
Nomadic Pict: Language and
Infrastructure Design for Mobile Agents

Paweł T. Wojciechowski Peter Sewell
Computer Laboratory

University of Cambridge
{Pawel.Wojciechowski,Peter.Sewell }@cl.cam.ac.uk

Abstract

We study the distributed infrastructures required for
location-independent communication between migrating
agents. These infrastructures are problematic: different ap-
plications may have very different patterns of migration and
communication, and require different performance and ro-
bustness properties; algorithms must be designed with these
in mind. To study this problem we introduce an agent pro-
gramming language –Nomadic Pict. It is designed to allow
infrastructure algorithms to be expressed as clearly as pos-
sible, as translations from a high-level language to a low
level. The levels are based on rigorously-defined process
calculi, they provide sharp levels of abstraction. In this pa-
per we describe the language and use it to develop an in-
frastructure for an example application. The language and
examples have been implemented; we conclude with a de-
scription of the compiler and runtime.

1 Introduction

Mobile agents, units of executing computation that can
migrate between machines, have been widely argued to be
an important enabling technology for future distributed sys-
tems [CHK97, KR98, VE97]. They introduce a new prob-
lem, however. To ease application writing one would like to
be able to use high-levellocation independentcommunica-
tion facilities, allowing the parts of an application to interact
without explicitly tracking each other’s movements. To pro-
vide these above standard network technologies (which di-
rectly support only location-dependent communication) re-
quires some distributed infrastructure, problematic in three
ways. Firstly, the distributed algorithms needed are delicate.
Secondly, flexible structuring mechanisms are required to
support clean factorisation of a system into its high-level ap-
plication component and the infrastructure implementation.
Thirdly, the choice or design of an infrastructure must be

somewhat application-specific — any given algorithm will
only have satisfactory performance for some range of mi-
gration and communication behaviour; the algorithms must
be matched to the expected properties (and robustness and
security demands) of applications.

In theNomadic Pictproject [SWP98, SWP99] we are ad-
dressing these issues in the context of the eponymous mo-
bile agent programming language. Nomadic Pict is based
on a small core calculus –the Nomadicπ-calculus– that has
a clear rigorous operational semantics, tightly related to real
network communication. This permits infrastructure algo-
rithms to be expressed precisely and concisely in an exe-
cutable form, aiding design and supporting ongoing work
on correctness and robustness proofs.

The language has a two-level architecture. The low level
consists of well-understood, location-dependent primitives,
including communication and agent migration. The high
level, in which applications can be written, extends these
with location-independent communication. An infrastruc-
ture can be expressed as an implementation of the high-
level primitives in terms of the low-level language; only
the low level need be supported by a widespread runtime
system (the distributed parts of the infrastructure can be de-
ployed dynamically, on application start-up, using agent mi-
gration).

The ease of writing infrastructure algorithms, and the
fact that an arbitrary infrastructure can be provided for an
application at compile time, make it straightforward to ex-
periment with a wide range of infrastructures for applica-
tions with different migration and communication patterns.

In our earlier work we focussed on the design of the No-
madicπ-calculus, in [SWP99] giving its operational seman-
tics and expressing two simple infrastructure algorithms as
translations from a high-level to a low-level calculus. In this
paper we introduce the programming language in more de-
tail (§2). We discuss a small example application and the de-
sign of an infrastructure suited to it (§3,4), and describe the
language implementation (§5). The focus is on demonstrat-
ing the benefits of a multi-level architecture based on clearly

defined levels of abstraction; we have therefore chosen a
somewhat idealised example application. The required in-
frastructure is still far from trivial, however. Expressing it
as a Nomadic Pict translation allows us to include an al-
most complete executable description, making the details
of concurrency, synchronisation and distribution clear and
precise. By considering the migration and communication
patterns of the application we can argue that this infrastruc-
ture algorithm is a practicable choice, whereas many others,
including those in [SWP99], would not be.

A number of other mobile agent systems provide a form
of location independence; we briefly review some of them
below. Comparisons are difficult, in part because of the lack
of clear levels of abstraction and descriptions of algorithms
— without these, it is hard to understand the performance
and robustness properties of the infrastructures.

The Join Language [FGL+96] provides location-
independent messages using a built-in infrastructure, based
on forwarding pointer chains that are collapsed when pos-
sible. Voyager [Obj97] supports location-independent mes-
sages, both synchronous and asynchronous messages and
multicasts, again using forwarding pointer chains that are
collapsed when possible. A directory service is also pro-
vided. The Mobile Object Workbench [BHDH98] provides
location independent interaction, using a hierarchical direc-
tory service for locating clusters of objects that have moved.
There is a single infrastructure, although it is stated that the
architecture is flexible enough to allow others. The infras-
tructure work of Aridor and Oshima [AO98] provides three
main forms of message delivery: location-independent us-
ing either forwarding pointers or location servers, and lo-
cation dependent (they also provide other mechanisms for
locating an agent). Mobile Objects and Agents (MOA)
[MLC98] supports four schemes for locating agents; these
are used as required to deliver location-independent mes-
sages. Stream communication between agents is also de-
scribed, with communicating channel managers informing
each other on migration. The MASIF proposal [MBB+98]
also involves four locating schemes, but appears to build
communication facilities on top. This excludes a number
of reasonable infrastructures; it contrasts with our approach
here, in which location-independent message delivery is
taken as primary (some infrastructures do not support a lo-
cation service).

2 The Nomadic Pict Language

We have designed and implemented Nomadic Pict as a
vehicle for exploring distributed infrastructure. It builds
on the Pict language of Pierce and Turner [PT97, Tur96],
a concurrent (but not distributed) language based on the
asynchronousπ-calculus [MPW92, HT91, Bou92]. Pict
supports fine-grain concurrency and the communication of

asynchronous messages. To these Low-Level Nomadic
Pict adds primitives for agent creation, the migration of
agents between sites, and the communication of location-
dependent asynchronous messages between agents. The
high-level language adds location-independent communica-
tion; an arbitrary infrastructure can be expressed as a user-
defined translation into the low-level language. The com-
bination of low-level language and facilities for defining a
translation thus embody the design principle:

A wide-area programming language should pro-
vide a level of abstraction that makes distribu-
tion and network communication clear; higher
levels should be provided and implemented us-
ing the modularisation facilities of the language.
It should be possible to deploy such infrastructure
dynamically.

Such a language can have a standardized low-level runtime
that is common to many machines, with divergent high-
level facilities chosen and installed at run time. The levels
of abstraction can be made precise by giving process calculi
equipped with rigorous operational semantics. Preliminary
definitions of the (low and high-level) Nomadicπ-calculi
were in [SWP99]. They have since been extended to large
fragments of the language, for use in correctness proofs, but
are not described here.

We have focussed on the simplest language that allows
us to study the core problem of§1, rather than attempting
to produce an industrial-strength language. In particular,
we study a single representative location-independent prim-
itive, that of delivering a message to an agent on an arbitrary
site. We believe that analogous work could be carried out
for other high-level primitives, e.g. multicasts, and for many
other concurrent languages.

A further simplification is the adoption of a fixed two-
level architecture, rather than a general purpose module sys-
tem. The utility of a rich module system for structuring
communication protocols, in the absence of mobility, has
been demonstrated in the FOX project [HLP98]; see also
Ensemble [Hay98]. In future work we intend to integrate
an ML-style module system with a Nomadic Pict language.

In this section we introduce enough of the language for
the example application and infrastructure following. We
begin with an example. Below is a program in the low-level
language showing how an applet server can be expressed. It
can receive (on the channel namedgetApplet) requests
for an applet; the requests contain a pair (bound toa ands)
consisting of the name of the requesting agent and the name
of its site.

getApplet ?* [a s] =
agentagentagent b =

migratemigratemigrate tototo s
(<a@s’>ack!b | B)

ininin ()

When a request is received the server creates an applet
agent with a new name bound tob. This agent immediately
migrates to sites . It then sends an acknowledgement to
the requesting agenta (which is assumed to be on sites’)
containing its name. In parallel, the bodyB of the applet
commences execution.

The example illustrates the main entities of the language:
sites, agents and channels.Sitesshould be thought of as
physical machines or, more accurately, as instantiations of
the Nomadic Pict runtime system on machines; each site has
a unique name. This paper does not explicitly address ques-
tions of network failure and reconfiguration, or of security.
Sites are therefore unstructured; neither network topology
nor administrative domains are represented in the language.
Agentsare units of executing code; an agent has a unique
name and a body consisting of some Nomadic Pict pro-
cess; at any moment it is located at a particular site.Chan-
nelssupport communication within agents, and also provide
targets for inter-agent communication—an inter-agent mes-
sage will be sent to a particular channel within the desti-
nation agent. Channels also have unique names. The lan-
guage is built above asynchronous messaging, both within
and between sites; in the current implementation inter-site
messages are sent on TCP connections, created on demand,
but our algorithms do not depend on the message ordering
that could be provided by TCP.

The inter-agent message<a@s>ack!b is characteris-
tic of the low-level language. It is location-dependent—if
agenta is in fact on sites then the messageb will be de-
livered, to channelack in a; otherwise the message will
be discarded. In the implementation at most one inter-site
message is sent.

Names As in theπ-calculus, names play a key rôle. New
names of agents and channels can be created dynamically.
These names arepure, in the sense of Needham [Nee89];
no information about their creation is visible within the lan-
guage (in our current implementation they do contain site
IDs, but could equally well be implemented by choosing
large random numbers).

Types The language inherits a rich type system from
Pict, including higher-order polymorphism, simple recur-
sive types and subtyping. It has a partial type inference al-
gorithm. It adds new base typesSite andAgent of site
and agent names, and a typeDynamic (to date only par-
tially implemented) for implementing traders. In this paper
we make most use ofSite , Agent , the base typeString
of strings, the typêT of channel names that can carry val-
ues of typeT, tuples[T1 .. Tn] , and existential poly-
morphic types such as[#X T1 .. Tn] in which the type
variableX may occur in the field typesT1 .. Tn . We
also use variants and a type operatorMapfrom the libraries,

taking two types and giving the type of maps, or lookup ta-
bles, from one to the other.

Values Channels allow the communication of first-order
values: namesa,b, . . ., strings, tuples[v1 .. vn]
of the n values v1 .. vn , packages of existential
types [#T v1 .. vn] , and elements of variant types
{Label>v} . The language does not support communica-
tion of processes (except for the migration of whole agents)
or of higher-order functions.Patterns p are of the same
shapes as values.

Low-Level Language The main syntactic category is that
of processes(we confuse processes and declarations for
brevity). We will introduce the main low-level primitives
in groups.

agentagentagent a=P ininin Q agent creation
migratemigratemigrate tototo s P agent migration

The execution of the constructagentagentagent a=P ininin Q spawns
a new agent on the current site, with bodyP. After the cre-
ation, Q commences execution, in parallel with the rest of
the body of the spawning agent. The new agent has a unique
name which may be referred to both in its body and in the
spawning agent (i.e.a is binding inP andQ). Agents can
migrate to named sites — the execution ofmigratemigratemigrate tototo
s P as part of an agent results in the whole agent migrating
to sites . After the migration,P commences execution in
parallel with the rest of the body of the agent.

P | Q parallel composition
() nil

The body of an agent may consist of many process terms in
parallel, i.e. essentially of many lightweight threads. They
will interact only by message passing.

newnewnew c:T P new channel name creation
c!v outputv on channelc

in the current agent
c?p = P input from channelc
c?*p = P replicated input from channelc

To express computation within an agent, while keep-
ing a lightweight implementation and semantics, we in-
cludeπ-calculus-style interaction primitives. Execution of
new c:ˆT P creates a new unique channel name for car-
rying values of typeT; c is binding inP. An outputc!v
(of valuev on channelc) and an inputc?p=P in the same
agent may synchronise, resulting inP with the appropri-
ate parts of the valuev bound to the formal parameters in
the patternp. A replicated inputc?*p=P behaves simi-
larly except that it persists after the synchronisation, and so

may receive another value. In bothc?p=P andc?*p=P
the names inp are binding inP.

We require a clear relationship between the semantics
of the low-level language and the inter-machine messages
that are sent in the implementation. To achieve this we al-
low direct communication between outputs and inputs on a
channel only if they arein the same agent. Intuitively, there
is a distinctπ-calculus-style channel for each channel name
in every agent.

iflocaliflocaliflocal <a>c!v then thenthen P elseelseelse Q
test-and-send to agenta on this site

<a>c!v send to agenta on this site
<a@s>c!v send to agenta on sites

Finally, the low-level language includes primitives for in-
teraction between agents. The execution ofiflocaliflocaliflocal
<a>c!v thenthenthen P elseelseelse Q in the body of an agentb has
two possible outcomes. If agenta is on the same site as
b, then the messagec!v will be delivered toa (where it
may later interact with an input) andP will commence ex-
ecution in parallel with the rest of the body ofb; other-
wise the message will be discarded, andQ will execute as
part ofb. The construct is analogous to test-and-set opera-
tions in shared memory systems — delivering the message
and startingP, or discarding it and startingQ, atomically.
It can greatly simplify algorithms that involve communica-
tion with agents that may migrate away at any time, yet is
still implementable locally, by the runtime system on each
site. Two other useful constructs can be expressed in the
language introduced so far:<a>c!v and<a@s>c!v at-
tempt to deliverc!v to agenta, on the current site and on
s respectively. They fail silently ifa is not where expected
and so are usually used only wherea is predictable.

Note that the language primitives are almost entirely
asynchronous — onlymigratemigratemigrate and<a@s>c!v can in-
volve network communication; they require at most one
message to be sent between machines.

trytrytry c?p=P timeouttimeouttimeout n -> Q
input with timeout

For implementing infrastructures that are robust under some
level of failure, or support disconnected operation, some
timed primitive is required. The low-level language in-
cludes a single timed input as above, with timeout value
n. If a message on channelc is received withinn seconds
thenP will be started as in a normal input, otherwiseQwill
be. The timing is approximate, as the runtime system may
introduce some delays.

High-Level Language The high-level language is ob-
tained by extending the low-level with a single location-
independent communication primitive:

c@a!v location-independent output to agenta

The intended semantics of an outputc@a!v is that its ex-
ecution will reliably deliver the messagec!v to agenta,
irrespective of the current site ofa and of any migrations.
The low-level communication primitives are also available,
for interacting with application agents whose locations are
predictable.

Expressing Encodings The language for expressing en-
codings allows the translation of each interesting phrase (all
those involving agents or communication) to be specified;
the translation of a whole program can be expressed using
this compositional translation. A translation of types can
also be specified, and parameters can be passed through the
translation. We omit the concrete syntax; the example in-
frastructure in§4 should give the idea.

Locks, methods and objects The language inherits a
common idiom for expressing concurrent objects from Pict
[PT95]. The process

newnewnew lock:ˆStateType
(lock!initialState
| method1?*arg =

(lock?state = ... lock!state’ ...)
...
| methodn?*arg =

(lock?state = ... lock!state’’...)
)

is analogous to an object with methods
method1 . . .methodn and a state of typeState-
Type . Mutual exclusion between the bodies of the
methods is enforced by keeping the state as an output on a
lock channel; the lock is free if there is an output and taken
otherwise.

3 Example Application

In this section we discuss a small application that makes
use of mobility and location-independent communication.
Our primary goal is to present an example of the choice of a
communication infrastructure based on a specific migration
and communication pattern, together with the use of our
two-level architecture. In Section 4 we give the key parts
of the infrastructure encoding, providing an executable de-
scription of the algorithm. The application and infrastruc-
ture have been prototyped in Nomadic Pict. The example
algorithm design assumes a large essentially-reliable LAN,
rather than the wide-area unreliable case that we are most
interested in, but it should give the feel of this style of work-
ing.

The PA Application We consider the support of collab-
orations within (say) a large computer science department,

spread over several buildings. Most individuals will be in-
volved in a few collaborations, each of 2–10 people. In-
dividuals move frequently between offices, labs and pub-
lic spaces; impromptu working meetings may develop any-
where. Individuals would therefore like to be able to sum-
mon their working state (which may be complex, consisting
of editors, file browsers, tests-in-progress etc) to any ma-
chine. These summonings should preserve any communi-
cations that they are engaged in, for example audio/video
links with other members of the project.

To achieve this, the user’s working state can be encap-
sulated in a mobile agent, an electronicpersonal assistant,
that can migrate on demand.

High-Level Architecture We implement the PA applica-
tion with three classes of agents: the PAs themselves, which
migrate from site to site;summoneragents, which are static
(one per site) and are used to call the PAs; and a single
name serveragent, also static, which maintains a lookup
table from the textual keys of PAs to their internal agent
names. They interact using location-independent commu-
nication on channel names

registPA : ˆ[String Agent]
summonPA : ˆ[String Agent Site]
moveOn : ˆSite
notFound : ˆ[]
mid : ˆString

A sample PA is below. It has 4 parallel components; a regis-
tration message, a message sent to another PA, a replicated
input that receives data from other PAs and prints it, and a
replicated input that receives migration commands and ex-
ecutes them.

agentagentagent PA1 =
(registPA@NameServer!["pawelsPA" PA1]
| mid@PA2!"Outgoing data stream"
| mid?*d = print!(+$ "Incoming:" d)
| moveOn ?* s =

(migratemigratemigrate tototo s (print!"Hello Pawel!
Your PA has arrived...")))

The name server below maintains a map from strings to
agent names; it receives new mappings onregistPA . The
map is stored as an output on the internal channelnames.
Summon requests are received onsummonPA, containing
a textual key and the name/site of the summoner. If the key
has been registered the name server sends a migration com-
mand to the corresponding PA agent, otherwise it nacks to
the summoner.

agentagentagent NameServer =
newnewnew names : ˆ(Map String Agent)
(names ! (Map.make ==)
| registPA?*[descr PA] = names?m =

(names!(map.add m descr PA))
| summonPA?*[descr Su s] = names?m =

(switchswitchswitch (map.lookup m descr) of ofof
{Found>PA:Agent } -> moveOn@PA!s
{NotFound>_:[] } -> notFound@Su![]

endendend | names!m))

The summoner at sites is as below. It gets strings from the
local console, sending them as requests to the name server.

agentagentagent Summoner =
valvalval PAname = (sys.read_line [])
(summonPA@NameServer![PAname

Summoner s]
| notFound?_= print!(+$ PAname

" not found!"))

In the actual implementation the top-level encoding
launches summoners dynamically, using the standard mi-
gration primitive, onto the list of active sites. For simplicity
the implementation uses location-independent communica-
tion throughout, despite the fact that the name server and
summoners are static.

Migration and Communication Pattern A usable in-
frastructure for the PA application can only be designed in
the context of detailed assumptions, both about the system
properties and about the expected behaviour of the high-
level agents.

For the former, we assume that the application is run-
ning over a large LAN, in which reliable messaging can be
provided by lower-level protocols and all machines are at
roughly the same communication cost distance from each
other. Machines are also basically reliable, although from
time to time it is necessary to reboot or turn off. The LAN
is under a single management, with no internal firewalls.

For the latter, we suppose that the number of PA agents
is of the same order as the number of people in the lab. Each
PA will migrate infrequently, with minutes or hours be-
tween migrations. The path of migrations is unpredictable
— it may range over the whole LAN. The migrations of
different PAs are essentially uncorrelated in time. It is com-
mon for people to work for extended periods at machines
out of their offices. PAs communicate between each other
frequently, with significant bandwidth — eg audio/video
messages or streams, and other data (that must be delivered
reliably).

These assumptions are not wholly accurate — the ap-
plication also demands disconnected operation (on laptops)
and a higher level of fault-tolerance. We discuss infrastruc-
ture design addressing these briefly, at the end of§4, but for
the sake of a clear example infrastructure we neglect them
for now.

Design of Appropriate Infrastructure We develop our
infrastructure in several steps, beginning with the two ex-
tremely simple algorithms described precisely in [SWP99].

The Central Serveralgorithm has a single server that
records the current site of every agent; agents synchro-
nise with the server before and after migrations; applica-
tion (location-independent) messages are sent via the server.
The Forwarding Pointersalgorithm has a daemon on each
site; when an agent migrates away it leaves a pointer to
the site that it is going to (and the daemon there). Appli-
cation messages are delivered by the daemons, following
the pointers. Neither of these algorithms suffice for the
PA application. The central server is a bottleneck for all
inter-PA communication; further, all application messages
must make two hops (and these messages make up the main
source of network load). The forwarding pointers algorithm
removes the bottleneck, but there application messages may
have to make many hops, even in the common case.

Adapting the Central Server so as to reduce the number
of application-message hops required, we have theQuery
Serveralgorithm. As before, it has a server that records the
current site of every agent, and agents synchronise with it on
migrations. In addition, each site has a daemon. An appli-
cation message is sent to the daemon which then queries the
server to discover the site of the target agent; the message
is then sent to the daemon on the target site. If the agent
has migrated away, the message is returned to the original
daemon to try again. In the common case application mes-
sages will here take only one hop. The obvious defect is the
large number of control messages between daemons and the
server; to reduce these each site’s daemon can maintain a
cache of location data.

TheQuery Server with Cachingdoes this. When a dae-
mon receives a mis-delivered message, for an agent that has
left its site, the message is forwarded to the server. The
server both forwards the message on to the agent’s cur-
rent site and sends a cache-update message to the originat-
ing daemon. In the common case application messages are
therefore delivered in only one hop.

This may seem well-suited to the PA application, but the
textual description omits many critical points — it does not
unambiguously identify a single algorithm. To do so, and to
develop reasonable confidence in its correctness and perfor-
mance, a more precise description is required, ideally in an
executable form. We give such a description, as a Nomadic
Pict encoding, in Section 4.

These algorithms clearly explore only a part of the de-
sign space — one can envisage e.g. splitting the servers into
many parts (one dealing with agents created for each user),
forwarding pointers in which long chains are collapsed, and
server-less algorithms in which the agents of a collabora-
tive group synchronise among themselves. An exhaustive
discussion is beyond the scope of this paper. One can also
analyse the application further — in fact, the migrations of
each user’s PA may usually be within a small group of ma-
chines, e.g. those of a research group. More sophisticated

infrastructures might use some heuristics to take advantage
of this. For a critical application a quantitative analysis may
be required.

A closely related application for multimedia CSCW is
described in [BHB97], implemented (with real video sup-
port) using theTubeMobile Agent System. A low-level
multimedia stream library was used; streams were recon-
nected on movement at the application level. Moving this
into the infrastructure would involve synchronisations be-
tween the source and all sinks of a stream on any migration.

4 Example Infrastructure

In this section we describe the Query Server with
Caching algorithm as a Nomadic Pict encoding, thereby
making all the details of concurrency and synchronisation
precise. At first sight the code fragments may seem im-
penetrable, as space for a full exposition is lacking, but
we believe they repay study — almost the entire encod-
ing can be given in 1.5 pages, rather concise for a non-
trivial executable distributed infrastructure. In our experi-
ence with designing such algorithms we have found that the
language provides a good level of abstraction at which po-
tential problems (such as deadlocks and lost messages) can
be seen rather clearly. The uniform treatment of concur-
rency and asynchronous messages both within agents and
between machines is a significant gain. To give a feeling
for such design the code fragments are taken almost verba-
tim from the executable source, with some minor sugar.

An encoding consists of three parts, a top-level trans-
lation (applied to whole programs), an auxiliary composi-
tional translation[[P]] of subprogramsP, defined phrase-by-
phrase, and an encoding of types. The QSC encoding in-
volves three main classes of agents: the query serverQ it-
self (on a single site), the daemons (one on each site), and
the translations of high-level application agents (which may
migrate). The top-level translation of a programP launches
the query server and all the daemons before executing[[P]].
The query server, and the code which launches daemons,
are given in Figure 1; the interesting clauses of the compo-
sitional translation are in the text below.

The messages sent between agents fall into three groups,
implementing the high-level agent creation, agent migra-
tion, and location-independent messages. Typical execu-
tions are illustrated in Figure 2 and below. Correspond-
ingly, only these cases of the compositional translation are
non-trivial.

Each class of agents maintains some explicit state as an
output on a lock channel. The query server maintains a map
from each agent name to the site (and daemon) where the
agent is currently located. This is kept accurate when agents
are created or migrate. Each daemon maintains a map from
some agent names to the site (and daemon) that they guess

the agent is located at. This is updated only when a mes-
sage delivery fails. The encoding of each high-level agent
records its current site (and daemon).

To send a location-independent message the translation
of a high-level agent simply asks the local daemon to send
it. The compositional translation ofc@b!v , ‘send v to
channelc in agentb’, is below.

[[c @ b ! v]][a Q SQ]
def
=

currentloc?[S DS]=
iflocaliflocaliflocal <DS>try_message![b c v] then thenthen

currentloc![S DS]
elseelseelse ()

This first reads the nameS of the current site and the
nameDSof the local daemon from the agent’s lock chan-
nel currentloc , then sends[b c v] on the channel
try message to DS, replacing the lock after the message
is sent. The translation is parametric on the triple[a Q
SQ] of the namea of the agent containing this phrase, the
nameQ of the query server, and the siteSQof the query
server — for this phrase, none are used. We return later to
the process of delivery of the message.

To migrate while keeping the query server’s map accu-
rate, the translation of amigratemigratemigrate in a high-level agent
synchronises with the query server before and after actu-
ally migrating, withmigrating , migrated , andack
messages.

[[migratemigratemigrate tototo u P]][a Q SQ]
def
=

currentloc?[S DS]=
valvalval [U DU] = u
(<Q @ SQ>migrating!a
| ack?_ = migratemigratemigrate tototo U

(<Q @ SQ>migrated![U DU]
| ack?_ = (currentloc![U DU]

| [[P]][a Q SQ])))

A sample execution is below.

a@S Q@SQ

XXXXXXXXXz

migrating!a

���������9
ack!

migratemigratemigrate tototo U

XXXXXXXXXz

migrated![U DU]

���������9
ack!

The query server’s lock is kept during the migration. The
agent’s own record of it’s current site and daemon must also
be updated with the new data[U DU] when the agent’s
lock is released. Note that in the body of the encoding the
nameDUof the daemon on the target site must be available.
This is achieved by encoding site names in the high-level
program by pairs of a site name and the associated daemon
name; there is a translation of types

[[Agent]]
def
= Agent

[[Site]]
def
= [Site Agent]

Similarly, a high-level agenta must synchronise with the
query server while creating a new agentb, with messages
on register andack .

[[agentagentagent b = P ininin P’]][a Q SQ]
def
=

currentloc?[S DS]=
agentagentagent b =

(<Q @ SQ>register![b [S DS]]
| ack?_= iflocaliflocaliflocal <a>ack![] then thenthen

(currentloc![S DS]
| [[P]][b Q SQ])

elseelseelse ())
ininin

ack?_= (currentloc![S DS]
| [[P’]][a Q SQ]))

The current site/daemon data for the new agent must be ini-
tialised to [S DS] ; the creating agent is prevented from
migrating away until the registration has taken place by
keeping itscurrentloc lock until an ack is received
from b. A sample execution is below.

a@S b@S Q@SQ

create

sXXXXXXXXXz

register![b [S DS]]

���������9
ack!

¾
ack!

Returning to the process of message delivery, there are
three cases (see Figure 2). Consider the implementation of
c@b!v in agenta on siteS, where the daemon isD. Sup-
poseb is on siteR, where the daemon isDR. EitherDhas the
correct site/daemon ofb cached, orDhas no cache data for
b, or it has incorrect cache data. In the first caseD sends a
try deliver message toDRwhich delivers the message
to b usingiflocaliflocaliflocal . For the PA application this should be
the common case; it requires only one network message.

agentagentagent Q = (* the query server *)
newnewnew lock : ˆ(Map Agent [Site Agent])
(lock!(map.make ==) (* initialise the lock *)
| register?*[a [S DS]]= (* register a new agent *)

lock?m=
(lock!(map.add m a [S DS])
| <a@S>ack![])

| migrating?*a= (* lock during a migration *)
lock?m= switchswitchswitch (map.lookup m a) of ofof
{Found> [S:Site DS:Agent] } ->

(<a@S>ack![]
| migrated?[S’ DS’] =

(lock!(map.add m a [S’ DS’])
| <a@S’>ack![]))

{NotFound> _:[] } -> ()
endendend

| message?*[#X DU U a:Agent c:ˆX v:X]= (* deal with a lost message *)
lock?m= switchswitchswitch (map.lookup m a) of ofof
{Found> [R : Site DR : Agent] } ->

(<DU @ U>update![a [R DR]]
| <DR @ R>try_deliver![Q SQ a c v true truetrue]
| dack?_ = lock!m)

{NotFound> _:[] } -> ()
endendend)

daemondaemon?*S:Site= (* launch a daemon on site S *)
agentagentagent D =

migratemigratemigrate tototo S
newnewnew lock : ˆ(Map Agent [Site Agent]) (* the daemon body *)
(<toplevel@firstSite>ndack![S D]
| lock!(map.make ==)
| try_message?*[#X a:Agent c:ˆX v:X]=

lock?m= switchswitchswitch (map.lookup m a) of ofof
{Found> [R : Site DR : Agent] } ->

(<DR @ R>try_deliver![D S a c v false falsefalse]
| lock!m)

{NotFound> _:[] } ->
(<Q @ SQ>message![D S a c v]
| lock!m)

endendend
| try_deliver?*[#X DU:Agent U:Site a:Agent c:ˆX v:X ackme:Bool] =

iflocaliflocaliflocal <a>c!v then thenthen
ififif ackme thenthenthen <DU @ U>dack![] elseelseelse ()

elseelseelse <Q @ SQ>message![DU U a c v]
| update?*[a s] = lock?m= lock!(map.add m a s))

Figure 1. Parts of the Top Level – the Query Server and Daemon Daemon

The best scenario: good guess in theDcache. This should be the common case.

a@S D@S DR@R b@R

-
try message![b c v]

XXXXXXXXXz

try deliver![D S b c v false]

-
c!v

No guess in theDcache.

a@S D@S Q@SQ DR@R b@R

-
try message![b c v]

XXXXXXXXXz

message![D S b c v]

���������9
update![b [R DR]] XXXXXXXXXz

try deliver![Q SQ b c v true]

���������9
dack!

-
c!v

The worst scenario: wrong guess in theDcache.

a@S D@S DU@U Q@SQ DR@R b@R

-
try message![b c v]

XXXXXXXXXz

try deliver![D S b c v false]

XXXXXXXXXz

message![D S b c v]

���������

XXXXXXXXXz

try deliver![Q SQ b c v true]

���������9
update![b [R DR]] ���������9

dack!
-

c!v

Horizontal arrows are synchronised communications within a single machine (usingiflocaliflocaliflocal); slanted arrows are asyn-
chronous messages.

Figure 2. The Delivery of Location-Independent Message c@b!v from a to b.

In the cache-miss caseD sends amessage message to
the query server, which both sends atry deliver mes-
sage toDR(which then delivers successfully) and anup-
date message back toD (which updates its cache). The
query server’s lock is kept until the message is delivered,
thus preventingb from migrating until then.

Finally, the incorrect-cache-hit case. SupposeD has a
mistaken pointer toDU@U. It will send a try deliver
message toDUwhich will be unable to deliver the message.
DUwill then send amessage to the query server, much as
before (except that the cache update message still goes toD,
not toDU).

The algorithm is very asynchronous; some additional op-
timisations are feasible (e.g. updating the daemon’s cache
more frequently). It should have good performance for the
PA application, with most application-level messages deliv-
ered in a single hop and none taking more than three hops
(though 5 messages). The query server is involved only be-
tween a migration and the time at which all relevant dae-
mons receive a cache update; this should be a short interval.

The algorithm does, however, depend on reliable ma-
chines. The query server has critical state; the daemons
do not, and so in principle could be re-installed after a site
crash, but it is only possible to reboot a machine when no
other daemons have pointers (that they will use) to it. In a
refined version of the protocol daemons and the QS would
use a store-and-forward protocol to deliver all messages re-
liably in spite of failures; the QS would be replicated. In
order to extend collaboration between clusters of domains
(e.g. over a wide-area network), a federated architecture of
interconnected servers must be adopted. In order to avoid
long hops, the agents should register and unregister with the
local QS on changing domains.

5 Language Implementation

Architecture of the Compiler Programs in Nomadic Pict
are compiled in the same way as they are formally specified,
by translating the high-level program into the low-level lan-
guage, which in turn is compiled to the intermediate code
executed by the runtime. The typechecker performs partial
type inference. Typechecking is performed twice, before
and after an encoding is applied. In the last phases, any sep-
arately compiled modules are joined and the compiler incre-
mentally optimises the resulting intermediate code. The in-
termediate code is architecture-independent; its constructs
correspond approximately to those of the Low Level No-
madic π-calculus (extended with value types and system
function calls).

Architecture of the Runtime Because much of the sys-
tem functionality, including all distributed infrastructure, is

written in Nomadic Pict, the runtime has a very simple ar-
chitecture. It consists of two layers: the Virtual Machine
and I/O server, above TCP. It is written in Objective Caml
[Ler95]. The implementation of the virtual machine builds
on the abstract machine designed for Pict [Tur96].

The virtual machine maintains a state consisting of an
agent storeof agent closures; the agent names are parti-
tioned into anagent queue, of agents waiting to be sched-
uled, and awaiting room, of agents whose process terms
are all blocked. An agent closure consists of arun queue,
of Nomadic π process/environment pairs waiting to be
scheduled (round-robin),channel queuesof terms that are
blocked on internal or inter-agent communication, and an
environment. Environments record bindings of variables to
channels and basic values. The virtual machine executes in
steps, in each of which the closure of the agent at the front
of the agent queue is executed for a fixed number of inter-
actions. This ensures fair execution of the fine-grain par-
allelism in the language. Agents with an empty run queue
wait in the waiting room. They stay suspended until some
other agent sends an output term to them. The only oper-
ations that remove agent closures from the agent store are
terminate andmigrate . A migrate moves an agent
to a remote site. On the remote site, the agent is placed at
the end of the agent queue.

The multithreaded I/O server receives incoming agents,
consisting of an agent name and an agent closure; they are
unmarshalled and placed in the agent store. Note that an
agent closure contains the entire state of an agent, allowing
agent execution to be resumed from the point where it was
suspended.

The runtime does not support any reliable protocols that
are tailored for agents, such as the Agent Transfer Proto-
col of [LA97]. Such protocols must be encoded explicitly
in an infrastructure encoding – the key point in our experi-
ments is to understand the dependencies between machines
(both in the infrastructure and in application programs); we
want to understand exactly how the system behaves under
failure, not simply to make things that behave well under
very partial failure. The purely local implementability of
the runtime is good for this.

Acknowledgements Wojciechowski was supported by
the Wolfson Foundation, Sewell was supported by EPSRC
grant GR/L 62290Calculi for Interactive Systems: The-
ory and Experimentand by a Royal Society University Re-
search Fellowship.

References

[AO98] Y. Aridor and M. Oshima. Infrastructure for Mo-
bile Agents: Requirements and Design. InProc. 2nd

Int. Workshop on Mobile Agents, LNCS 1477, volume
1477, pages 38–49, 1998.

[BHB97] John Bates, David Halls, and Jean Bacon. Mid-
dleware support for mobile multimedia applications.
ICL Systems Journal, 12(2):289–314, November
1997.

[BHDH98] Michael Bursell, Richard Hayton, Douglas Donald-
son, and Andrew Herbert. A Mobile Object Work-
bench. In Kurt Rothermel and Fritz Hohl, edi-
tors,Proceedings of the 2nd International Workshop
on Mobile Agents (MA), LNCS 1477, volume 1477,
pages 136–147, September 1998.

[Bou92] Gérard Boudol. Asynchrony and theπ-calculus
(note). Rapport de Recherche 1702, INRIA Sofia-
Antipolis, May 1992.

[CHK97] D. Chess, C. Harrison, and A. Kershenbaum. Mo-
bile agents: Are they a good idea? InMobile Object
Systems – Towards the Programmable Internet. LNCS
1222, pages 25–48, 1997.

[FGL+96] Cédric Fournet, Georges Gonthier, Jean-Jacques
Lévy, Luc Maranget, and Didier Ŕemy. A calculus
of mobile agents. InProceedings of CONCUR ’96.
LNCS 1119, pages 406–421. Springer-Verlag, August
1996.

[Hay98] Mark Hayden. The Ensemble System. PhD thesis,
Cornell University, 1998. Cornell Technical Report
TR98-1662.

[HLP98] Robert Harper, Peter Lee, and Frank Pfenning. The
Fox project: Advanced language technology for ex-
tensible systems. Technical Report CMU-CS-98-107,
Carnegie Mellon University, 1998.

[HT91] Kohei Honda and Mario Tokoro. An Object Calculus
for Asynchronous Communication. InProceedings of
ECOOP ’91, LNCS 512, pages 133–147, July 1991.

[KR98] Fritz Hohl (Eds.) Kurt Rothermel.Mobile Agents,
Proceedings of the Second International Workshop,
MA’98. Springer-Verlag, Germany, 1998.

[LA97] Danny B. Lange and Yariv Aridor.Agent Transfer
Protocol – ATP/0.1. IBM Tokyo Research Labora-
tory, March 1997.

[Ler95] Xavier Leroy. Le syst̀eme Caml Special Light: mod-
ules et compilation efficace en Caml. Technical Re-
port RR-2721, Inria, Institut National de Recherche
en Informatique et en Automatique, 1995.

[MBB+98] D. Milojicic, M. Breugst, I. Busse, J. Campbell,
S. Covaci, B. Friedman, K. Kosaka, D. Lange,
K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran,

and J. White. MASIF: The OMG Mobile Agent Sys-
tem Interoperability Facility. InProc. 2nd Int. Work-
shop on Mobile Agents, LNCS 1477, pages 50–67,
1998.

[MLC98] Dejan S. Milojičić, William LaForge, and Deepika
Chauhan. Mobile Objects and Agents (MOA).
In Proceedings of the 4th Conference on Object-
Oriented Technologies and Systems (COOTS-98),
pages 179–194, April 27–30 1998.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of
mobile processes, Parts I + II.Information and Com-
putation, 100(1):1–77, 1992.

[Nee89] R. M. Needham. Names. In S. Mullender, editor,
Distributed Systems, pages 89–101. Addison-Wesley,
1989.

[Obj97] ObjectSpace. Voyager core package
technology overview. Available from
http://www.objectspace.com/ , 1997.

[PT95] Benjamin C. Pierce and David N. Turner. Concurrent
objects in a process calculus. In Takayasu Ito and
Akinori Yonezawa, editors,Theory and Practice of
Parallel Programming (TPPP, Sendai, Japan, 1994),
LNCS 907, pages 187–215, 1995.

[PT97] Benjamin C. Pierce and David N. Turner. Pict: A pro-
gramming language based on the pi-calculus. Techni-
cal Report CSCI 476, Computer Science Department,
Indiana University, 1997. To appear inProof, Lan-
guage and Interaction: Essays in Honour of Robin
Milner, MIT Press.

[SWP98] Peter Sewell, Paweł T. Wojciechowski, and Ben-
jamin C. Pierce. Location independence for mobile
agents. InWorkshop on Internet Programming Lan-
guages, Chicago, May 1998.

[SWP99] Peter Sewell, Paweł T. Wojciechowski, and Ben-
jamin C. Pierce. Location-independent communi-
cation for mobile agents: a two-level architecture.
Technical Report 462, Computer Laboratory, Uni-
versity of Cambridge, 1999. A version of this is to
appear in a WIPL’98 LNCS volume. Available from
http://www.cl.cam.ac.uk/users/pes20/ .

[Tur96] David N. Turner.The Polymorphic Pi-calculus: The-
ory and Implementation. PhD thesis, University of
Edinburgh, 1996.

[VE97] Jan Vitek and Christian Tschudin (Eds.).Towards the
Programmable Internet, Proceedings of the Second
International Workshop, MOS’96. Springer-Verlag,
1997.

