Concurrency Combinators for Declarative
Synchronization

Pawel T. Wojciechowski

Ecole Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland
Pawel.Wojciechowski@epfl.ch

Abstract. Developing computer systems that are both concurrent and
evolving is challenging. To guarantee consistent access to resources by
concurrent software components, some synchronization is required. A
synchronization logic, or policy, is at present entangled in the component
code. Adding a new component or modifying existing components, which
may require a change of the (global) synchronization policy, is therefore
subjected to an extensive inspection of the complete code. We propose a
calculus of concurrency combinators that allows a program code and its
synchronization policy to be expressed separately; the policies include
true parallelism, sequentiality, and isolation-only transactions. The cal-
culus is equipped with an operational semantics and a type system. The
type system is used to verify if a synchronization policy declared using
combinators can be satisfied by program execution.

1 Introduction

Our motivating example of evolving systems are web services [26], i.e. software
components which process html or XML data documents received from the net-
work. Due to efficiency and networking reasons, various data fragments may be
processed by concurrent services, with possible dependencies on other services.
To provide data consistency, transactions or barrier synchronization are required.
Unfortunately, a given composition of service components may often change in
order to adapt to a new environment or changing requirements, thus making
programming of such components a difficult task. We therefore study declarative
synchronization, which assumes separation of an object’s functional behaviour
and the synchronization constraints imposed on it. Such approach enables to
modify and customize synchronization policies without changing the code of
service components, thus making programming easier and less error-prone.

While some work on such separation of concerns exists (see [11,8,23,19]
among others), there are few efforts that formalized languages with declarative
synchronization in mind. There are also many open questions: How to know
when it is safe to spawn a new thread or call a method, so that the synchroniza-
tion policy is not invalidated? Or, conversely, how can we build programs that
are synchronization safe by construction? How should synchronization itself be
implemented? What new language features are required?

In this paper, we present a small language with the goal of understanding
the underlying foundations of declarative synchronization. The language allows
the programmer to group expressions (methods, objects, etc.) into services, and
to express an arbitrary synchronization policy that will constrain the concurrent
execution of services at runtime. Our basic synchronization policies include true
parallelism, sequentiality, and the combination of these two policies called isola-
tion, which is analogous to the isolation non-interference property known from
multithreaded transactions [9, 3]. Isolated services can be assumed to execute
serially, without interleaved steps of other services, which significantly simplifies
both programming and reasoning about program correctness.

The synchronization policy is expressed abstractly using concurrency com-
binators, i.e. compositional policy operators which take as arguments service
names. They introduce a new problem, however. Separation of synchronization
and the functional code of a program gives a way of expressing synchronization
schemes which may not be satisfied by the program’s execution, leading to prob-
lems such as deadlock. Any given program can only be executed for some range
of synchronization schemes; the synchronization policies must be matched ac-
cordingly. In this paper, we propose a type system that can verify if the matching
of a policy and program is correct. Typable programs are guaranteed to satisfy
the declared synchronization policy and make progress.

The paper is organized as follows. §2 gives a small example. §3 introduces our
calculus, describing its syntax and types. §4 defines the operational semantics.
85 describes the type system and main results. §6 contains related work, and §7
concludes.

2 Example

We begin with an example. Below is a term of the concurrency combinators
calculus (or the CK-calculus, in short) showing how a synchronization policy
can be expressed. The program expression is defined using the call-by-value \-
calculus [22], extended with service binders and typing.

D =rule B foll A

rule D; C

let r =ref 0 in

let fa =Xt A% (r=2; () in

let fp = AEH{BA, .t B¢ (fork (fa y); !r) in

let fo = MG o# 2

in

(fe (fsB 1)) (* this returns 0, never 1 *)
The program declares a synchronization rule (B foll A); C, which orders ser-
vices A, B and C to be executed, so that: (1) A runs simultaneously with B but
the overall result of their concurrent execution must be equivalent to an (ideal)

serial execution in which A commences after B has completed; (2) service C' can
commence only after both A and B have completed.

The service names A, B and C are bound (using #) to functions, respectively
fa, fB,and fc. The function f4 updates a shared reference cell r (which initially
contains 0), function fp spawns a new thread (using fork) for updating the cell
(by invoking fa) in parallel with reading the current content of r. The last
function, fo, only returns its argument. Functions are decorated with a pair of
service names that can be bound by a thread calling a function until the function
returns, and service names that (also) can be bound by threads spawned as the
effect of calling the function, e.g. fp is decorated with ({B},{B, A}).

The main expression of the program (following function declarations) calls
function fo with its argument being the result of fp’s call.

The synchronization rule defines a synchronization policy, which constrains
creation and interleaving of threads by the runtime system, so that only program
executions that match the policy are possible. For instance, our program with
the synchronization rule removed, can return either 0 or 1, depending on how the
thread spawned inside function fg is interleaved with the main program thread.
The synchronization rule ensures, however, that each execution of this program
returns 0, never 1; i.e. assignment r := x by service A (where = 1) must block
until service B has read the content of » with !r.

One may notice that the nested function calls in the main expression (see
the last line of the program) impose some ordering on services. This means that
some synchronization rules may not be satisfied. A synchronization rule can be
satisfied by a program if there exists a deadlock-free execution of the program
that satisfies the rule. We go back to this issue in §5, where we define a type
system which is able to verify combinator satisfiability statically.

3 Language

3.1 Syntax

The syntax of the CK calculus is in Fig. 1. The main syntactic categories are
concurrency combinators and expressions. We also assume the existence of refer-
ence cells, with the standard semantics of dereference (Ir) and assignment (:=)
operations.

Services. Services are expressions that are bound to service names, ranged over
by A, B,C. We assume that service expressions are themselves deadlock-free. A
composite service is a collection of services, called subservices, whose (possibly)
concurrent execution is controlled by a collection of combinator declarations
(explained below). A service completes if it returns a value. A composite service
completes if all its subservices return a value. Below we confuse services and
composite services unless stated otherwise.

Concurrency Combinators. Concurrency combinators are special functions
with no free variables, ranged over by a, b, which are used to define fine-grain
concurrency control over the execution of concurrent services. Formal parameters
of combinators are service names. We have four basic combinators: A | B, A; B,
A isol B, and A foll B, where A and B are service names:

Variables z,y € Var
Service names A, B € Mvar

Packages p € 2Mvar o gMuvar

Combinators a,b n=Alal|b|la;b|aisolb|afolld

Types t = Unit | t =P ¢/

Values v,we Val == ()| NWz:te

Declarations K s=rulea|A=rulea | K K

Expressions ecFErp =zxz|v|ee|letz=eine|forke|A#e
Program terms P n=Ke

We work up to alpha-conversion of expressions throughout, with = binding in e in
expressions APz : t.e and letx = ¢’ in e.

Fig. 1. The A-calculus with concurrency combinators

— the “parallel” combinator A || B declares services bound to formal parame-
ters of the combinator to be executed by interleaved threads;

— the “sequence” combinator A; B declares services bound to A and B to be
executed sequentially, i.e. B can be executed by a thread only if all other
concurrent threads executing A (if any) have terminated,;

— the “isolation” combinator A isol B allows threads of services bound to
A and B to be interleaved, with fine-grain parallelism, but their concurrent
execution must satisfy the isolation property, i.e. be equivalent to a serial
execution of A and B (as defined in §4);

— the “followed-by” combinator A foll B is like A isol B, with a constraint
that the comparable (ideal) serial run has to be “A followed by B”.

If services A and B are not concurrent but they are part of a singlethreaded
term, then the combinator A isol B is always satisfied, and combinators A; B
and A foll B require only that the execution of A must commence before B.

Combinator Declarations. Concurrency combinators can be declared using
synchronization rules, ranged over by K, which are terms of the form rule a
and A = rule a. Complex combinators Ag opg ... op,_1 A, are equivalent to a
conjunction of n binary combinators A; op; A;11, where ¢ = 0..n—1 and op; is one
of the combinator names, i.e. || (“parallel”), ; (“sequence”), isol (“isolation”)
and foll (“followed-by”). For instance, rule A; B isol C declares a combinator
which ensures that service B can commence only after A has completed, and the
execution of B is isolated from any concurrent execution of service C.

Service Composition. Combinators can be arguments of other combinators.
For instance, a combinator declaration A = rule a both declares a combinator
a and also defines a fresh service name A, which binds a combinator a. The
name A can then be used in the declaration of other combinators of composite
services. (We adopt such syntax since it is convenient to express the semantics
rules; the concrete syntax would use parentheses instead.)

Types. Types include the base type Unit of unit expressions and the type
t —P ¢’ of functions. It would be routine to add subtyping on types to the calculus
definition. To verify combinator satisfiability in function abstractions, the type
of functions is decorated with a service package p = (p,,ps), where p, is a set
of all service names which can be bound by a thread calling a function until the
function returns, and p; is the same as p, but also includes service names bound
by any threads spawned as the effect of calling the function. We assume that a
programmer can provide information on services bound by functions explicitly,
and leave type inference as an open problem.

Values. A value is either an empty value () of type Unit, or function abstraction
APz : t.e (decorated with service package p). All values in the CK-calculus are
first-class programming objects, i.e. they can be passed as arguments to functions
and returned as results and stored in data structures.

Expressions. Basic expressions are mostly standard, including variables, values,
function applications, and let-binders. The CK language allows multithreaded
programs by including the expression fork e, which spawns a new thread for the
evaluation of expression e. This evaluation is performed only for its effect; the
result of e is never used. To bind a service name to an expression, we provide
service binders of the form A # e, which allow an expression e to be bound to
a (non-composite) service name A. In programs, the service expression A # e is
usually a body of a function. We use syntactic sugar ej;es for let z =e; in eo
(for some z, where x is fresh).

Programs. A program is a pair (SP, K e) of a synchronization policy SP and the
program expression K e. A synchronization policy (or a policy in short) is a set of
binary combinators A op B and bindings of the form A = By opg ... opp—1 Bn,
that are extracted from declarations K, where op; are combinator names, de-
scribing operations ||, ;, isol and foll.

We assume that every policy SP is logically consistent, i.e. (1) if A and B in
SP are related by operation op (possibly via names of composite services whose A
or B are subservices) then neither A and B nor B and A are related by op’ # op,
and (2) if A and B are related by an asymmetric operation (i.e. foll or ;) then
B and A are not related. For instance, a policy C = A || B and C'; A for some
service names A and B, is not consistent (both conditions are not satisfied). We
leave consistency verification as an open problem.

Given the above requirement of consistency, a policy can be easily identified
with a sequence of combinator declarations. For instance, in case of our program
in §1, SP={D = B foll A, D;C, B foll A}.

4 Operational Semantics

We specify the operational semantics using the rules defined in Fig. 2 and 3. A
state S is a collection of expressions, which are organized as a sequence Ty, ..., T},
where each T; in the sequence represents a thread. We use T, T’ (with comma)
to denote an unconstrained execution of threads T and T’, and T;T’ (with

State Space:

S € State = ThreadSeq
T,c € ThreadSeq ::= f | T,T" | T;T" | (T)
f e Eap,,, w=z|v|fe|lv f|lletxa=fine|letz=vin f | forke |
A#e| A{c}

Evaluation and Service Contexts:

E=]|€elv&|letz=Eine | A{E}|ET|T,E|ET | v;E] (E)
C=1|[]]|AopCop A op € {isol,foll,||,;}
Asr{c} =E[A{c}];T for some T'

Structural Congruence Rules:

T, T =TT (C-Sym) ,

To()=T whereois,or; (C-Nil) r—r (C-Expr)
(T=T (C-Seq) ET] — €]
allb=b|a (C-Prl)

a isol b=bisol a (C-Isol)

Fig. 2. The CK-calculus: Operational semantics

semicolon) to denote that 7' can commence only after T has reduced to a value,
and (T') for grouping threads. We write T o T” to mean either T, 7" or T;T".

The expressions f are written in the calculus presented in §3.1, extended
with a new construct A{ ¢ }, which denotes a sequence of threads ¢ that is part of
service A. The construct is not part of the language to be used by programmers;
it is just to explain semantics.

We define a small-step evaluation relation e — ¢’ read “expression e reduces
to expression €’ in one step”. We also use —* for a sequence of small-step
reductions, and a “meta” relation — (defined below) for many reduction steps
with the isolation guarantee. Reductions are defined using evaluation context
& for expressions and threads, and context C for synchronization policy rules.
Context application is denoted by [], as in £[e]. We write A op as shorthand for
a possibly empty sequence A op... A’ op’ (and similarly for op A).

We also use an abbreviation Ag r{c} for E[A{c}|;T — i.e., “a context & of
service A, followed by a (possibly empty) thread T or a group of threads T' that
are blocked until A will complete”. To lighten semantics rules, we usually omit
T and write Ag{c}.

Structural congruence rules are defined in Fig. 2. They can be used to rewrite
thread expressions and synchronization policy rules whenever needed.

The evaluation of a program (SP, K e) starts in an initial state with a single
thread that evaluates the program’s expression e. Evaluation then takes place
according to the transition rules in Fig. 3. The rules specify the behaviour of
the constructs of our calculus. The evaluation terminates once all threads have

Evaluator:
eval C FEzp x Val
eval(e,v) & e —"Tpo...0T, and To =v, Tjzo = ()

Transition Rules:

S48 —S or S+58 —9 (R~Choice)
Az.e v — {v/z}e (R-App)
let z =v ine — {v/z}e (R-Let)
A#te— A{e} (R-Bind)
A{v} — (R-Compl)
E[forke] — £[()],e (R-Fork)
A{c}; T, A{c 1T — A{c,d };(T,T") (R-Join)
A=C[Bop(C'[C]leSP £&"["]#E"[A{}] (R-Fold)
EBe{c}oCelc }] — ETAL Belc}oCelc } }]
A, B are innermost services of redex
A=DBiop..op B,€SP B#DB; i=1.n
A{ToBe{c},T'} — A{T,T" Jo Be{c} (R-Unfold)
A; BeSP
: R-S
Ae{e), Bl @} — As{e} Berl) (fi-sea)
A foll B € SP
E'NA i Be{d}] —* S
[As{c}; Ber{'}] -
E"[Ag{c}, Ber{c}]» S
A isol B € SP
E'[Ae{c};Be{c'}] —" S
&' Berf ¢ A g
(Ber{) As(e} .

EMAe{c},Be{c}] > S+ 5

To lighten notation, we write Ag{c} instead of Agr{c}.

We assume that if SP has A; B or A foll B for some A, then evaluation of B{c¢} (or
Bi{ci} and i = 1..n, if B = B; op ... op’ By) is blocked till rules (R-Seq) or (R-Foll)
are applied to A and B, unless no other redex is available.

Fig. 3. The CK-calculus: Operational semantics

been reduced to values, in which case the value v of the initial, first thread Tj
is returned as the program’s result. (A typing rule for fork will ensure that
other values are empty values.) The execution of unconstrained threads can be
arbitrarily interleaved. Since different interleavings may produce different results,
the evaluator eval(e,v) is therefore a relation, not a partial function. Below we
describe the evaluation rules.

Nondeterministic choice (R-Choice) between states S and S/, denoted S+ .5,
can lead to either S being evaluated and S’ discarded, or opposite.

The next two evaluation rules are the standard rules of a call-by-value A-
calculus [22]. Function application Az.e v in rule (R-App) reduces to the func-
tion’s body e in which a formal argument x is replaced with the actual argument
v. The (R-Let) rule reduces let = v in e to the expression in which variable z is
replaced by value v in e. We write {v/x}e to denote the capture-free substitution
of v for x in the expression e.

Service binder A # e in rule (R-Bind) marks an expression e with the service
name A bound to e; it reduces to the expression A{ e }. The marking information
will allow concurrency control rules (described below) to identify expressions that
are part of a given service, and apply to them all relevant synchronization rules
while evaluating the expressions.

The mark A{ e} will be erased when expression e evaluates to a value v (see
(R-Compl)). Then, we say that service A has completed.

Evaluation of expression fork e creates a new thread which evaluates e (see
(R-Fork)). A value returned by expression e will be discarded. Note that threads
spawned by a (non-composite) service A will not be part of service A, unless the
expression spawned by the new thread is explicitly bound to A.

4.1 Concurrency Combinators

The rules at the bottom half of Fig. 3, beginning from (R-Join), define the se-
mantics of concurrency control. Programs evaluated using the rules must be first
checked if the rules can be actually applied for a given synchronization policy.
In §5, we present a type system that can verify this condition.

The first rule, (R-Join), groups two concurrent subexpressions of the same
service. The rule (R-Fold) encloses two concurrent services that are part of a
composite service A with the name A. The rule (R-Unfold) removes service B
(together with any threads blocked on B) outside the scope of a composite service
A whose B is not part of. Note that abbreviations Ag{c} and Ag {c'} allow
contexts £ and £’ to be multithreaded, if needed by reduced expressions.

The rule (R-Seq) blocks a thread (or threads) of service B until service A
would complete. To explain other rules, we need to introduce a few definitions.

Isolation Property. By concurrent execution, we mean a sequence of small-step
reductions in which the reduction steps can be taken by threads with possible
interleaving. Two (possibly multithreaded) services are executed serially if one
service commences after another one has completed.

A result of evaluating a service expression bound to A is any state S, that
does not have a context E[A{..}]. Note that states subsume the content of
reference cells, represented with stores (the details are omitted in Fig. 3 as our
main focus in this paper is on verification of combinators). An effect is any
change to the content of stores.

We define isolation to mean that the effects of one service are not visible
to other services executing concurrently—from the perspective of a service, it
appears that services execute serially rather than in parallel.

The operational semantics of combinators A isol B and A foll B, is cap-
tured using rules (R-Isol) and (R-Foll). The rules define the “isolated evaluation”
relation (—). They specify that the actual term which contains services A and B
(in the conclusion of each rule) should be evaluated by the single-step reduction
(—) using all evaluation rules but (R-Isol) and (R-Foll). However, the order of
applying the rules must be now constrained, so that any result S or S” of such
concurrent evaluation of the term, could be also obtained by evaluating a less
concurrent term — given in the premises of rules (R-Isol) and (R-Foll) — in which
services A and B are executed serially.

The combinator A foll B restricts the (ideal) serial execution to “A followed
by B”, while combinator A isol B does not specify the order.

We assume that if SP has A; B or A foll B for some A, then evaluation
of B{c} (or Bi{¢;} and i = 1..n, if B = By op ... op’ B,) is blocked till rules
(R-Seq) or (R-Foll) are applied to A and B, unless no other redex is available.

Implementation of Isolation. An implementation of concurrency combina-
tors should schedule threads of well-typed expressions so that the SP policy is
effectuated. The most interesting case is the runtime support for isolation of
composite services that are themselves concurrent. In our previous work [27], we
have designed several fine-grain concurrency control algorithms that provide a
deadlock-free implementation of such type of scheduling. They have been used
to implement SAMOA—a library package in Java for developing modular net-
work protocols, in which network and application messages can be processed by
isolated, possibly multithreaded tasks. Programmers can spawn tasks using the
isolated e construct, where e is the task’s code. We have used our package
to implement example protocols for server replication. The isolated construct
made programming of protocols easier [27], especially those with many threads.
The isolation property ensures that each message is always processed by a new,
fresh task, using a consistent set of session and message-specific data.

5 Typing for Combinator Satisfiability

In order to implement concurrency combinators, one must decide if the combi-
nators should be considered as powerful typing, or as directives for the runtime
system to schedule operations, or maybe both, and if both, then to which degree
one could depend on static analysis, and what must be supported by the runtime
tools. In this paper we claim that programs could and should be verified stati-
cally if the declared synchronization rules can be actually satisfied (considering

Judgments:

I;b;pke:t eis a well-typed expression of type t in I', bound to service names
in b = (by, bs) of service package p = (pr,ps)

Expression Typing:

z:tel
Tib;pkx:t (T-Var) Iibple:t
/ (Cyz:t);05p e ot
Dx:t;0;pke:t bCbv pCyp
T-Ab = =
Iibyp' = APz ite:t —P t/ (s) T;b;p Fletz=eine : ¢/ (T-Let)
. D5 (0,b5); (B,ps) Fe:t
T_U t b bl bl) _
[;0;pF () : Unit (nit) T;b;pt fork e: Unit (T-Fork)
ibsp' Fe:t —Pt D;bU{A};pre:t
O;osp’ e ot bCH p Cp” A€p. Acps
VA e p, AB € b.. (A, B) prl 3B € b,. (A, B) prl
VA cps BB € b,,. (A, B) se Bebs. (A, DB) se
7 (A.5) seq (T-App) ’ (4, B) seq (T-Bind)
T;0Up;p’Upke e it D;bU{A};p-A#e:t
Auxiliary Definitions: A;BeCS
Al|BeCSorB||A€CS 1o or Afoll B eCS (T-Seq)
(A,B) prl (T-Prl) (A, B) seq
zUp=(x, Up,zs Up) zC2' =z, Ca. and z, C 2 where x =borxz =p

Fig. 4. The CK-calculus: Typing expressions

any implementation of combinators). Programs that cannot satisfy a given rule
simply would not compile.

Consider our example program in §2, with a new policy D = B foll A and
C'; D. Unfortunately, all possible executions of the program can no longer satisfy
the latter rule. The new policy requires that service C, which binds function fe,
must return before services A and B can commence. With such a policy, the
program is not able to begin its execution since the function f¢ is expected to
be called with an argument returned by the call of fz. However, according to
the new policy, function fp cannot be called before fo returns. So, we have a
deadlock situation. In this section, we define a type system that can statically
verify combinator satisfiability, and so detect the possibility of deadlock.

Satisfiability of Combinators. The semantics can be used to formalize the
notion of combinator satisfiability, as follows. A thread T binds a service name
A if there exists some evaluation context &£ such that T = E[A{ f }] for some
expression f. A state S does not satisfy combinator A || B if its thread se-

10

quence contains a thread that binds both service names A and B. A state S
does not satisfy combinator A; B and also combinator A foll B, if its thread
sequence contains either a term E[B{ f }] such that f = E'[A # e] (possibly
f=E&fork E"[A#e]]), or a (single- or multithreaded) term £[B{c}];T and
T = E'[A{ }], for some contexts &, £ and &” and expressions f, e, ¢ and
c'. In all other cases, the above combinators are satisfied. Finally, combinator
A isol B can be satisfied at runtime by all execution states. This is because
any singlethreaded evaluation of services A and B ensures the isolation property
trivially. Otherwise, if A and B are evaluated by different threads, then rule
(R-Isol) is applied to scheduling threads accordingly.

An execution run S —* S’ does not satisfy a combinator a if it may yield a
state that does not satisfy a, i.e. if there exists a state S” in the run (including S
and S’) such that S” does not satisfy a. Otherwise, we say that the run S —* S’
satisfies combinator a.

Typing for Combinator Satisfiability. We define the type system using one
judgment for expressions. The judgment and the static typing rules for reasoning
about the judgment are given in Fig. 4. The typing judgment has the form
I;b;plke:t, read “expression e has type ¢ in environment I' with bound service
names b of service package p”, where an environment I' is a finite mapping from
free variables to types. A package p = (pr,ps) is defined by all service names
which may be bound while evaluating expression e, either by the current thread
only (p,) or by all threads evaluating e (ps); if e is single-threaded then p, = ps.

Our intend is that, given a policy SP if the judgment I'; b; p - e : ¢ holds, then
expression e can satisfy all concurrency combinators in SP, and yields values of
type t, provided the current thread binds services described in b, it may bind
at most services described in p, and the free variables of e are given bindings
consistent with the typing environment I'.

The core parts of typing rules for expressions are fairly straightforward and
typical for the A-calculus with threads evaluated only for their side-effects. The
only unusual rule is (T-Bind); it type checks service binders of the form A # e,
and requires the type of the whole expression to be e’s type. To support modular
design of services, service binders are typable only if they are inside a function.

The main novelty is verifying if expressions satisfy combinators. For this,
we check if expressions do not invalidate any constraints imposed by the policy
rules. A set of constraints CS is constructed recursively from a set of binary com-
binators copied from the policy SP (we assume a fixed policy for each program).
For each binding rule C' = A; op ... op’ A, in SP, replace every combinator ¢ of
the form X op Y where X = C or Y = C, by n constraints ¢;, such that ¢; is
exactly the same as ¢ but the name C' (on a given position) is replaced by A;,
e.g. in case of our example program in §2, CS = {B foll A, B;C, A;C}.

During typechecking, an expression is evaluated for a given constraint set CS
in the context of a package p, and a pair b = (b, bs) of service names b, that
have been bound by the current thread explicitly, using #, and service names
bs that are the same as in b, but also include names inherited by the current
thread at spawning time, from a set by of the parent thread.

11

For instance, consider typing the operation of binding a new service name
A. The (T-Bind) rule checks if no constraint among those that define relations
(A, B) prl and (A, B) seq (see in the bottom of Fig. 4) appeared in CS, where
B is any service bound so far by the current thread (i.e. before A is bound). If
at least one such constraint is in CS, then the program is not typable since the
constraint cannot be satisfied by any execution of the program. This is because
either A and B are bound in a wrong order (thus violating combinators A; B and
A foll B) or they are bound by the same thread (thus disabling true parallelism
and so violating combinator A || B).

A package p = (pr, ps) decorates a function type and definition, representing
all services that may be bound while evaluating the function by the current
thread T only (p,) and by T and also any other threads that are spawned as the
effect of calling the function (ps). The rule (T-App) checks if relations (A, B) prl
and (A, B) seq do not hold, where A is any service in the package implemented
by a function, and B is any service bound by a thread calling the function.

The rule (T-Fork) requires the type of the whole expression to be Unit; this is
correct since threads are evaluated only for their side effects. Note that the fork-
ed expression is evaluated with b, and p, nulled since verification of the A || B
combinator requires that any spawned threads do not inherit service bindings
from their parent thread (as we only check if A and B are not single-threaded).

The type system could be extended with reachability analysis of conditional
branches and dead code elimination. Otherwise, some declared policies would be
rejected, even if all program executions may satisfy them.

Well-typed Programs satisfy Combinators. The fundamental property of
the type system is that well-typed programs satisfy the declared synchroniza-
tion policy, expressed using concurrency combinators. The first component of
the proof of this property is a type preservation result stating that typing is
preserved during evaluation. To prove this result, we extend typing judgments
from expressions in Ezp to states in State as shown in Fig. 5. The judgment
F .S :t says that S is a well-typed state yielding values of type t.

Lemma 1 (Type Preservation). If T;b;pk S :t and S — S’ then T;b;p
S’ t.

Lemma 2 states that a program typable for some synchronization policy SP
is reducible to states that satisfy all combinators in SP.

Lemma 2 (Combinator Preservation). Suppose T'; ;0 = S : ¢ for some syn-
chronization policy SP. If S —* ', then run S —* S’ satisfies all combinators
in SP up to state S’.

Type preservation and combinator preservation “up to a state” ensure that
if we start with a typable expression for some policy SP, then we cannot reach
an untypable expression through any sequence of reductions, and the reduced
expression satisfies combinators in SP. This by itself, however, does not yield
type soundness. Lemma 3 states that evaluation of a typable expression cannot
get stuck, i.e. either the expression is a value or there is some reduction defined.

12

Judgments:
FS:t Sisa well-typed state of type ¢

Rules:
IT|>0 T;6;0FT;: ¢t /F;b;p}/—fi;ti
' Doosp - fiity i<y
for all @ < |T| 05p Tty J
FT i (T-State) Tibiph fiofl b (read)
S Sk . Tibipbeit ppgy
FS+5:to (T-Choice) Tibipk A{c} ¢ (T-InService)

Fig. 5. Additional judgments and rules for typing states.

Lemma 3 (Progress). Suppose S is a closed, well-typed state (that is, = S :t
for some t and policy SP). Then either S is a value or else, there is some state
S with S — S”.

We conclude that for a given policy SP, well-typed programs satisfy combi-
nators in SP. An expression e is a well-typed program if it is closed and it has a
type t in the empty type environment, written - e : t.

Theorem 1 (Combinator Satisfiability). Given a policy SP, if e : t, then
all runs e —™* vy, where vy is some value, satisfy combinators in SP.

6 Related Work

There have been recently many proposals of concurrent languages with novel
synchronization primitives, e.g. Polyphonic C# [2] and JoCaml [5], which are
based on the join-pattern abstraction [7]; and Concurrent Haskell [14], Con-
current ML [20], Pict [21] and Nomadic Pict [24,28] which have synchroniza-
tion constructs based on channel abstractions. They enable to encode complex
concurrency control more easily than when using standard constructs, such as
monitors and locks.

Flow Java [4] extends Java with single assignment variables, which allow
programmers to defer binding of objects to these variables. Threads accessing
an unbound variable are blocked, e.g. the method call c.m() will block until c
has been bound to an object (by other thread). This mechanism can be used to
implement barrier synchronization in concurrent programs.

The above work is orthogonal to the goals of this paper. We are primarily
focused on a declarative way of encoding and verifying synchronization through
separation of concerns (see [11,16,8,23,18,19] among others), with higher-level
transactional facilities that provide automatic concurrency control. Below we
discuss example work in these two areas.

13

Separation of Concurrency Aspects. The previous work, which set up goals
close to our own is by Ren and Agha [23] on separation of an object’s func-
tional behaviour and the timing constraints imposed on it. They propose an
actor-based language for specifying and enforcing at runtime real-time relations
between events in a distributed system. Their work builds on the earlier work
of Frglund and Agha [8] who developed language support for specifying multi-
object coordination, expressed in the form of constraints that restrict invocation
of a group of objects.

For a long time, the object-oriented community has been pointing out, under
the term inheritance anomaly [17], that concurrency control code interwoven
with the application code of classes can represent a serious obstacle to class
inheritance, even in very simple situations. Milicia and Sassone [18,19] address
the inheritance anomaly problem, and present an extension of Java with a linear
temporal logic to express synchronization constraints on method calls. This ap-
proach is similar to ours however we are focused on verifying static constraints
between code fragments.

The Aspect Oriented Programming (AOP) approach is based on separately
specifying the various concerns of a program and some description of their re-
lationship, and then relying on the AOP tools to weave [12] or compose them
together into a coherent program. Hiirsch and Lopes [11] identify various con-
cerns, including synchronization. Lopes [16] describes a programming language
D, which allows thread synchronization to be expressed as a separate concern.
More recently, the AOP tools have been proposed for Java, such as AspectJ
[15]; they allow aspect modules to be encoded using traditional languages, and
weaved at the intermediate level of Java bytecode.

We are not aware of much work on formalizing combinator-like operations.
Achermann and Nierstrasz [1] describe Piccola, which allows software compo-
nents to be composed (although not isolated) using connectors, with rules gov-
erning their composition.

Isolation-only Transactions. A number of researchers describe a way to de-
compose transactions, and provide support of the isolation property in common
programming. For instance, Venari/ML [9] implements higher-order functions in
ML to express modular transactions, with concurrency control factored out into
a separate mechanism that the programmer could use to ensure isolation.

Flanagan and Qadeer’s [6] developed a type system for specifying and veri-
fying the atomicity of methods in multithreaded Java programs (the notion of
“atomicity” is equivalent to isolation in this paper). The type system is a synthe-
sis of Lipton’s theory of left and right movers (for proving properties of parallel
programs) and type systems for race detection.

Harris and Fraser [10] have been investigating an extension of Java with
atomic code blocks that implement Hoare’s conditional critical regions (CCRs).
However, both Flanagan and Qadeer’s atomic methods and Harris and Fraser’s
atomic blocks must be sequential, while our isolated (composite) services can
themselves be multithreaded.

14

Black et al. [3] defined an equation theory of atomic transaction operators,
where an operator corresponds to an individual ACID (Atomicity, Consistency,
Isolation, and Durability) property. The operators can be composed, giving dif-
ferent semantics to transactions. The model is however presented abstractly,
without being integrated with any language or calculus.

Vitek et al. [25] (see also Jagannathan and Vitek [13]) have recently proposed
a calculi-based model of (standard) ACID transactions. They formalized the
optimistic and two-phase locking concurrency control strategies.

7 Conclusions

Our small, typed calculus may be a useful basis for work on different problems of
declarative synchronization. One problem that we have identified in this paper,
and solved using a type system, is satisfiability of combinators and scheduling
policies. Such combination of static typing with runtime support would be helpful
to implement concurrency combinators. It may be also worthwhile to investigate
algorithms for inferring the typing annotations.

We have focused on the simplest language that allows us to study the core
problem of §1, rather than attempting to produce an industrial-strength lan-
guage. We think however that analogous work could be carried out for other
languages, too. We hope that having abstractions similar to our concurrency
combinators in the mainstream programming languages would facilitate the de-
velopment of concurrent, service-oriented systems, especially those that need to
deal with unanticipated evolution.

Acknowledgments. Research supported by the Swiss National Science
Foundation under grant number 21-67715.02 and Hasler Stiftung under grant
number DICS-1825.

References

1. F. Achermann and O. Nierstrasz. Applications = Components + Scripts — A Tour
of Piccola. In M. Aksit, editor, Software Architectures and Component Technology,
pages 261-292. Kluwer, 2001.

2. N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for C+#.
In Proc. ECOOP 02, LNCS 2374, June 2002.

3. A. P. Black, V. Cremet, R. Guerraoui, and M. Odersky. An equational theory for
transactions. In Proc. FSTTCS 08 (23rd Conference on Foundations of Software
Technology and Theoretical Computer Science), Dec. 2003.

4. F. Drejhammar, C. Schulte, P. Brand, and S. Haridi. Flow Java: Declarative
concurrency for Java. In Proc. ICLP 03 (Conf. on Logic Programming), 2003.

5. F. L. Fessant and L. Maranget. Compiling join-patterns. In Proc. HLCL 98
(Workshop on High-Level Concurrent Languages), 1998.

6. C. Flanagan and S. Qadeer. A type and effect system for atomicity. In Proc. PLDI
03 (Conf. on Programming Language Design and Implementation), June 2003.

7. C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of
mobile agents. In Proc. of CONCUR ’96, LNCS 1119, Aug. 1996.

15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

S. Frglund and G. Agha. A language framework for multi-object coordination. In
Proc. ECOOP 93, LNCS 627, July 1993.

N. Haines, D. Kindred, J. G. Morrisett, S. M. Nettles, and J. M. Wing. Composing
first-class transactions. ACM TOPLAS, 16(6):1719-1736, Nov. 1994.

T. Harris and K. Fraser. Language support for lightweight transactions. In Proc.
OOPSLA 03, Oct. 2003.

W. Hursch and C. Lopes. Separation of concerns. Technical Report NU-CCS-95-03,
College of Computer Science, Northeastern University, Feb. 1995.

R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of untyped aspect-oriented
programs. In Proc. ECOOP 2003, LNCS 2743, July 2003.

S. Jagannathan and J. Vitek. Optimistic concurrency semantics for transactions
in coordination languages. In Proc. COORDINATION ’04, Feb. 2004.

S. P. Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Proc. POPL ’96
(23rd ACM Symposium on Principles of Programming Languages), Jan. 1996.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold.
Getting started with AspectJ. Communications of the ACM, 44(10):59-65, Oct.
2001.

C. V. Lopes. D: A Language Framework for Distributed Programming. PhD thesis,
College of Computer Science, Northeastern University, Dec. 1997 (1998).

S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented
concurrent programming languages. In Research Directions in Concurrent Object-
Oriented Programming, pages 107-150. MIT Press, 1993.

G. Milicia and V. Sassone. Jeeg: A programming language for concurrent objects
synchronization. In Proc. ACM Java Grande/ISCOPE Conference, Nov. 2002.
G. Milicia and V. Sassone. Jeeg: Temporal constraints for the synchronization of
concurrent objects. Tech. Report RS-03-6, BRICS, Feb. 2003.

P. Panangaden and J. Reppy. The Essence of Concurrent ML. In F. Nielson,
editor, ML with Concurrency: Design, Analysis, Implementation, and Application,
pages 5—29. Springer, 1997.

B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-
calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language and
Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

G. D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Com-
puter Science, 1:125-159, 1975.

S. Ren and G. A. Agha. RTsynchronizer: Language support for real-time specifica-
tions in distributed systems. In Proc. ACM Workshop on Languages, Compilers,
& Tools for Real-Time Systems, 1995.

P. Sewell, P. T. Wojciechowski, and B. C. Pierce. Location-independent com-
munication for mobile agents: A two-level architecture. In Internet Programming
Languages, LNCS 1686, pages 1-31, 1999.

J. Vitek, S. Jagannathan, A. Welc, and A. L. Hosking. A semantic framework for
designer transactions. In Proc. ESOP ’04, Mar./April 2004.

W3C. Web Services Architecture, 2004. http://www.w3.org/TR/ws-arch/.

P. Wojciechowski, O. Riitti, and A. Schiper. SAMOA: A framework for a
synchronisation-augmented microprotocol approach. In Proc. IPDPS 2004 (18th
International Parallel and Distributed Processing Symposium), Apr. 2004.

P. T. Wojciechowski and P. Sewell. Nomadic Pict: Language and infrastructure
design for mobile agents. IEEE Concurrency. The Computer Society’s Systems
Magazine, 8(2):42-52, April-June 2000.

16

A Execution trace

Below is the execution trace of the program in §1 (we erased types, skipped
combinator and function declarations, and use name r for the reference location).

D =rule B foll A

rule D; C

let r =ref 0 in

let fa=Xx. A# (r:=uz; ()) in

let fp = A\y. B # (fork (fa y); !r) in
let fc =Xz.C # 2z in

(fe (fs 1))
—" (Az.C#z
(Ay. B # (fork (fa y); 'r) 1))
— (A\z.C#2z
(Ay.B # (fork (Az. A# (r:==z; () y); Ir) 1))

— (Az.C#2z

B# (fork (Az. A# (r:=uxz; () 1); Ir))
— (Az.C#z

B{fork (\z. A# (r:=z; ()) 1); r})
— (Az.C#z B{(); Ir}), Qxz. A#(r:=2x; ()) 1)
— (Az.C#z B{(); Ir}), A# (r:=1; ()
— (MAz.C#z B{(); r}), A{r:=1; O}
— D{(\=C#z B0), Alr =15 0})
—* D{(A2.C#20), A{r:=1; () }}
. D{C#0, Alr=1; ()}
— D{C{0}, A{r=1; 0}}
— D{A{r =1, 0} }; C{0)
— D{(} C{0}
— (), ¢{0}

— 0

17

