
Atomic RMI 2: Distributed Transactions for Java

Paweł T. Wojciechowski

Institute of Computing Science

Poznań University of Technology

60-965 Poznań, Poland

Pawel.T.Wojciechowski@cs.put.edu.pl

Konrad Siek

Institute of Computing Science

Poznań University of Technology

60-965 Poznań, Poland

Konrad.Siek@cs.put.edu.pl

Abstract

The goal of this tool demo paper is to demonstrate the features

of Atomic RMI 2, a system and tool for distributed program-

ming in Java, extending the popular Java RMI system with

support for distributed transactions. A distributed transaction

can contain arbitrary code, including any operations on re-

mote objects that must be executed atomically, consistently,

and in isolation with respect to any other concurrent transac-

tions. The Atomic RMI 2 package is released with an open

source license.

Categories and Subject Descriptors D.1.3 [Programming

Techniques]: Concurrent Programming—Distributed pro-

gramming

Keywords Transactional memory, Distributed objects

1. Introduction

Java Remote Method Invocation (Java RMI) is a popular

system for creating distributed Java technology-based appli-

cations, where methods of remote objects may be invoked

from other Java Virtual Machines (JVMs), possibly located

on different hosts. In this paper, we present Atomic RMI 2,

which is an extension of Java RMI with distributed transac-

tions, based on the calculus of atomic tasks (Wojciechowski

2005). To the best of our knowledge, Atomic RMI 2 is the

first system of this sort. Transactions automate concurrent

execution and obscure the details of synchronization from the

programmer. In our system, they may span many nodes, and

contain any code, not just read or write operations on shared

memory.

Our tool provides constructs on top of Java RMI allow-

ing the programmer to declare a series of method calls on

remote objects as a transaction. Such a transaction guarantees

the properties of atomicity (either all or none of the opera-

tions of a transaction have visible effects), consistency (after

any transaction finishes, the system remains in a valid—or

consistent—state), and isolation (each transaction perceives

itself as being the only currently running transaction). Trans-

actions may contain irrevocable operations, i.e., operations

with side effects that cannot be easily undone (such as system

calls or I/O), but then atomicity is only guaranteed if the trans-

action did not abort, either programmatically or due to partial

system failure. Formally, Atomic RMI 2 ensures last-use

opacity (Siek and Wojciechowski 2015)—this is a stronger

property than serializability (Bernstein et al. 1987), since it

also guarantees real-time order, requires that also aborted

transactions cannot read inconsistent state, and allows early

release of variables that were modified by a transaction for

the last time. But it is weaker than opacity (Guerraoui and

Kapałka 2010), as it allows early release which causes that a

transaction may read a variable that was modified by a live

(uncommitted) transaction.

The implementation of Atomic RMI 2 exercises pes-

simistic concurrency control using fine grained locks (a single

lock per remote object), while simultaneously providing sup-

port for rolling back transactions (using an abort construct),

and aborting and restarting them (using retry). A custom

versioning algorithm ensures parallel execution and deadlock-

freedom. In this paper, we present the second generation of

our tool, in which accesses to locks are scheduled using our

Optimized Supremum Versioning Algorithm for Control Flow

(OptSVA-CF) (Siek and Wojciechowski 2016). The algorithm

employs several optimizations of the basic versioning scheme,

such as buffering and asynchronous processing, which jointly

decrease the amount of required synchronization and thus

speed up the execution of transactions containing any read-

only or write-only methods. The current implementation of

Atomic RMI 2 is available under open source license from

(Atomic RMI 2 2016).

2. Related Work

Atomic RMI 2 is similar to HyFlow (Saad and Ravindran

2011). Both use Java RMI as their basis, both support dis-

tributed transactions and both allow remote code execu-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

AGERE’16, October 30, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4639-9/16/10...$15.00
http://dx.doi.org/10.1145/3001886.3001893

61

tion. However, HyFlow uses optimistic concurrency, which—

contrary to our approach—incurs inadvertent rollbacks and,

in effect, causes problems with irrevocable operations. On

the other hand, HyFlow natively supports both control flow

and data flow execution models. HyFlow2 (Turcu et al. 2013)

is an improved version of HyFlow, written in Scala and with

advanced nesting support.

Distributed transactions are successfully used where re-

quirements for strong consistency meet wide-area distribu-

tion, e.g., in Google’s Percolator (Peng and Dabek 2010) and

Spanner (Corbett and et al. 2012). Percolator supports multi-

row, ACID-compliant, pessimistic database transactions that

guarantee snapshot isolation. A drawback in comparison to

our approach is that writes must follow reads. Spanner pro-

vides semi-relational replicated tables with general purpose

distributed transactions. It uses real-time clocks and Paxos

to guarantee consistent reads. Spanner defers commitment

like OptSVA-CF, but buffers writes and aborts on conflict.

Irrevocable operations are completely forbidden in Spanner.

Several distributed transactional memory systems were

proposed (see e.g., (Bocchino et al. 2008; Couceiro et al.

2009; Kotselidis et al. 2008; Kobus et al. 2013; Hirve et al.

2014)). Most of them replicate a non-distributed TM on many

nodes and guarantee consistency of replicas. This model

is different from the distributed transactions we use, and

has different applications (high-reliability systems rather

than e.g., distributed data stores). Other systems extend non-

distributed TMs with a communication layer, e.g., DiSTM

(Kotselidis et al. 2008) extends D2STM (Couceiro et al. 2009)

with distributed coherence protocols.

3. Programming Constructs

Below we give a detailed overview of the tool’s programming

constructs and how to use them to create a working distributed

transactional system.

3.1 Components

A typical system built using Atomic RMI 2 consists of a

number of JVMs on one or more hosts. A number of remote

objects are created on any of those machines and registered

in an RMI registry located on the same host. A client running

on any JVM will access those remote objects, having first

located them via an RMI registry. Proxies provide rollback

capabilities and control method invocations to ensure the

transactional properties. The components of an example

system built using Java RMI and Atomic RMI 2 are shown in

Fig. 1.

3.2 RMI Registry

The Atomic RMI 2 system uses the RMI registry to lo-

cate remote objects. Typically, this means using the de-

fault implementation of the interface Registry from the

java.rmi.registry package, although other implementa-

tions of that interface can be used just as well. The registry

a)

obj0

jvm0

jvm1

obj1

obj2

registry

b)

obj0

jvm0

jvm1

obj1

obj2

registry

obj1
proxy

obj2
proxy

Figure 1: The components of a system using (a) Java RMI

and (b) Atomic RMI 2.

is part of server code or an external service that runs on a

specific host computer and listens to a particular port (1099

by default). The programmer can gain access to it by us-

ing the static getRegistry(host,port) method of class

LocateRegistry from the java.rmi.registry. Once the

registry is obtained, the various remote objects can be regis-

tered by the server, or located by the client.

3.3 Remote Objects

Remote objects are the shared resources of a distributed

system built using the Atomic RMI 2 tool. They are defined by

the programmer with very few restrictions. All remote objects

should implement an interface defined by the programmer,

which extends the java.rmi.Remote interface, for example:

1 interface MyRemote extends Remote {

2 @Access(Mode.READ) int doSomething() throws

RemoteException;→֒

3 }

This mechanism is used by the underlying Java RMI frame-

work to move objects from server to server (if call-by-value)

and direct method invocations. The remote object’s method is

declared as read-only using @Access(Mode.READ), which

means that it does not modify any fields of this object and

any other object. By analogy, we can use @Access(Mode.

WRITE) to declare write-only methods, which cannot read

the state of any objects. A remote object’s methods that may

both read or write objects’ fields are declared using @Access

(Mode.UPDATE). If no annotation is provided, Mode.UPDATE

is the default.

The following code illustrates how the interface should be

implemented:

1 class MyRemoteImpl extends

TransactionalUnicastRemoteObject

implements MyRemote {

→֒

→֒

2 public int doSomething() throws

RemoteException {→֒

3 ...

4 }

5 }

Note that all remote objects that are a part of transactional

executions need to extend the class put.atomicrmi.Trans

actionalUnicastRemoteObject, which acts as a wrapper

and extends the remote object implementation with counters

used by the OptSVA-CF’s concurrency control algorithm, and

62

the ability to create checkpoints to which the objects can be

rolled back (if required).

As in Java RMI, objects created from remote object classes

must be registered with the RMI registry on the server side,

using either bind(name,object) or rebind

(name,object) methods of the Registry instance. Then,

the object stub may be created on the client side using the

lookup(name) method. The object stub is used to translate

method calls to network messages that are sent to the (remote)

proxy object of the actual object. E.g.:

1 Registry registry =

LocateRegistry.getRegistry("localhost");→֒

2 MyRemote obj = new MyRemoteImpl();

3 registry.rebind("ObjID", obj);

3.4 Transactions

Transactions may span many hosts and are defined by in-

stances of the Transaction class from the put.atomicrmi.

optsva package, whose interface looks as below:

1 interface Transaction {

2

3 Transaction(boolean reluctant);

4 Transaction();

5 <T> T accesses(T obj, int rub, int wub, int

uub);→֒

6 <T> T reads(T obj, int rub);

7 <T> T writes(T obj, int wub);

8 <T> T updates(T obj, int uub);

9 <T> T accesses(T obj);

10 <T> T reads(T obj);

11 <T> T writes(T obj);

12 <T> T updates(T obj);

13 void start(Transactional runnable);

14 void commit();

15 void abort();

16 void retry();

17 }

18

19 interface Transactional {

20 void run(Transaction t);

21 }

Each transaction first needs to be initialized with the

constructor, then its preamble must be defined. Finally, the

transaction is started with the method start and ended either

with the method commit, abort, or retry (the latter method

requires using the Transactional interface described later

on). Between the two methods the invocations of remote

objects are traced and delayed if necessary, using the OptSVA-

CF algorithm. This guarantees last-use opacity of concurrent

transactions. The transaction constructor takes as an argument

either false (a default value), or true, where the latter value

indicates a reluctant transaction. Reluctant transactions never

read from a live transaction, even if it released some objects

early, so they are never forced to abort by the system in case

the latter transaction aborts (e.g. by invoking abort or retry),

and therefore are completely safe for irrevocable operations.

The following code shows a fully defined transaction:

1 Transaction transaction = new Transaction();

// non-reluctant→֒

2 obj = transaction.accesses(obj, 1, 0, 1);

3

4 transaction.start();

5 obj.doSomething();

6 transaction.commit(); // or: transaction.abort();

The transaction preamble provides information about ob-

ject accesses which is necessary for the dynamic scheduling

of method calls to remote objects by OptSVA-CF. The pream-

ble can be constructed by calling the method accesses(obj,

rub, wub, uub) on the instance of the transaction for each

remote object used in the transaction: the object reference is

passed as the first argument, and the remaining arguments

specify the upper bounds (suprema) on the number of times

the indicated object is called within the transaction using,

respectively, the object’s read-only methods—rub, write-

only methods—wub, and any other methods (declared with

Mode.UPDATE)—uub. The methods return an overloaded

stub object that forwards method calls to the remote object

through the (remote) proxy object which is created on the ma-

chine that hosts the remote object. During transaction execu-

tion only this stub must be used to guarantee atomicity, consis-

tency, and isolation properties. For objects whose two upper

bounds are equal 0, we can use syntactic sugar: reads(obj,

rub), writes(obj, wub), and updates(obj, uub). If

upper bounds are unknown, the second argument can be

dropped. If the kind of methods called on object obj is un-

known, the accesses(obj) method should be used.

We say an object is read-only by some transaction, if

the object is accessed by the transaction exclusively using

methods declared as read-only. By analogy, we say an object

is write-only by some transaction, if the object is accessed by

the transaction exclusively using write-only methods.

An alternative way of creating a transaction is to use the

Transactional interface from the package put.atomicrmi.

optsva, in the following manner:

1 Transaction transaction = new Transaction();

2 obj = transaction.accesses(obj, 1, 0, 1);

3 transaction.start(new Transactional() {

4 public void run(Transaction t) throws

RemoteException {→֒

5 obj.doSomething();

6 if (wantToWithdraw())

7 t.abort(); // or: t.retry();

8 }

9 });

The programmer implements the Transactional inter-

face (either by instantiating an object of an anonymous class

or by creating a new class) and overloads the method run(t)

using the code that would normally be inserted between the

63

transaction’s start and end, with the exception that commit,

abort, and retry are now called on the transaction object

passed via the method’s argument. An instance of a class

implementing the Transactional interface is then passed

as an argument to the start method of the transaction object.

It is obligatory to use this way of defining transactions to use

the retry mechanism.

4. Tool Functionality, Strengths, and

Weaknesses

In this Section, we discuss some basic concepts behind

Atomic RMI 2 which affect the end user, as well as the

strengths and weaknesses of our tool.

4.1 Accesses of Remote Objects

It is recommended that an Atomic RMI 2 user provides in-

formation about how many times, at maximum, each remote

object is invoked as part of some transaction: this informa-

tion is used to control the way in which remote objects are

accessed by all the transactions in the system. For objects

that are known to be read-only or write-only by a trans-

action t, the suprema are passed using the t.reads and

t.writes method calls, respectively. For other objects, the

t.accesses method call is used. It is preferred that the

predicted number of remote object invocations is identical

with their actual number. If the exact number is unknown,

an upper bound may be given or the number may be omit-

ted altogether, keeping in mind, that the more relaxed the

bounds, the more transactions are forced to wait each other,

thus effectively the fewer transactions may be executed in

parallel, which is less efficient (although the guarantees of

atomicity and isolation are still not violated). It is essential

that the number of maximum method calls is never lower

than the actual number of calls, because then the guarantees

provided by the system could not be upheld. To prevent this,

a TransactionException is thrown to curtail the execu-

tion of an errant transaction, when it attempts to exceed its

suprema.

In the first, now deprecated, version of our system the

maximum number of invocations of each object could be col-

lected manually or inferred automatically by the precompiler

(described in (Siek and Wojciechowski 2012)). We plan to

upgrade the precompiler to the current version of our system

as future work.

4.2 Deeply Distributed Transactions

Atomic RMI 2 can be used to create distributed transactions

that span many hosts: a transaction started on one host may

call methods of objects located on another host, and those

methods may invoke methods of other remote objects and so

on (as shown in Fig. 2 for two hosts).

When creating deeply distributed transactions it is also

necessary for the programmer to declare suprema on accesses

to all remote objects, even those used within other remote

obj0

jvm0

jvm1

obj1

obj2

registry

obj1
proxy

obj2
proxy

jvm2

obj3

obj4

registry

obj3
proxy

obj4
proxy

Distributed transaction

Figure 2: Complex distributed transactions: obj1 ac-

cesses obj2, obj3 and obj4.

objects’ methods. Atomic RMI 2 currently provides no

additional mechanisms to facilitate this, but a simple addition

to the remote objects’ interface can be used to mitigate

the inconvenience. First, the programmer may declare a

method that returns all the other remote objects that a given

remote object uses. For simple cases just the reference to

an object can be returned, while a more complex case can

return a collection indicating both which objects are used and

up to how many times. The precompilation tool (Siek and

Wojciechowski 2012) could be extended to help the developer

with this.

4.3 Multi-Threaded Transactions

Atomic RMI 2 does not make any allowances for threads

started within transactional code. A multi-threaded transac-

tion may be created, but all matters of synchronization are

then left to the programmer (in other words, Atomic RMI

2 does not guarantee isolation of the various threads in a

multi-threaded transaction). The programmer should there-

fore consider: (a) making certain that no thread invokes the

commit, abort, or retry methods after another thread (of

the same transaction) had done so, which will confuse the

state of the transaction, and cause an exception to be raised;

(b) making certain that no such thread tries to access any

transactional remote objects after any thread (of the same

transaction) invokes a commit, abort, or retry method,

which may leave the system in an incoherent state or cause

other unforeseen problems; (c) ensuring that the maximum

number of object accesses is properly declared no matter how

the operation within the threads are interwoven, because a

declared number of accesses lower than their actual number,

the guarantees described in Section 1 may be violated and an

exception may be raised.

In addition to the problems mentioned above, it is nec-

essary for the programmer to create any synchronization

mechanisms that may be required, as Atomic RMI 2 provides

none for threads within a single transaction. Note that running

transactions in a separate thread while the entire transaction

is completely within that thread causes no issues to arise.

4.4 Nested Transactions

Atomic RMI 2 supports transaction nesting, albeit with

limitations. The programmer can create a transaction within

another transaction, but in such cases it is vital to ensure that

64

they do not share objects. Otherwise, the inner transaction

will wait for the outer to release the objects, while the outer

will not release them until the inner finishes. In effect, a

deadlock occurs.

4.5 Recurrency

Atomic RMI 2 also supports transaction recursion. That is,

a transaction may call itself within itself and the recursion

will be treated as a single transaction, provided the following

conditions are met: (a) the transaction is defined using the

Transactional interface (as described in Section 3), (b) the

maximum possible number of accesses of remote objects’

methods in recurring invocations are accounted for in the

transactions preamble. Then, the programmer can simply call

the method run again within itself to create recursion. The

execution will proceed until the methods commit, abort, or

retry are called, in which case the run method is exited

and the transaction finishes as normal. In case when the

programmer does not use the Transactional interface to

define a transaction, calling the method start multiple times

will not result in recursion, but instead an exception will be

raised at run-time.

4.6 Failures

In distributed environments partial failures are a fact of life,

so any system must have mechanisms to deal with them.

Atomic RMI 2 handles two basic types of failures: remote

object failures and transaction failures.

Failures of remote objects are straightforward and the

responsibility for detecting them and alarming Atomic RMI

2 falls onto the mechanisms built into Java RMI. Whenever

a remote object is called from a transaction and it cannot be

reached, it is assumed that this object has suffered a failure

and as a result a RemoteException is thrown at run-time.

The programmer may then choose to handle that exception

by, for example, rolling the transaction back, re-running it,

or compensating for the failure. Failures of remote objects

follow a crash-stop model, where an object that has crashed

is not brought back to operation, but simply removed from

the system.

On the other hand, a client performing some transaction

can crash causing a transaction failure. Such failures can

occur before a transaction releases all its objects and thus

make them inaccessible to all other transactions. The objects

can also end up in an inconsistent state. For these reasons

transaction failures need also to be detected and mitigated.

Atomic RMI 2 does this by having remote objects check

whether a transaction is responding. If a transaction fails to

respond to a particular remote object (i.e., if it times out),

it is considered to have crashed, and the object performs

a rollback on itself: it reverts its state and releases itself.

If the transaction actually crashed, all of its objects will

eventually do this and the state will become consistent. On

the other hand, if the crash was illusory and the transaction

tries to resume operation after some of its objects rolled

themselves back, the transaction will be forced to abort when

it communicates with one of these objects.

5. Conclusions

We presented Atomic RMI 2, a programming framework

for distributed transactional concurrency control for Java.

Compared to locks, the transaction abstraction is easy for

programmers to use, while hiding complex synchronization

mechanisms under the hood. We use that to full effect by

employing OptSVA-CF, a transactional concurrency control

algorithm based on solid theory (Siek and Wojciechowski

2015) that allows high parallelism and deadlock freedom. The

algorithm is described in detail in (Siek and Wojciechowski

2016). Additionally, the pessimistic approach that is used

in the underlying algorithm allows our system to present

fewer restrictions to the programmer with regard to what

operations can be included within transactions. Apart from

limited transaction nesting, very little is forbidden within

transactions.

A. Complete Example: The Bank

The following describes an example showing how to create a

simple distributed application using Atomic RMI 2.

A.1 Remote Objects

The example includes a single type of remote object and

it is specified by the interface Account. It provides four

methods: getBalance, deposit, withdraw, and reset for

determining, setting, and resetting the bank account balance.

1 public interface Account extends Remote {

2 @Access(Mode.READ) int getBalance() throws

RemoteException;→֒

3 @Access(Mode.UPDATE) void deposit(int amount)

throws RemoteException;→֒

4 @Access(Mode.UPDATE) void withdraw(int

amount) throws RemoteException;→֒

5 @Access(Mode.WRITE) void reset() throws

RemoteException;→֒

6 }

A class implementing that interface is presented below.

1 public class AccountImpl extends

TransactionalUnicastRemoteObject

implements Account {

→֒

→֒

2 private int balance = 0;

3

4 public int balance() throws RemoteException {

5 return balance;

6 }

7

8 public void deposit(int amount) throws

RemoteException {→֒

9 balance += amount;

10 }

11

65

12 public void withdraw(int amount) throws

RemoteException {→֒

13 balance -= amount;

14 }

15

16 public void reset() throws RemoteException {

17 balance = 0;

18 }

19 }

The class AccountImpl extends the TransactionalUni

castRemoteObject class from the put.atomicrmi.optsva

package to allow this remote object to be available remotely

and fitted with the appropriate transactional mechanisms.

The standard Java RMI system also allows to use the static

ExportObject method from the UnicastRemoteObject

class (in such case deriving from class UnicastRemoteObject

is no longer required). This mechanism is not supported by

the Atomic RMI 2 and only the first option can be used.

A.2 Server

Generally the server implementation should include the

following steps:

1. A reference to the Registry must be obtained to allow

binding remote objects;

2. Remote objects must be instantiated;

3. Remote object instances must be given identifiers and

registered with the Registry object.

The following server implementation performs those steps

in order to create two bank accounts. The first is initialized

with the balance of 1000 and registered as “A”. The second

is initialized with the balance of 500 and registered as “B”.

1 public class Server { // Server is executed at

host 192.168.1.10.→֒

2 public static void main(String[] args) throws

Exception {→֒

3

4 // Get a reference to RMI registry.

5 Registry registry =

LocateRegistry.createRegistry(1099);→֒

6

7 // Initialize bank accounts.

8 Account a = new AccountImpl(1000);

9 Account b = new AccountImpl(500);

10

11 // Bind addresses.

12 registry.bind("A", a);

13 registry.bind("B", b);

14 }

15 }

Two kinds of clients are used to show the usage of

distributed transactions.

A.3 Audit Clients

The audit client retrieves the balance of accounts A and B, and

prints the total balance of those two accounts. The balance is

retrieved within a distributed transaction. To implement those

clients the following general steps should be taken:

1. A reference to Registry services must be located.

2. Remote object references must be located with the use of

the lookup method of Registry instances.

3. A new instance of Transaction must be created.

4. The transaction preamble must be described using the

accesses, reads, writes, and updates methods of

the Transaction object, creating stubs, and wrapping

remote objects’ code that will transparently control the

way those objects are used.

5. Transaction execution must be contained between the

invocations of the start method and any of the commit

or abort methods of the instance of Transaction.

The code given below implements an example audit client

that is responsible for retrieving the total balance. In the

transaction each of the remote objects is accessed exactly

once and this value is described in the preamble before

the transaction begins. The balance of accounts A and B

is retrieved within the transaction, which ensures a globally

consistent view of the accounts irrespective of any concurrent

operations that may occur on these accounts.

1 public class AuditClient {

2 public static void main(String[] args) throws

RemoteException, NotBoundException {→֒

3

4 // Get a reference to RMI registry.

5 Registry registry =

LocateRegistry.getRegistry("192.168.1.10",

1099);

→֒

→֒

6

7 // Get references to remote objects and

transaction preamble.→֒

8 Transaction transaction = new Transaction();

9 Account a = tr.reads(registry.lookup("A"),1);

10 Account b = tr.reads(registry.lookup("B"),1);

11

12 tr.start();

13

14 // Check balance on both accounts atomically.

15 int balanceA = a.balance();

16 int balanceB = b.balance();

17

18 tr.commit();

19 System.out.println(balanceA + balanceB);

20 }

21 }

When running multiple clients simultaneously from vari-

ous hosts, using distributed transactions guarantees that no

66

transfer can be interleaved with any other transfer or balance

retrieval operations, so the total balance is always constant.

A.4 Transfer Clients

The transfer client transfers money from account A to account

B and commits or rolls back. This transfer is also done

within the distributed transaction. Below is an example

implementation of the transfer clients. It follows the same set

of general steps as for the audit clients.

This time there are two accesses to remote objects A and B,

and this is accounted for in the task description. Additionally,

the transaction can finish with either a commit, or rollback,

depending on some external confirmation.

1 public class TransferClient {

2 public static void main(String[] args) throws

RemoteException, NotBoundException {→֒

3

4 // Get a reference to RMI registry.

5 Registry registry = LocateRegistry.

getRegistry("192.168.1.10",1099);→֒

6

7 // Transaction header.

8 Transaction transaction = new Transaction();

9 Account a =

tr.accesses(registry.lookup("A"),1,0,1);→֒

10 Account b =

tr.updates(registry.lookup("B"),1);→֒

11

12 tr.start();

13

14 // Transfer funds from A to B.

15 a.withdraw(100);

16 b.deposit(100);

17

18 // Abort transaction if insufficient funds

or commit otherwise.→֒

19 if (a.balance() < 0) {

20 tr.abort();

21 } else {

22 tr.commit();

23 }

24 }

25 }

A.5 Transfer Client with Retry

This client is functionally the same as the other transfer client,

except that it gives the option to retry the transaction. In order

to achieve that, it must use the Transactional interface to

define the transaction:

1. See 1–4 of the audit client.

2. An object of a class implementing the Transactional

interface is created containing the transaction, which

is concluded by any of the commit, retry, or abort

methods of the instance of Transaction. (For brevity,

we create an anonymous class in the example.)

3. Transaction execution is commenced when the start

method is called with the Transactional instance as an

argument.

Apart from the possibility of retrying instead of rolling

back, the transaction is identical to the one without retry.

1 public class TransferClient {

2 public static void main(String[] args) throws

RemoteException, NotBoundException {→֒

3

4 // Get a reference to RMI registry.

5 Registry registry = LocateRegistry.

getRegistry("192.168.1.10",1099);→֒

6

7 // Transaction header.

8 Transaction transaction = new Transaction();

9 Account a =

tr.accesses(registry.lookup("A"),1,0,1);→֒

10 Account b =

tr.updates(registry.lookup("B"),1);→֒

11

12 tr.start(new Transactional() {

13 public void run(Transaction t) throws

RemoteException {→֒

14

15 // Transfer funds from A to B.

16 a.withdraw(100);

17 b.deposit(100);

18

19 // End transaction.

20 if (a.balance < 0) {

21 Thread.sleep(1000);

22 t.retry();

23 }

24 }

25 });

26 }

27 }

B. Examples of Suprema-based and Manual

Early Release

If the programmer has good knowledge of when an object

stops being used in a transaction from the semantics of the

program, she can allow that remote object to be released by

invoking the release operation. This mechanism must be used

carefully, so that a released object is not accessed again later

on (causing an exception). On the other hand, the mechanism

can be used to complement the early release mechanism

supplied by OptSVA-CF, as we explain below.

Note the simple example in Fig. 3a, where a transaction

calls methods on shared objects a and b in a loop. If manual

release was to be used, the simplest way to use it is to insert

release instructions at the end of the loop at lines 9–10.

However, it will mean that before a is released, the transaction

unnecessarily waits until b executes as well. If a and b are

67

remote objects, each such call can take a long time, so this

simple technique impairs efficiency.

Instead, the programmer should strive to write transactions

like in Fig. 3b. Here, a is released at lines 7–8, in the last

iteration of the loop before the method call on b is started.

However, the release in both examples sends an additional

network message to a and b (because the release method

requires it), which can be relatively expensive.

If the OptSVA-CF algorithm is given the maximum num-

ber of times each object is accessed by the transaction, i.e.,

that a and b will be accessed at most n times each, then

Atomic RMI 2 can determine which access is the last one

as it is happening. Then, the transaction’s code looks like

in Fig. 3c, where suprema are specified in lines 2–3, but the

instructions to release objects are hidden from the program-

mer, so there is no need for supplementary code. Additionally,

since release is done as part of the nth call on each object,

there is no additional network traffic. Furthermore, object a

does not wait for the method b.foo() to execute.

However, releasing by suprema alone is not always the

best solution, since there are scenarios when deriving precise

suprema is impossible. In those cases the manual early release

complements the suprema-based mechanism in increasing

the parallelism of transactional executions. One such case

is shown in Fig. 3d, where a transaction searches through

objects representing hotels, and books a room if there are

vacancies. Each interaction with a hotel can take up to two

method calls: vacancy check (line 6) and booking (line 7).

However the supremum will only be precise for one hotel,

the first one with vacancies. Other hotels that do not have

vacancies, will not be asked to book a room, so there is only

one access. This means that the supremum will not be met

for those cases until the end of the transaction, so those hotel

objects will only be released on commit. Hence, they are

manually released on line 9, so the objects are not needlessly

retained and can be accessed by other transactions as soon as

possible.

Acknowledgments

The project was funded from National Science Centre funds

granted by decision No. DEC-2012/07/B/ST6/01230.

References

Atomic RMI 2. https://dsg.cs.put.poznan.pl/atomicrmi,

2016.

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency

control and recovery in database systems. Addison-Wesley,

1987.

R. L. Bocchino, V. S. Adve, and B. L. Chamberlain. Software

Transactional Memory for Large Scale Clusters. In Proceedings

of PPoPP’08: the 13th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, Feb. 2008.

J. C. Corbett and et al. Spanner: Google’s globally-distributed

database. In Proceedings of OSDI’12: the 10th USENIX

1 t = new Transaction();

2 a = t.accesses(a);

3 b = t.accesses(b);

4 t.start();

5 for (i=0; i<n; i++) {

6 a.foo();

7 b.foo();

8 }

9 t.release(a);

10 t.release(b);

11

12 // local operations

13 t.commit();

(a) Manual release.

1 t = new Transaction();

2 a = t.accesses(a);

3 b = t.accesses(b);

4 t.start();

5 for (i=0; i<n; i++) {

6 a.foo();

7 if (i==n)

8 t.release(a);

9 b.foo();

10 }

11 t.release(b);

12 // local operations

13 t.commit();

(b) Conditional early release.

1 t = new Transaction();

2 a = t.accesses(a, n);

3 b = t.accesses(b, n);

4 t.start();

5 for (i=0; i<n; i++) {

6 a.foo(); // nth call: release

7 b.foo(); // nth call: release

8 }

9 // local operations

10 t.commit();

(c) Early release by suprema.

1 t = new Transaction();

2 for (h : hotels)

3 trHotels.add(t.accesses(h, 2));

4 t.start();

5 for (h : trHotels) {

6 if (h.hasVacancies())

7 h.bookRoom();

8 else

9 t.release(h);

10 }

11 t.commit();

(d) Suprema unknown a priori - complementary manual

release.

Figure 3: Early release examples

68

https://dsg.cs.put.poznan.pl/atomicrmi

Symposium on Operating Systems Design and Implementation,

Oct. 2012.

M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues.

D2STM: Dependable distributed software transactional memory.

In Proceedings of PRDC’13: the 15th IEEE Pacific Rim

International Symposium on Dependable Computing, Nov.

2009.

R. Guerraoui and M. Kapałka. Principles of Transactional Memory.

Morgan & Claypool, 2010.

S. Hirve, R. Palmieri, and B. Ravindran. HiperTM: High

performance, fault-tolerant transactional memory. In Proceedings

of ICDCN’14: the 15th International Conference on Distributed

Computing and Networking, Jan. 2014.

T. Kobus, M. Kokociński, and P. T. Wojciechowski. Hybrid

replication: State-machine-based and deferred-update replication

schemes combined. In Proceedings of ICDCS’13: the

33rd International Conference on Distributed Computing

Systems, July 2013.

C. Kotselidis, M. Ansari, K. Jarvis, M. Luján, C. C. Kirkham,

and I. Watson. DiSTM: A software transactional memory

framework for clusters. In Proceedings of ICPP’08: the 37th

IEEE International Conference on Parallel Processing, Sept.

2008.

D. Peng and F. Dabek. Large-scale incremental processing using

distributed transactions and notifications. In Proceedings

of OSDI’10: the 9th USENIX Symposium on Operating Systems

Design and Implementation, Oct. 2010.

M. M. Saad and B. Ravindran. HyFlow: A high performance

distributed transactional memory framework. In Proceedings

of HPDC’11: the 20th International Symposium on High

Performance Distributed Computing, June 2011.

K. Siek and P. T. Wojciechowski. A formal design of a

tool for static analysis of upper bounds on object calls in

Java. In Proc. of FMICS ’12, LNCS 7437, 2012. doi:

10.1007/978-3-642-32469-7_13.

K. Siek and P. T. Wojciechowski. Last-use opacity: A strong safety

property for transactional memory with early release support.

June 2015. arXiv:1506.06275 [cs.DC] (submitted).

K. Siek and P. T. Wojciechowski. Atomic RMI 2: Highly parallel

pessimistic distributed transactional memory. May 2016.

arXiv:1606.03928 [cs.DC] (submitted).

A. Turcu, B. Ravindran, and R. Palmieri. HyFlow2: A high

performance distributed transactional memory framework in

Scala. In Proc. of PPPJ ’13, Sept. 2013.

P. T. Wojciechowski. Isolation-only transactions by typing and

versioning. In Proc. of PPDP ’05, July 2005.

69

	Introduction
	Related Work
	Programming Constructs
	Components
	RMI Registry
	Remote Objects
	Transactions

	Tool Functionality, Strengths, and Weaknesses
	Accesses of Remote Objects
	Deeply Distributed Transactions
	Multi-Threaded Transactions
	Nested Transactions
	Recurrency
	Failures

	Conclusions
	Complete Example: The Bank
	Remote Objects
	Server
	Audit Clients
	Transfer Clients
	Transfer Client with Retry

	Examples of Suprema-based and Manual Early Release

