algorithm is very asynchronous; some
additional optimisations are feasible (e.g. updating the daemon’s cache more
frequently, more asynchrony in QS, replacing explicit acknowledgement mes-
sages by piggybacking control data, e.g. a number of messages in transit). It
should have good performance for the PA application, with most application-
level messages delivered in a single hop and none taking more than three hops
(though 5 messages). The query server is involved only between a migration
and the time at which all relevant daemons receive a cache update; this
should be a short interval.

The algorithm does, however, depend on reliable machines. The query
server has critical state; the daemons do not, and so in principle could be
re-installed after a site crash, but it is only possible to reboot a machine
when no other daemons have pointers (that they will use) to it. In a refined
version of the protocol daemons and the QS would use a store-and-forward
protocol to deliver all messages reliably in spite of failures; the QS would be
replicated. In order to extend collaboration between clusters of domains (e.g.
over a wide-area network), a federated architecture of interconnected servers
must be adopted. In order to minimise communication between domains, the
agents should register and unregister with the local QS on changing domains.
We present an example federated architecture translation in the end of this
chapter.

6.2.2 Disconnected Operation: The QSCD Algorithm

In this section we describe the Query Server with Caching and Disconnec-
tion (QSCD) algorithm which tolerates temporal disconnection of sites. An
agent can disconnect a current site from the network and later reconnect, so
that all high-level messages to and from the site are transparently delivered
irrespective of agent migration and site disconnection. No messages are ever
lost. No duplicate messages are ever received by agents. However, agent
migration is not transparent - a program exception is raised in a high-level
agent if the agent tries to migrate out from a disconnected site; migration
to a site which has been disconnected is blocked until the site is back in the
network.

The algorithm implements disconnection-aware daemons and extends the
high-level language with primitives "disconnect" ininin P and "connect to"

s:Site ininin P to handle disconnection. The algorithm translations are similar
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to the QSC translations in §6.2.1; the main difference is that the inputs used
to receive acknowledgments are replaced by inputs with timeout in order to
detect disconnection. If there is a timeout then an alternative action is per-
formed (e.g. a message can be sent again, an operation can be blocked, etc.).
The precise definition of the query server and daemon is given in Figures 6.3
and 6.4. The translations described below are mainly to illustrate the use
of a rudimentary module system of the high-level language, an input with
timeout, and replicated messages (with a property that exactly one message
is eventually delivered). Therefore, in order not to complicate the algorithm,
we made a few simplifications. Firstly, the algorithm specified below is not
very practical since a site disconnection will block all agent migrations and
all communications which need to be forwarded through the query server.
Secondly, each time the operation agentagentagent or migratemigratemigrate fails due to a timeout,
an exception is invoked in the application (in a more practical algorithm,
the infrastructure should rather try to repeat the operation with a slightly
longer timeout before finally signalling problems). Therefore, the algorithms
that are applicable to actual systems with mobile computers would have to
be yet more delicate and complex. We discuss some of these refinements and
extensions informally in the end of §6.2.2 and §6.2.3 (e.g. an algorithm which
allows ad-hoc connection of computers, i.e. with no connection to the stable
part of the network).

The messages sent between agents fall into five groups, implementing
high-level agent creation, agent migration, location-independent messages,
and two operations for site disconnection and reconnection to the network.
Below, we describe the compositional translation of these cases. We omit de-
tailed description of the translation whenever it is very similar to the trans-
lation of the simple QSC algorithm, presented in §6.2.1.

Each class of agents maintains some explicit state as an output on a lock
channel. The meaning of this state is as in the simple QSC algorithm.

To send a location-independent message the translation of a high-level
agent first tries to send the message locally. If that fails, the message is
forwarded to the local daemon as in the QSC algorithm. The composition
translation of c@b!v, ‘send v to channel c in agent b’, is below.

[[c @ b ! v]]
def
=

iflocaliflocaliflocal <b>c!v thenthenthen ()
elseelseelse currentloc?[S DS]=

iflocaliflocaliflocal <DS>try_message![b c v] thenthenthen
currentloc![S DS]

elseelseelse ()

The local output (in the 2nd line) allows adjacent agents (on the same site)
to communicate even if the local daemon will be blocked in the case of site
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disconnection. We return later to the process of delivery of the message
which is sent to the local daemon.

To migrate while keeping the query server’s map accurate, the translation
of a migratemigratemigrate in a high-level agent a synchronises with the query server [Q SQ]
before and after actually migrating, with migrating, migrated, and mack
messages. We also deal with a case when the current site is disconnected. If
the query server does not respond within a certain period of time t (i.e. the
current site is disconnected or the communication link is slow), migration will
be abandoned (with an exception message err). Alternatively, we could ask
the local daemon for more accurate information (the daemon always knows
about the connection/reconnection status) but due to the lack of space we
omit details here.

[[ migratemigratemigrate tototo u P ]][a Q SQ t err]
def
=

currentloc?[S DS]=
valvalval [U DU] = u
newnewnew mack : ^[]
( <Q @ SQ>migrating![a mack]
| waitwaitwait mack?_ = (migratemigratemigrate tototo U

( <Q @ SQ>migrated![U DU]
| mack?_ = ( currentloc![U DU]

| [[P]][a Q SQ t err])))
timeouttimeouttimeout t ->

( currentloc![S DS]
| mack?_ = (* connection is back, or timeout too short *)

<Q @ SQ>migrated![S DS]
| err!"No connection." (* raise exception *)
| [[P]][a Q SQ t]))

This first creates a fresh private channel mack, then sends [a mack] on the
channel migrating to the query server, in parallel with a timed input on
the channel mack. If the reply on mack is received within t seconds (ap-
proximately), the migration proceeds exactly as in the basic QSC algorithm.
Otherwise, the timeout clause is triggered and the migration is abandoned.
However, if in fact the connection to the server was made possible (e.g. a
timeout was simply too short) then the message migrating would be deliv-
ered to the server and the server would send to the agent a reply message
mack. Note, that the query server blocks any disconnection requests after re-
ceiving a message migrating and can only release the lock after receiving an
acknowledgement that migration is finished. Therefore, although migration
failed the agent may still have to send a message migrated in the timeout
clause and release the lock in the query server; the message will then contain
an address [S DS] of the current site.
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agentagentagent Q = (* the query server *)
(migratemigratemigrate to SQ
newnewnew lock : ^(Map Agent SiteTy)
( <toplevel@firstSite>nd![SQ Q] (* ack that Q is on SQ *)
| lock!(map.make ==) (* initialise the lock *)
| register?*[a [S DS]]= (* register a new agent *)

lock?m=
( lock!(map.add m a [S DS])
| <a@S>ack![])

| migrating?*[a:Agent ack:^[]] = (* lock during a migration *)
lock?m= switchswitchswitch (map.lookup m a) ofofof (
{Found> [S : Site DS : Agent]} ->

( <a@S>ack![]
| migrated?[S’ DS’] =
( lock!(map.add m a [S’ DS’])
| <a@S’>ack![]))

{NotFound> _} -> ())
| message?*[#X DU U a:Agent c:^X v:X dack:^SiteTy]=

(* deal with a lost message *)
lock?m= switchswitchswitch (map.lookup m a) ofofof (
{Found> [R : Site DR : Agent]} ->

( <DU @ U>dack![R DR]
| <DR @ R>message![Q SQ a c v dack]
| dack?_ = lock!(map.add m a [R DR]))

{NotFound> _} -> ())
| block?*[a:Agent S:Site]=

lock?m= ( <a@S>ack![]
| buffer!m )

| unblock?*[a:Agent S:Site]=
buffer?m= ( lock!m

| <a@S>ack![])
))

Figure 6.3: Parts of the Top Level in the QSCD Algorithm – the Query
Server



6.2 Design of Appropriate Infrastructure 135

daemondaemon?*S:Site= (* launch a daemon D on site S *)
(agentagentagent D = (* the daemon body *)

(migratemigratemigrate tototo S
newnewnew lock : ^(Map Agent SiteTy)

defdefdef send_message [#X Q:Agent SQ:Site D:Agent S:Site
a:Agent c:^X v:X m:(Map Agent SiteTy)
dack:^SiteTy] =

( <Q @ SQ>message![D S a c v dack]
| dack?s= lock!(map.add m a s ))

( <toplevel@firstSite>nd![S D] (* ack that D is on S *)
| lock!(map.make ==)
| try_message?*[#X a:Agent c:^X v:X]=

lock?m= switchswitchswitch (map.lookup m a) ofofof (
{Found> [R : Site DR : Agent]} ->

(newnewnew dack : ^SiteTy
( <DR @ R>message![D S a c v dack]
| waitwaitwait

dack?s= lock!(map.add m a s)
timeouttimeouttimeout t ->

send_message![Q SQ D S a c v m dack]))
{NotFound> _} -> send_message![Q SQ D S a c v m

(newnewnew dack : ^SiteTy)])
| message?*[#X DU:Agent U:Site a:Agent c:^X v:X dack:^SiteTy] =

iflocaliflocaliflocal <a>msg![dack c v] thenthenthen <DU @ U>dack![S D]
elseelseelse lock?m= ( <Q @ SQ>message![D S a c v dack]

| dack?s= ( lock!(map.add m a s)
| <DU @ U>dack!s ))

| disconnect?*a = lock?m= ( buffer!m | <Q @ SQ>block![a S])
| connect?*[a _ _] = (* connect and unblock msgs *)

buffer?m= ( <Q @ SQ>unblock![a S]
| lock!m) ))

())

Figure 6.4: Parts of the Top Level in the QSCD Algorithm – the Daemon
Daemon
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The query server’s lock is kept during migration. This lock will protect
the current and target sites from being disconnected by other agents while
migration is in progress. The agent’s own record of its current site and
daemon must also be updated with the new data [U DU] (or restored from
the old data if the migration failed) when the agent’s lock is released. Site
names in the high-level program are encoded as before, i.e. by pairs of a site
name and the associated daemon name; there is a translation of types

[[Agent]]
def
= Agent

[[Site]]
def
= [Site Agent] = SiteTy

Similarly, a high-level agent a must synchronise with the query server
while creating a new agent b, with messages on register and ack. If the
query server is not accessible, the creation fails.

[[ agentagentagent b = P ininin P’ ]][a Q SQ t err]
def
=

currentloc?[S DS]=
agentagentagent b =

(newnewnew msglog : ^(Map Id [])
( <Q @ SQ>register![b [S DS]]
| waitwaitwait ack?_= iflocaliflocaliflocal <a>ack![] thenthenthen

( currentloc![S DS]
| [[P]][b Q SQ t err])

elseelseelse ()
timeouttimeouttimeout t -> ( <a>ack![]

| err!"No connection.") (* raise exception *)
| msglog!(map.make ==)
| msg?*[#X id c v]= msglog?m= switchswitchswitch (map.lookup m id) ofofof (

{NotFound> _} -> (c!v | msglog!(map.add m id []))
{Found> _} -> msglog!m))) (* ignore duplicate *)

ininin
ack?_= ( currentloc![S DS]

| [[P’]][a Q SQ t err])

As in the original algorithm, the current site/daemon data for the new agent
must be initialised to [S DS]; the creating agent is prevented from migrating
away until registration has taken place by keeping its currentloc lock until
an ack is received from b. The connection with the query server is tested by
a timeout mechanism. If connection is suspected of being broken, the ack

is sent immediately to the creating agent. The last two clauses of the body
of b are responsible for ignoring duplicate messages received by the agent.
A message log msglog is created to store unique identifiers of all messages
received on the channel msg. Messages whose identifiers are not found in the
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log are registered with the log and sent to proper local channels, or discarded
as duplicates otherwise.

Returning to the process of message delivery, there are three basic cases
(see Figure 6.6) as in the simple QSC algorithm. Consider the implemen-
tation of c@b!v in agent a on site S, where the daemon is D. Suppose b is
on site R, where the daemon is DR. Either D has the correct site/daemon of
b cached, or D has no cache data for b, or it has incorrect cache data. In
the first case D sends a message message to DR which delivers the message
to b using iflocaliflocaliflocal and sends an acknowledge message dack. For the PA
application this should be the common case; it requires only two network
messages. If dack is not received within a certain time (which means that
either site R is disconnected or the communication link to site R is slow), D
sends a message message to the query server which delivers it correctly as
in the cache-miss case, described below. Each message is augmented with a
unique name dack of a freshly created acknowledge channel. This name is
later used by agent b to look up the message log and discard the message if
it has already been delivered (when the timeout was caused by a slow link
between S and R). Agents DR and Q use dack to sent back acknowledgments
and location updates, which are delivered unambiguously.

In the cache-miss case D sends a message message to the query server,
which both sends a message message to DR (which then delivers successfully)
and a dack message back to D (which updates its cache). The query server’s
lock is kept until the message is delivered, thus preventing b from migrating
until then.

Finally, the incorrect-cache-hit case. Suppose D has a mistaken pointer to
DU@U. It will send a message message to DU which will be unable to deliver
the message. DU will then send a message to the query server, much as before
(the cache update messages are sent first to DU which then forwards it to D).
If D has not received the cache update acknowledgement for a long enough
time, it suspects that something went wrong, and sends a message (with a
dack) to the query server, as in the cache-miss case.

To disconnect a site while not missing messages sent between the site
and a stable part of the network, the translation of a "disconnect" macro
in a high-level agent a synchronises with the local daemon and the query
server. Messages sent from the stable network to the disconnected site will
be blocked in the query server until the site reconnects. In the opposite
direction, cross-network messages sent by agents on the disconnected site
will be blocked in the local daemon. No messages are ever lost.
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[[ "disconnect" foo ininin P ]][a Q SQ t err]
def
=

currentloc?[S DS]=
iflocaliflocaliflocal <DS>disconnect!a thenthenthen

ack?_= ( currentloc![S DS]
| print!"Now you can safely disconnect

your computer."
| [[P]][a Q SQ t err])

elseelseelse ()

Similarly, a high-level agent a must reconnect to the network by invoking a
"connect" macro with a parameter s, ’connect to a query server which is
on site s’. Here, the parameter s is actually not used by the encoding since
the algorithm assumes only one query server. Later, we describe a scalable
version of the algorithm which uses many query servers, and the parameter
can then be useful.

[[ "connect to" s ininin P ]][a Q SQ t err]
def
=

currentloc?[S DS]= valvalval [SQ:Site Q:Agent] = s
iflocaliflocaliflocal <DS>connect![a SQ Q] thenthenthen

ack?_= ( currentloc![S DS]
| [[P]][a Q SQ t err])

elseelseelse ()

Note that the server’s site in the high-level program (of type Site) is encoded
by a pair of a site name and the associated daemon (query server) name.
Typical executions are illustrated in Figure 6.5.

Refinements and Extensions The algorithm should have good perfor-
mance for the PA application if the timeout mechanism is set up correctly
(e.g. using some stabilising failure detector), with most application-level mes-
sages delivered in a single hop and none taking more than three hops (though
6 messages). The query server is involved only between migration and the
time at which all relevant daemons receive a cache update; this should be a
short interval. Messages to a disconnected site cannot be delivered and so
they are buffered in the query server which will deliver them upon site recon-
nection. However, the algorithm described above is not very practical, since
the query server uses a global lock during disconnected operation, i.e. the
QS blocks high-level messages to all sites if at least one site is disconnected.
Also, an operation “create a new agent” fails with a program exception raised
in a spawning agent, each time the operation is invoked from a disconnected
site. A refined version of this algorithm which is free from these problems is
described below.
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Disconnect a site from the network.

a@S D@S Q@SQ

-disconnect!a
XXXXXXXXXz

block![a S]

������������������9
ack!

Reconnect a site to the network.

a@S D@S Q@SQ

-connect![a R DR]
XXXXXXXXXz

unblock![a S]

������������������9
ack!

Figure 6.5: The Disconnection and Reconnection Requests in the QSCD
Algorithm
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The best scenario: good guess in the D cache. This should be the common
case.

a@S D@S Q@SQ DR@R b@R

-try message![b c v]
XXXXXXXXXXXXXXXXXXz

![..dack] XXXXXXXXXz

![D S b c v dack]

���������9
dack!

XXXXXXXXXz

![Q SQ..dack] ���������

-msg![dack c v]

���������9
dack!

���������9
dack!

-msg![dack c v]

No guess in the D cache.

a@S D@S Q@SQ DR@R b@R

-try message![b c v]
XXXXXXXXXz

![D S b c v dack]

���������9
dack!

XXXXXXXXXz

![Q SQ b c v dack]

���������9
dack!

-msg![dack c v]

The worst scenario: wrong guess in the D cache.

a@S D@S DU@U Q@SQ DR@R b@R

-try message![b c v]
XXXXXXXXXz

![D S b c v dack]

XXXXXXXXX

![..dack] XXXXXXXXXz

![DU U b c v dack]

XXXXXXXXXz

���������9dack!
XXXXXXXXXz

![Q SQ b c v dack]

���������9
dack!

���������9
dack!

-msg![dack c v]

���������

XXXXXXXXXz

![Q SQ b c v dack]

���������9
dack!

���������9
dack!

-msg![dack c v]

The communication in grey colour is executed only if there is a timeout.
Abbreviations: ![..] for message![..], and dack! for dack![R DR]

Figure 6.6: The Delivery of Location-Independent Message c@b!v from a to
b in the QSCD Algorithm
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Many sites should be able to disconnect and reconnect at the same time,
and the query server should block communication and migration only to
a site which is currently disconnected. This requires that a query server
maintains a separate map from sites to status information (“connected” or
“disconnected”). A map of agents must contain little locks (each per agent
entry) so that only messages to agents in disconnected sites are buffered.
A local daemon has exact knowledge whether there is connection to the
query server or not, so we can improve the algorithm by synchronising agent
migrations with the local daemon (taking care to avoid distributed deadlock
with disconnection requests). Also, only minor refinements are required to
be able to re-install daemons after a site crash (making a query server fault-
tolerant is much more difficult). In the protocol presented here, it is only
possible to reboot a machine when a query server does not have an active
communication link to it.

In the next section, we discuss extensions necessary for ad-hoc connection
of mobile computers. These extensions also allow for non-blocking agent
creation, since the registration messages from a laptop computer may be
sent to a local QS, installed on the laptop, and thus do not depend on the
network availability. Further improvements of the disconnected mode are
plausible, e.g. operations connect and disconnect might be implicit if the
operating system could provide a flag or an interrupt every time the local
network connection goes up or down (though it might still be useful to have
the operation “connect” in a high-level language).

6.2.3 Wide-Area Architecture: The FQSC Algorithm

In this section we describe the Federated Query Server with Caching (FQSC)
algorithm. We extend the original QSC algorithm which we described in
§6.2.1, so as to allow many query servers, one per local network (domain).
We then discuss refinements and extensions which are required to support
transferring mobile computers between local networks, and establishing ad-
hoc connections between mobile computers.

The algorithm has a collection of query servers. For each agent there is at
least one server (the current local server) that records the current site of the
agent; agents synchronise with the local server before and after migrations
(and register at a new query server if moving to a new domain); application
(location-independent) messages are sent directly to destinations according
to the cache information, or — if there is no good cache data — via the
servers, which work as forwarding pointer chains that are collapsed when
possible.
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The protocol is almost the same as the original QSC algorithm, except
that a query server can forward a message to another query server which
eventually delivers the message. If a query server has no pointer for the
destination agent of a message then it will forward the message to the QS
in the network (domain) where the destination agent was created; to make
this possible an agent name is encoded by a triple of an agent name and
the names of the site and query server on which the agent was originally
registered. Similarly, a site name is encoded by a record of a site name and
the names of the daemon, query server, and server’s site for that site. The
precise definition of the query server and daemon is given in Figures 6.7 and
6.8. A translation of types is following:

[[Agent]]
def
= [Agent Agent Site] = AgentTy

[[Site]]
def
= [Site Agent Agent Site] = SiteTy

To send a location-independent message the translation of a high-level
agent simply asks the local daemon to send it, exactly as in the original QSC
algorithm. The compositional translation of c@b!v, ‘send v to channel c in
agent b’, is below.

[[c @ b ! v]]a
def
=

currentloc?[S DS Q SQ]=
iflocaliflocaliflocal <DS>try_message![b c v] thenthenthen

currentloc![S DS Q SQ]
elseelseelse ()

This time the translation is parametric only on the name a of the agent
containing this phrase but the agent’s lock channel currentloc stores four
values: the name S of the current site, the name DS of the local daemon, and
the names Q and SQ of the current query server and the server’s site.

To migrate while keeping the query server’s map accurate, the translation
of a migratemigratemigrate in a high-level agent synchronises with the local query server
before and after actually migrating, with migrating, migrated, and ack

messages.
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serverserver?*SQ:Site= (* launch a query server Q on site SQ *)
(agentagentagent Q =
(migratemigratemigrate tototo SQ
newnewnew lock : ^(Map AgentTy SiteTy)
( <toplevel@firstSite>nq![Q SQ]
| lock!(map.make ==) (* initialise the lock *)
| register?*[a [S DS]]= (* register a new agent *)

lock?m= ( lock!(map.add m a [S DS])
| (val [A _ _] = a <A@S>ack![]))

| migrating?*a = (* lock during a migration *)
lock?m= switchswitchswitch (map.lookup m a) ofofof (
{Found> [S : Site DS : Agent]} ->
(val [A _ _] = a
( <A@S>ack![]
| migrated?[S’ DS’ DR’ R’] =
( lock!(map.add m a [R’ DR’])
| <A@S’>ack![])))

{NotFound> _} -> ())
| message?*[#X DU U a:AgentTy c:^X v:X _]=

(* deal with a lost message *)
lock?m= switchswitchswitch (map.lookup m a) ofofof (
{Found> [R : Site DR : Agent]} ->

( <DR @ R>message![Q SQ a c v true]
| update?[_ [S’ DS’]] =

( <DU @ U>update![a [S’ DS’]]
| lock!(map.add m a [S’ DS’])))

{NotFound> _} ->
(val [A Q’ SQ’] = a
( <Q’ @ SQ’>message![Q SQ a c v true]
| update?[_ [S’ DS’]] =

( <DU @ U>update![a [S’ DS’]]
| lock!(map.add m a [S’ DS’])))))

))
())

Figure 6.7: Parts of the Top Level in the FQSC Algorithm – the Query Server
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daemondaemon?*[S:Site [Q:Agent SQ:Site]]=
(* launch a daemon D on site S *)
(* Q is a local Query Server located at site SQ *)

(agentagentagent D = (* the daemon body *)
(migratemigratemigrate tototo S
new lock : ^(Map AgentTy SiteTy)
( <toplevel@firstSite>nd![S D Q SQ]
| lock!(map.make ==)
| try_message?*[#X a:AgentTy c:^X v:X]=

lock?m= switchswitchswitch (map.lookup m a) ofofof (
{Found> [R : Site DR : Agent]} ->

( <DR @ R>message![D S a c v false]
| lock!m )

{NotFound> _} ->
( <Q @ SQ>message![D S a c v true]
| lock!m ))

| message?*[#X DU:Agent U:Site a:AgentTy c:^X v:X ackme:Bool] =
(valvalval [A _ _] = a
iflocaliflocaliflocal <A>c!v thenthenthen

ififif ackme thenthenthen <DU @ U>update![a [S D]] elseelseelse ()
elseelseelse <Q @ SQ>message![DU U a c v true])

| update?*[a s] = lock?m= lock!(map.add m a s) ))
())

Figure 6.8: Parts of the Top Level in the FQSC Algorithm – the Daemon
Daemon
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[[ migratemigratemigrate tototo u P ]]a
def
=

currentloc?[S DS Q SQ]=
valvalval [A _ _] = a
valvalval [U DU Q’ SQ’] = u
( <Q @ SQ>migrating!a
| ack?_= (migratemigratemigrate tototo U

ififif (== [Q’ SQ’] [Q SQ]) thenthenthen (* an easy case *)
( <Q @ SQ>migrated![U DU DU U]
| ack?_ = (currentloc![U DU Q SQ]

| [[P]]a))
elseelseelse (* a cross-domain hop! *)

( <Q’ @ SQ’>register![a [U DU]]
| ack?_= ( <Q @ SQ>migrated![U DU Q’ SQ’]

| ack?_ = ( currentloc![U DU Q’ SQ’]
| [[P]]a)))))

After migration we check whether the destination site is in the same domain.
If so (see a thenthenthen clause), we proceed as in the original QSC algorithm. In the
case of cross-domain migration (see an elseelseelse clause), this registers an agent
a at the new query server Q’ with a register message, and then sends [U

DU Q’ SQ’] on the channel migrated to the old query server Q, releasing
the lock with a new value after the message is sent. A first message for the
destination agent a sent to the old query server Q will be forwarded to Q’,
which will forward it to a daemon DU that delivers the message as usual.

A sample execution of a local (within domain) migration is below.

a@S Q@SQ

XXXXXXXXXz

migrating!a

���������9
ack!

migratemigratemigratetototo U

XXXXXXXXXz

migrated![U DU DU U]

���������9
ack!
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A sample execution of a cross-domain migration with registration at Q’.

a@S Q@SQ Q’@SQ’

XXXXXXXXXz

migrating!a

���������9
ack!

migratemigratemigratetototo U
XXXXXXXXXXXXXXXXXXz

register![a [U DU]]

������������������9
ack!

XXXXXXXXXz

migrated![U DU Q’ SQ’]

���������9
ack!

Similarly, a high-level agent a must synchronise with the query server
while creating a new agent b, with messages on register and ack. The
encoding is the same as in the original QSC algorithm except for the param-
eters.

[[ agentagentagent b = P ininin P’ ]]a =
currentloc?[S DS Q SQ]=
(val [A _ _] = a
agent B =

val b = [B Q SQ]
( <Q @ SQ>register![b [S DS]]
| ack?_= iflocal <A>ack![] then

( currentloc![S DS Q SQ]
| [[P]]b)

else ())
in

val b = [B Q SQ]
ack?_= ( currentloc![S DS Q SQ]

| [[P’]]a))

In the record [S DS Q SQ], S is a name of a current site, DS, a name of a
current daemon, Q, a name of a local query server, and SQ, a name of Q’s site.
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A sample execution is below.

a@S b@S Q@SQ

create

sXXXXXXXXXz
register![b [S DS]]

���������9
ack!

¾ack!

Returning to the process of message delivery, there are three basic cases as
in the original QSC algorithm, and a few variations (see Figure 6.9). Consider
the implementation of c@b!v in agent a on site S, where the daemon is D.
Suppose b is on site R, where the daemon is DR. Either D has the correct
site/daemon of b cached, or D has no cache data for b, or it has incorrect
cache data. In the first case D sends a message message to DR which delivers
the message to b using iflocaliflocaliflocal. For the PA application this should be the
common case (also for the cross-domain communication); it requires only one
network message.

In the cache-miss case D sends a message message to the query server Q

which forwards the message. After receiving an update message the query
server Q forwards the update back to D (which updates its cache). In Fig-
ure 6.9 the message message is forwarded directly to DR (which then delivers
successfully). However, two other situations are possible. If the forwarding
pointer for the agent b is not found, Q sends the message to the query server
in the domain where b was created (names of this query server and its site
are encoded as part of the name b). Similarly, if b has migrated between
domains but there has been no communication to b since then (and so no
cache updates), Q will contain a pointer to the query server in the domain
visited by b. In this case, the message message is forwarded between query
servers until it eventually reaches DR. Both situations, i.e. a server’s cache
miss and cross-domain forwarding, are illustrated in Figure 6.9 using a grey
colour. The forwarding pointer chain is collapsed by sending the update

messages which update caches with b’s current location.
Finally, the incorrect-cache-hit case. Suppose D has a mistaken pointer to

DU@U. It will send a message message to DU which will be unable to deliver the
message. DU will then send a message to the query server, much as before
(except that the cache update message still goes to D, not to DU). Note,
that the daemon D can also be a query server (if this were a cross-domain
communication).
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The best scenario: good guess in the D cache. This should be the common
case.

a@S D@S DR@R b@R

-try message![b c v]
XXXXXXXXXz

message![D S b c v false]

-c!v

No guess in the D cache.

a@S D@S Q@SQ DR@R b@R

-try message![b c v]
XXXXXXXXXz

message![D S b c v true]

XXXXXXXXXz

message![Q SQ b c v true]

���������9
update![b [R DR]]

-c!v

���������9
update![b [R DR]]

The 1st worst scenario: wrong guess in the D cache.

a@S D@S DU@U Q@SQ DR@R b@R

-try message![b c v]
XXXXXXXXXz

message![D S b c v false]

XXXXXXXXXz

message![D S b c v true]

XXXXXXXXXz

message![Q SQ b c v true]

���������9
update![b [R DR]]

-c!v

������������������9
update![b [R DR]]

The 2nd worst scenario: not-updated (or no) guess in the query server’s
cache.

Q@SQ Q’@SQ’

XXXXXXXXXz

message![Q SQ b c v true]

q q q
���������9

update![b [R DR]]

Figure 6.9: The Delivery of Location-Independent Message c@b!v from a to
b in the FQSC Algorithm
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Refinements and Extensions Some additional optimisations are feasi-
ble (e.g. updating the daemon’s and server’s cache more frequently). In the
algorithm presented above, the forwarding pointer chain may grow if there
is no communication to migrating agents. However, in the PA application
migrations between domains are rare and they usually take place between no
more than a few domains only (since agent cross-domain migrations corre-
spond to travels of individuals working on projects). The cost of forwarding
a message to an agent in an other domain is paid only for the first message
(then the forwarding pointer chain is collapsed and any subsequent messages
for this agent are sent directly, if the agent does not migrate, or indirectly
through the local domain QS if the agent moves locally). Local migrations
within a domain can be more frequent than inter-domain moves, and thus
sending too many cache updates must be avoided. For example, if agent
migrations are local, the algorithm sends a cache-update message to other
query servers only in the case of incorrect-cache-hits from these servers (this
is similar to the “wrong guess in the D cache” case of the original QSC
algorithm). The algorithm could be made more asynchronous and use time-
stamped asynchronous messages instead of explicit locking (e.g. in the case of
the hand-over operation when agents and messages travel between domains),
e.g. as in the protocol for location directory maintenance in mobile networks
described in [RRD95], which allows for consistent location information to be
maintained about mobile hosts that switch off and arbitrarily reappear in
some other part of the network; the algorithm tolerates base station failures
and the corruption of a logical time stamp.

The algorithms described in §6.2.2 and §6.2.3 can be used to build a
complete generic infrastructure for the PA application that uses a federated
architecture, augmented with support for disconnected operation. To discon-
nect a site (e.g. a mobile computer) from a current local area network and
reconnect it in some other network, the translation of a site daemon acts in
a similar way to the translation of agent migration between domains, i.e. it
has to synchronise with the query servers of these two domains. The algo-
rithm allows mobile computers to connect to each other and establish ad-hoc
communications, assuming that at least one has a local query server installed
(so that this computer can be a “domain” to which the other connects).

A fault-tolerant version of the algorithm may require an additional level of
infrastructure to detect failures. The QSCD algorithm uses a timeout mech-
anism to detect disconnection of laptop computers from a local QS server. If
the laptop is connected to the server via a LAN (as assumed in 6.2.2), then
we should be able to set the timeout properly. However, detecting faults by
setting timeouts on remote agents in a wide-area network is bound to be in-
accurate since message latency in these networks tends to be large and highly
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unpredictable. We can still attempt to detect failures using timeouts in the
case of local communication (i.e. between agents and QS server in a LAN),
but for the inter-domain communication the algorithm may use some addi-
tional infrastructure, such as a network event notification service, or some
other similar service, e.g. the gossip-based scalable failure detector [RMH98].
The event notification service would have daemons that use timeouts only
on neighbouring servers and local clients, and notify the service subscribers
about failures. In addition to timeouts, the infrastructure may use other
techniques to detect failures where appropriate (see, e.g. [Vog96]), for exam-
ple failure notifications generated by the operating system which recovered
after a failure.



Chapter 7

Nomadic Pict Implementation

Nomadic Pict implementation has a two-level architecture, illustrated in
Figure 7.1, following that of the language. The low-level extends the Pict
language [PT97a] by providing direct support for agent creation, migration
and location-dependent communication. The high level supports location-
independent communication by applying translations – the compiler takes
as input a program in the high-level language together with an encoding of
each high-level primitive into the low-level language (expressed in a simple
meta-language). It type-checks and applies the encoding; the resulting low-
level intermediate code is executed on a relatively straightforward distributed
run-time system. The source code of the compiler doubled the size of the
Pict compiler, and is around 15000 lines of Objective Caml. The runtime
system is only around 1700 lines of Objective Caml; this, however, does not
include distributed infrastructures and standard libraries, which are written
in Nomadic Pict. Below, we describe the compiler and runtime system in
more detail.

7.1 Architecture of the Compiler

Programs in Nomadic Pict are compiled in the same way as they are formally
specified, by translating the high-level program into the low-level language,
which in turn is compiled to the intermediate code executed by the run-
time system. The compilation of a Nomadic Pict program has the following
phases:

• parsing the high-level program and infrastructure encoding

• importing separately compiled units (e.g. standard libs)
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Unix  /  TCP-IP

agent migration and
location-dependent
asynchronous reliable
messages; 
parallel programs

location-dependent
streams;
Unix processes

agent migration and
location-independent
asynchronous reliable
messages;
parallel programs

Distributed

Local Virtual Machine
Nomadic Pict

Application

Infrastructure

Translations

Figure 7.1: The Nomadic Pict Two-Levels of Abstraction
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• scope resolution and typechecking the high-level program and meta-
definitions of the encoding

• applying the encoding and generating the low-level code

• scope resolution and typechecking the low-level code

• continuation-passing translation of the low-level code to the intermedi-
ate code

• joining imported code (if there are any bindings exported from a unit)

• incremental optimisation of the intermediate code

7.1.1 Compilation Phases

Below, we describe briefly the more interesting compilation phases. The gen-
eration of the core language from the low-level language is based on modules
of Pierce and Turner’s Pict compiler, extended with rules for the Nomadic
Pict language. See the Pict definition [PT97b] for a formal description of
this translation for Pict constructs.

Parsing The compiler uses standard lexing and parsing tools to generate
an abstract syntax tree in which issues of precedence and parenthesization
have been resolved. Some very straightforward derived forms are desugared
during parsing, e.g. the parallel composition of three or more processes is
transformed to a nested sequence of binary parallel compositions.

Importing A program consists of a collection of named compilation units,
each comprising a sequence of import statements followed by a sequence
of declarations. Individual units can be compiled separately. Compilation
begins with the unit that has been designated as the main unit. A program
defined in the main unit can use the high-level language. In such a case, a
top-level clause of the infrastructure encoding and compositional translation
of high-level primitives must be included. The program begins execution
from the top-level clause which contains all the necessary daemons and initial
values of the encoding parameters.

Scope Resolution The process of resolving variable scopes yields an
alpha-renamed copy of the original term. The alpha-renamed term has the
property that every bound variable is unique, so that a simplified implemen-
tation of substitution and inlining can be used.
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Typechecking Some languages, such as ML and Haskell, which are based
on the Hindley-Milner type system, can automatically infer all necessary type
annotations. Pict’s type system, however, is significantly more powerful then
the Hindley-Milner type system (e.g. it allows higher-order polymorphism
and subtyping) and a simple partial type inference algorithm has been used
(the algorithm is partial, in the sense that it may sometimes have to ask the
user to add more explicit type information rather than determine the types
itself). The algorithm is formalised in [PT97b]. It exploits the situations
where the type assigned to a bound variable can be completely determined
by the surrounding program context. The inference is local, in the sense that
it only uses the immediately surrounding context to try to fill in a missing
type annotation. For example, the variable x in the input expression c?x=e

has type Int if the channel c is known to have type ^Int.

In Nomadic Pict, typechecking is performed twice, before and after an
encoding is applied. This allows more precise type error reporting. Types
are erased before execution and so there is no way that type annotations in
the program could affect its behaviour (an exception is type Dyn, to date
only partially implemented, which allows data that are created dynamically
to be used safely).

Applying Encodings Each high-level construct in a program is replaced
by its meta-definition, in such a way that free occurrences of variables in the
meta-definition are substituted by current variables from the program. Also
certain types, such as Agent and Site defined in the program are replaced
by their encodings.

Continuation Passing Style The compiler uses some binding-time im-
provements, like conversion of a program to continuation passing style1, in
order to remove the overhead of interpreting the source program and the
overhead of environment lookups. In particular, the continuation-passing
transformations are used to simplify complex expressions of the low-level
language so that they fall within the core language. The complex expres-
sions are complex values, value declarations (valvalval x = v P), application (v

v1 ... vn), and abstractions such as a “function definition” defdefdef f (a1

a2) = v.

1In functional languages, a program is in continuation passing style (CPS) if every
function takes a continuation as a parameter, and whenever a function would normally
return a result r to its caller, it instead returns the result of applying the continuation to
r. A continuation is a kind of abstract return address, and represents the whole of the
rest of the computation after the function call.
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The “continuation-passing” conversion in Pict is similar to those used
in some compilers for functional languages (e.g. [App92]). In essence, it
transforms a complex value expression into a process that performs what-
ever computation is necessary and sends the final value along a designated
continuation channel.

A complex value is always evaluated “strictly” to yield a simple value,
which is substituted for the complex expression. For example, when we
write c![13 (v v1 v2)], we do not mean to send the expression [13 (v v1

v2)] along c but to send a simple value evaluated from this complex value.
Thus, the expression must be interpreted as a core language expression that
evaluates first the ‘function’ value v, followed by the argument values v1 and
v2, then calls the function instructed to return its result along the application
expression’s continuation channel, and finally packages the result received
along the continuation channel into a simple tuple along with the integer 13
and sends the tuple along c.

Optimisations In the last phase, all separately compiled units are joined
with the main unit, and the compiler incrementally optimises the resulting
intermediate program. It does a static analysis and partial evaluation of a
program, reducing π-computations whenever possible and removing inacces-
sible fragments of code. The remaining computations make up the generated
or “residual” program executed by the runtime system. The Pict optimiser
also checks the program’s consistency — the following conditions must hold:
no unbound variables (every variable mentioned in the program must be in
scope), all bound variables must be unique, static variables (i.e. ones whose
value is known to be a compile-time constant) are represented as global vari-
ables in the generated code. In the current implementation of Nomadic Pict,
global variables are dynamically copied to a local agent environment upon
agent creation; other solutions are plausible in a more optimised version of
the compiler and runtime system.

7.1.2 Architecture-Independent Core Language

The compiler generates the intermediate code of the core language which
is executed by the Nomadic Pict runtime system. The intermediate code is
architecture-independent; its constructs, forming a core language, correspond
approximately to those of the Low Level Nomadic π-calculus (extended with
value types and system function calls). Process terms are output atoms,
input and migrate prefixes, parallel compositions, processes prefixed by dec-
larations, terminate, test-and-send, and conditional processes. There is no
separate primitive for cross-network communication — these are all encoded
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by terms of agent migration and test-and-send. Declarations introduce new
channels and agents. Finally, Values (i.e. entities that can be communi-
cated on channels) include variables, agent and channel names, records of
values, and constants (such as String, Char, Int, and Bool). Record values
generalise tuple values (since the labels in a record are optional).

A program that uses only the Pict language is compiled to a subclass of
the core language, and an original Pict backend can be chosen to translate
it to a C program which is then compiled and executed on a single machine.
See [Tur96] for a detailed description of generating C code from Pict core
language.

7.2 Architecture of the Runtime System

Because much of the system functionality, including all distributed infras-
tructure, is written in Nomadic Pict, the runtime system has a very simple
architecture. It consists of two layers, illustrated in Figure 7.2: the Vir-
tual Machine and I/O server, above TCP. It is written in Objective Caml
(O’Caml) [Ler95]. The implementation of the virtual machine builds on the
simple abstract machine designed for Pict [Tur96].

7.2.1 Virtual Machine and Execution Fairness

The virtual machine maintains a state consisting of an agent store of agent
closures; the agent names are partitioned into an agent queue, of agents
waiting to be scheduled, and a waiting room, of agents whose process terms
are all blocked. An agent closure consists of a run queue, of Nomadic π
process/environment pairs waiting to be scheduled (round-robin), channel
queues of terms that are blocked on internal or inter-agent communication,
and an environment. Environments record bindings of variables to channels
and basic values. The virtual machine executes in steps, in each of which
the closure of the agent at the front of the agent queue is executed for a
fixed number of interactions. This ensures fair execution of the fine-grain
parallelism in the language. Agents with an empty run queue wait in the
waiting room. They stay suspended until some other agent sends an output
term to them. The only operations that remove agent closures from the agent
store are terminate and migrate. A migrate moves an agent to a remote
site. On the remote site, the agent is placed at the end of the agent queue.

The agent scheduler provides fair execution, guaranteeing that runnable
concurrent processes of all non-terminating agents will eventually be exe-
cuted, and that processes waiting to communicate on a channel will eventu-
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ally succeed (of course, if sufficient communication partners become available
on a local or remote site). The implementation is deterministic and the lan-
guage parallel operations are interleaved fairly. Non-deterministic behaviour
will naturally arise because of time-dependent interactions between the ab-
stract machine, the I/O server, and the system function calls to the operating
system.

7.2.2 Interaction with an Operating System and User

For many library functions execution consists of one or more calls to corre-
sponding Unix I/O routines. For example, processing print!"foo" involves
an invocation of the O’Caml library call output string. All interaction
between the abstract behaviour of a Nomadic Pict library function and its
environment (the operating system and user) occurs via invocations of sys-
tem function calls. When a system function call reaches the front of the run
queue some special processing takes place. The interpreter invokes the sys-
tem function, passing all the function parameters and a result channel. The
functions which can block for some time or can potentially never return (such
as input from a user) will be executed within a separate execution thread, so
that they do not block parallel computation. The agent operations migrate
and terminate are special cases — they have to wait until all threads that
execute system functions invoked inside the agent have terminated. If the
system function returns any value, the Nomadic Pict program will receive it
along the result channel.

7.2.3 I/O Server and Trader Service

The multithreaded I/O server receives incoming agents, consisting of an agent
name and an agent closure; they are unmarshalled and placed in the agent
store. Note that an agent closure contains the entire state of an agent, allow-
ing agent execution to be resumed from the point where it was suspended.
Agent communication uses standard network protocols (TCP in our first im-
plementation). The runtime system does not support any reliable protocols
that are tailored for agents, such as the Agent Transfer Protocol of [LA97].
Such protocols must be encoded explicitly in an infrastructure encoding –
the key point in our experiments is to understand the dependencies between
machines (both in the infrastructure and in application programs); we want
to understand exactly how the system behaves under failure, not simply to
make things that behave well under very partial failure. This is assisted by
the purely local nature of the runtime system implementation.
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The trader service offers two library functions publish and subscribe

that can be used in programs which are executed separately in order to ex-
change names (such as channel and agent names), basic values (e.g. strings),
and any complex values which can be sent along channels. The function
publish takes as arguments a value to be published (which must be con-
verted to a type Dyn) and a string keyword to identify the value. A program
which wants to receive the value invokes a function subscribe, passing as
arguments a string keyword and the current agent and site names. The
function blocks until the value is available. The function subscribe returns
a dynamic value which can be typechecked against expected types using
typecasetypecasetypecase. If the dynamic typechecking succeeds basic values extracted from
the dynamic value can be used in the program (e.g. for communication with
the other program). When the runtime system starts up, the user has to spec-
ify an address for the runtime system selected to maintain the trader’s map
from strings to published names and values. The library functions publish

and subscribe, written in Nomadic Pict, implement the whole distributed
protocol which is necessary to contact the trading runtime system (so, the
implementation of the runtime system remains purely local).
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Chapter 8

Conclusions and Future Work

In this dissertation we have looked at mobile agents from the perspective of
programming languages. We have shown that the π-calculus extended with
primitives for agent creation, migration and location-aware communication
can form a basis for distributed programming language design. Our ex-
perience suggests that high-level concurrent programming languages, which
have a powerful type system and type inference, have a significant advan-
tage over conventional imperative languages. This is simply because writing
distributed applications using these languages is easier and less error-prone,
and so can reduce costs of the product development cycle. While the tech-
nical arguments are convincing, they are not sufficient for most industrial
companies, and several non-technical hurdles must be addressed along the
way. The gap between the best that research has to offer and the current
industrial standard is often too large, which results in some misconceptions
(such as “recursive style of programming is hard to learn”, etc.). There are,
however, examples in which emerging application areas have allowed the gap
to be bridged and old technology to be displaced. For example, Java (which
shares some ideas with early predecessors, such as ML) has become popular
with the emergence of the World-Wide Web and applets, and has managed
to displace C++ in many areas. The Ericsson example shows that func-
tional languages are already being chosen instead of C++, Java, or C in the
development of some large industrial applications [Arm96].

Work Done within This Thesis Emerging Internet applications require
new infrastructures (such as Mobile Agents, Mobile IP, Jini, TSpaces), above
standard network protocols. The infrastructure algorithms (especially with
mobility) are complex; they need languages that have clean semantics. We
have focused on one problem, the design of communication primitives for
agents to interact. Location-independent primitives can potentially simplify
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application development but they need delicate distributed infrastructure
which must be somewhat application-oriented. To facilitate experimenta-
tion, we have implemented Nomadic Pict, a prototype mobile agent program-
ming language corresponding to our high- and low-level process calculi. The
high-level language, with particular infrastructures for location-independent
communication, is obtained by applying user-supplied translations into the
low-level language. The full language available to the user remains very close
to the process calculus presentation, and can be given rigorous semantics in
a similar style. The operational semantics of the Nomadic calculi provides
a precise and clear understanding of the algorithms’ behaviour, aiding de-
sign, and ultimately, one may hope, supporting proofs of correctness and
robustness (see below).

We have used our language to investigate the behaviour of many infras-
tructure algorithms in practice, and to assess the usefulness of our two-level
architecture in applications. For example, we developed a disconnection-
aware and scalable communication infrastructure, designed for the PA agent
application (described in chapter 6). Our infrastructure allows disconnected
operation of PA agents. The PA agent uses location-independent primitives
to communicate with a name server and other PAs. In the low-level encod-
ing of the infrastructure, partition from the network is made explicit. Upon
reconnection, any pending communication is reconciled. A federated archi-
tecture of name servers allows agents to maintain efficient communication on
changing between local networks. The algorithms comprise strategies such
as caching and simple adaptive searching; they are highly concurrent.

In our experience with designing such algorithms we have found that the
language provides a good level of abstraction at which potential problems
(such as deadlocks and lost messages) can be seen rather clearly. The uniform
treatment of concurrency and asynchronous messages both within agents and
between machines is a significant gain.

All infrastructures whose translations are included in this thesis have been
prototyped in Nomadic Pict. For testing purposes, we have also written many
short example distributed programs that use message communication, e.g.
Dining Philosophers. Efficiency of the program execution appeared satisfac-
tory (including the distributed algorithms which communicate frequently),
which is encouraging, considering that the runtime system implementation
of Nomadic Pict has not been optimised.

Future Work Proposal An obvious area of future work includes the de-
sign of different infrastructure algorithms for different applications. The
design of infrastructures for wide-area networks should explicitly address the
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problem of administrative boundaries and firewalls (encoded as part of the
Nomadic Pict translations). A simple infrastructure for the PA application
should also be further refined, in order to allow tolerance of arbitrary kinds
of fault in the system. There are also many interesting problems to solve in
the area of the language design and theory. Below, we sketch some of these
problems.

There is work underway to develop proof techniques from the theory of
process calculi (such as observational equivalence) that could be used within
the Nomadic π-calculus framework [Uny]. In particular, Unyapoth is proving
formally the correctness of algorithms proposed in §4.2. An analogous work
should be conducted on formal proofs of more complex algorithms expressed
in Nomadic Pict, such as those described in chapter 6 (this will require to
extend the proof techniques so as to support an input with timeout).

Our low-level language extends the compiler and abstract machine of
Pict, a concurrent but not distributed language based on the π-calculus, to
support our primitives for agent creation, migration, and location-dependent
communication. Analogous extensions could be given for other concurrent
uniprocessor programming languages, such as Amber [Car86], Concurrent
ML [Rep93], and Concurrent Haskell [PGF96].

Our experience shows that the type system designed for Pict is able to
catch a significant number of the most common errors in Nomadic Pict pro-
grams. Of course, that is not to say that there are no useful refinements one
can make to the type system, and indeed we did not attempt, for example,
to refine a subtyping system for locality enforcement of channel types. An-
other important area for further work is the development of an appropriate
module system for Nomadic Pict (e.g. following work on Standard ML). A
simple type-safe trader, which has been currently implemented for dynamic
connection of executing programs, could then be extended so that agents
could publish and subscribe whole modules (as in Facile). The mechanism
should scale well to support a large number of sites, services, and agents.

Turning to semantics, some better notion of time than used in 2.2.3 must
be introduced into the low-level calculus, to allow timeouts to be expressed,
yet the semantics must be kept tractable, to allow robustness properties to
be stated and proved. Failure semantics will require further investigation,
especially in the context of observational equivalence. An important general
question is about the sense in which the semantics of Nomadic Pict relates to
the behaviour of the actual implementation. An operational model by Sewell
[Sew97b] of the interactions between a Pict implementation of Pierce and
Turner (considered as the abstract behaviour of a C program) and its envi-
ronment (modelling an operating system and user) is one example of such an
analysis, but there are many further potential refinements needed. The im-
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plementation of Nomadic Pict is significantly more complex than Pict (there
are interactions with the network communication protocols such as TCP,
communication and site failures may happen, the system function calls can
be executed as separate threads of control, etc.). Further work is therefore
required to prove that our abstract machine is indeed correct.

In our language, we have used single messages for communication between
agents. One might also consider other high-level communication primitives,
such as location-independent multicast, events, and agent primitives, such
as tree-structured agents. More speculatively, the two levels of abstraction
that we have identified may be a useful basis for work on security properties
of mobile agent infrastructures. However, we have neglected it so far as
not being immediately related to the area of our investigation. To consider
whether a distributed infrastructure for mobile agents is secure one must
first be able to define it precisely, and have a clear understanding of how it
is distributed on actual machines. Recent years have seen a lot of research
in the area of security for mobile agents; some results apply directly to the
π-calculus style of communication (e.g. [AFG99]).

Conclusion In conclusion, we believe that the Nomadic π-calculus pre-
sented here can be used as a simple theoretic foundation for agents which
need to communicate while migrating. Moreover, the low-level primitives are
directly implementable above standard network protocols, and the Nomadic
Pict experiment proves that they can be efficiently incorporated into a real
programming language design.



Appendix A

Syntax

This chapter describes the syntax of Nomadic Pict programs (for description of lexical
rules and Pict primitives we use extracts from [PT97b], by courtesy of Benjamin Pierce).

A.1 Lexical Rules

Whitespace characters are space, newline, tab, and formfeed (control-L). Comments are
bracketed by {- and -} and may be nested. A comment is equivalent to whitespace.

Integers are sequences of digits (negative integers start with a - character). Strings
can be any sequence of characters and escape sequences enclosed in double-quotes. Sites
can be any sequence of characters and escape sequences enclosed in double single-quote
characters (”), to denote the Internet address, followed by a colon and integer, to denote
a port number. The escape sequences \", \n, and \\ stand for the characters double-
quote, newline, and backslash. The escape sequence \ddd (where d denotes a decimal
digit) denotes the character with code ddd (codes outside the range 0..255 are illegal).
Character constants consist of a single quote character (’), a character or escape sequence,
and another single quote.

Alphanumeric identifiers begin with a symbol from the following set:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Subsequent symbols may contain the following characters in addition to those men-
tioned above:

0 1 2 3 4 5 6 7 8 9 ’

Symbolic identifiers are non-empty sequences of symbols drawn from the following set:

~ * % + - < > = & | @ $ , ‘
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A.2 Reserved Words

The following symbols are reserved words:

Agent agent and Bool ccode Char DEC def dynamic else
ENCODE false if iflocal import inline Int in migrate new
now of PROC rec run Site String terminate then timeout
to Top true TYPE Type type typecase val switch wait
where with @ ^ \ / . ; : =
| ! # ? ?* _ < > -> {
( [ } ) ]

A.3 Concrete Syntax

For each syntactic form, we note whether it is part of the core language (C), the language
for expressing encodings (T), a derived form (D), an optional type annotation that is filled
in during type reconstruction if omitted by the programmer (R), or an extra-linguistic
feature (E). Syntactic forms characteristic for the Nomadic Pict language are marked by
n.

Compilation units

TopLevel = Import . . . Import Dec . . . Dec E Compilation unit
Import . . . Import TopDec . . . TopDec En Compilation unit

Import = import String E Import statement

Top Declarations

TopDec = Dec Declaration
ENCODE TYPE AGENT = Type Tn Agent type

ENCODE TYPE SITE = Type Tn Site type
ENCODE TYPE PROGRAM = Type Tn Type of program parameters
ENCODE TYPE TOPLEVEL = Type Tn Type of toplevel parameters
ENCODE PROC PROGRAM Id = Proc Tn Program declaration
ENCODE DEC TOPLEVEL Id Id = Dec Tn Toplevel declaration
ENCODE DEF Id Abs Tn def Id Abs
{ agent Id = Id in Id } Id = Dec Tn Agent creation
{ migrate to Id Id } Id = Dec Tn Agent migration
{ < Id @ Id > Id ! Id } Id = Proc Tn Output to agent on site
{ < Id > Id ! Id } Id = Proc Tn Output to adjacent agent
{ iflocal < Id > Id ! Id then Proc else Proc }
Id = Proc

Tn Test-and-send to agent

{ Id @ Id ! Id } Id = Proc Tn Location-independent output
{ String Id in P } Id = Proc Tn Macro-definition
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Declarations

Dec = new Id : Type C Channel creation
val Pat = Val D Value binding
run Proc D Parallel process
Val ; D Sequential execution
inline def Id Abs D Inlinable definition
def Id1 Abs1 and ... and Idn Absn C Recursive definition (n ≥ 1)
type Id = Type D Type abbreviation
type ( Id KindedId1 . . . KindedIdn ) = Type D Type operator abbrev (n ≥ 1)
now ( Id Flag . . . Flag ) E Compiler directive
agent Id1 = Proc1 and ... and Idn = Procn Cn Agent creation (n ≥ 1)

agent Id1 = Proc1 and ... and Idn = Procn in Cn Agent creation (n ≥ 1)
migrate to Val Cn Migrate to site
do String Val Tn Plug in macro-definition
do String Val in Tn Plug in macro-definition
{ Id Id } Tn Plug in declaration

Flag = Id E Ordinary flag
Int E Numeric flag
String E String flag

Abstractions

Abs = Pat = Proc C Process abstraction
( Label FieldPat . . . Label FieldPat ) RType = Val D Value abstraction

Patterns

Pat = Id RType C Variable pattern
[ Label FieldPat . . . Label FieldPat ] C Record pattern
( rec RType Pat ) C Rectype pattern
_ RType C Wildcard pattern
Id RType @ Pat C Layered pattern
{ Id } Tn Plug in pattern

FieldPat = Pat C Value field
# Id Constr C Type field

Type constraints

Constr = 〈empty〉 D No constraint
< Type C Subtype constraint
= Type C Equality constraint
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Processes

Proc = Val ! Val C Output atom
Val ? Abs C Input prefix
Val ?* Abs Cn Replicated input

wait Val ? Abs timeout Val -> Proc Cn Input with timeout
< Val @ Val > Val ! Val Dn Output to agent on site

< Val > Val ! Val Dn Output to adjacent agent
iflocal < Val > Val ! Val then Proc else Proc Cn Test-and-send to agent
Val @ Val ! Val Dn Location-independend output
( ) C Null process
( Proc1 | ... | Procn ) C Parallel composition (n ≥ 2)
( Dec1 . . . Decn Proc ) C Local declarations (n ≥ 1)
if Val then Proc else Proc C Conditional
terminate Cn Terminate agent

typecase Val of Pat1 -> Proc1 ... Patn ->
Procn else Procn+1

Dn Type matching (n ≥ 1)

switch RType Val of ( { Id1 > Pat1 } -> Proc1

... { Idn > Patn } -> Procn )
Dn Variant matching (n ≥ 1)

{ Id Id } Tn Plug in process

Values

Val = Const C Constant
Path C Path
\ Abs D Process abstraction
[ Label FieldVal . . . Label FieldVal ] C Record
if RType Val then Val else Val D Conditional
( Val RType with Label FieldVal . . . Label FieldVal
)

D Field extension

( Val RType where Label FieldVal . . . Label FieldVal
)

D Field override

( RType Val Label FieldVal . . . Label FieldVal ) D Application
( Val > Val1 . . . Valn ) D Right-assoc application (n ≥ 2)
( Val < Val1 . . . Valn ) D Left-assoc application (n ≥ 2)
( rec RType Val ) C Rectype value
( Dec1 . . . Decn Val ) D Local declarations (n ≥ 1)
( ccode Int Id String FieldVal . . . FieldVal ) E Inline C code (Pict)
( ccode Int Id String FieldVal . . . FieldVal ) En Call system function

( dynamic Val RType ) Dn Typed value
{ Id > Val } Dn Variant
typecase RType Val of Pat1 -> Val1 ... Patn
-> Valn else Valn+1

Dn Type matching (n ≥ 1)

switch RType Val of ( { Id1 > Pat1 } -> Val1 ...
{ Idn > Patn } -> Valn )

Dn Variant matching (n ≥ 1)

{ Id } Tn Plug in value
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Path = Id C Variable
Path . Id C Record field projection

FieldVal = Val C Value field
# Type C Type field

Const = String C String constant
Char C Character constant
Int C Integer constant
true C Boolean constant
false C Boolean constant

Types

Type = Top C Top type
Id C Type identifier
^ Type C Input/output channel
! Type C Output channel
/ Type C Responsive output channel
? Type C Input channel
Int C Integer type
Char C Character type
Bool C Boolean type
String C String type
[ Label FieldType . . . Label FieldType ] C Record type
( Type with Label FieldType . . . Label FieldType ) D Record extension
( Type where Label FieldType . . . Label FieldType )D Record field override
\ KindedId1 . . . KindedIdn = Type C Type operator (n ≥ 1)
( Type Type1 . . . Typen ) C Type application (n ≥ 1)
( rec KindedId = Type ) C Recursive type
Agent Cn Agent type

Site Dn Site type
Dyn Dn Dynamic type
{ Id1 > Type1 ... Idn > Typen } Dn Variant type
{ Id } Tn Plug in type

FieldType = Type C Value field
# Id Constr C Type field

RType = 〈empty〉 R Omitted type annotation
: Type C Explicit type annotation

Kinds
Kind = ( Kind1 . . . Kindn -> Kind ) C Operator kind (n ≥ 1)

Type C Type kind

KindedId = Id : Kind C Explicitly-kinded identifier
Id D Implicitly-kinded identifier
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Labels
Label = 〈empty〉 C Anonymous label

Id = C Explicit label
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