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Copying

Nomadic Pict is copyright c©1998–2006 by Pawe l T. Wojciechowski. This program and its documentation
are free software; you can redistribute them and/or modify them under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version. Nomadic Pict is distributed in the hope that it will be useful, but without any
warranty; without even the implied warranty of merchantability or fitness for a particular purpose. See
the GNU General Public License for more details. You should have received a copy of the GNU General
Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA.

Nomadic Pict is available electronically from http://www.cs.put.poznan.pl/pawelw/npict.html
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Foreword

The primary goal of the Nomadic Pict project, begun at the University of Cambridge in 1996, was to design
and implement a low-level language based on process calculi which offers good abstractions for distributed
programming (with thread mobility) in a system where machines and communication links may crash. This
report describes the syntax and use of Nomadic Pict Release 1.0 – the first implementation of Nomadic Pict,
and makes little attempt to explain or motivate the Nomadic Pict language design. Interested readers are
directed to the definition of the Nomadic π-calculus of Sewell, Wojciechowski, and Pierce [SWP99], and a
brief comparison of Nomadic Pict with similar languages, included in [Woj00a].

The implementation of Nomadic Pict described here is built on Pict of Pierce and Tuner[PT97a, PT97b,
Tur96], a concurrent (but not distributed) language based on the asynchronous π-calculus[MPW92, HT91,
Bou92]1. Pict supports fine-grain concurrency and the communication of asynchronous messages between
parallel threads. We use primitives of Pict to express computation within an agent. Nomadic Pict has a two-
level architecture. The Low-Level Nomadic Pict extends Pict with primitives for agent creation, migration of
agents between sites, and communication of location-dependent asynchronous messages between agents. The
high-level language adds location-independent communication – an arbitrary distributed infrastructure to
support this communication can be expressed as a user-defined translation into the low-level language. The
translation encoding defines actual properties of the system (e.g. as for robustness and tolerance to system
failures). Nomadic Pict has a standardised low-level runtime system that is common to many machines,
with divergent high-level facilities chosen and installed on demand. It has been implemented in O’Caml. In
principle, it should run on any platform that O’Caml supports.

This document is not intended as a tutorial on distributed programming with mobility, but no previous
experience in distributed programming is required. However, we do assume some familiarity with the Pict
language syntax and concurrent programming in the style of the π-calculus. Readers who find it hard to
understand the language notation and examples included in this document should begin with the tutorial on
Pict programming[PT97c]. Below, we outline the contents of this report. After a small example illustrating
the principles of distributed programming in our system, Chapter 1 describes the primitives of Low-Level
Nomadic Pict. Chapter 2 then defines High-Level Nomadic Pict and the language for expressing transla-
tions from high- to low-level. Chapter 3 discusses derived language forms and useful programming idioms.
Chapter 4 gives a small example application in Nomadic Pict, illustrating the expressive power of the lan-
guage, and presents an example communication infrastructure encoding. Chapter 5 explains how to compile
and execute Nomadic Pict programs. Chapter 6 presents the concrete syntax. Libraries are described in a
separate document[Woj00b].

1We extended the original Pict compiler and ported many of Pict libraries. It should be possible to compile Pict-4.*
programs (modulo libraries) and execute them in the Nomadic Pict runtime system. The Pict source code is available from
httl://www.cis.upenn.edu/ ~ bcpierce and distributed under the terms of the GNU General Public License as published by
the Free Software Foundation.
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Chapter 1

Low-Level Language

The Nomadic Pict language has a two-level architecture. Low-Level Nomadic Pict extends Pict with primi-
tives for agent creation, migration of agents between sites, and communication of location-dependent asyn-
chronous messages between agents. The high-level language adds location-independent communication; an
arbitrary distributed infrastructure to support this communication can be expressed as a user-defined trans-
lation into the low-level language using the modularisation facilities of the language. It is possible to deploy
such infrastructure dynamically using migration.

We begin with a simple example. Below is a program in the low-level language showing how an applet
server can be expressed. It can receive (on the channel named getApplet) requests for an applet; the requests
contain a pair (bound to a and s) consisting of the name of the requesting agent and the name of its site.

getApplet ?* [a s] =

agent b =

migrate to s

( <a@s>ack!b | ... )

in ()

When a request is received the server creates an applet agent with a new name bound to b. This agent
immediately migrates to site s. It then sends an acknowledgement to the requesting agent a (which is
assumed to be on site s) containing its name. In parallel, the body ... of the applet commences execution.

The example illustrates the main entities of the language: sites, agents and channels. Sites should be
thought of as physical machines or, more accurately, as instantiations of the Nomadic Pict runtime system on
machines; each site has a unique name. Sites are unstructured; neither network topology nor administrative
domains are represented in the language. Agents are units of executing code; an agent has a unique name and
a body consisting of some Nomadic Pict process; at any moment it is located at a particular site. Channels
support communication within agents, and also provide targets for inter-agent communication—an inter-
agent message will be sent to a particular channel within the destination agent. Channels also have unique
names. The language is built above asynchronous messaging, both within and between sites; in the current
implementation inter-site messages are sent on TCP connections, created on demand, but when writing
Nomadic Pict programs you should not depend on the message ordering that could be provided by TCP.
The inter-agent message <a@s>ack!b is characteristic of the low-level language. It is location-dependent—if
agent a is in fact on site s then the message b will be delivered, to channel ack in a; otherwise the message
will be discarded. In the implementation at most one inter-site message is sent. Below we describe the
primitives of the low-level language.

1.1 Primitives

We will introduce the low-level primitives in groups. They fall into two main syntactic categories of processes
and declarations. A program is simply a series of declarations, which may contain processes. For simplicity,
we confuse other syntactic categories such as abstractions, patterns, values, paths, types, and constants.

6



The Nomadic Pict Language 7

Some of them are described informally in following sections. Chapter 6 contains a complete definition of the
concrete syntax in a notation similar to the Backus-Naur Form.

1.1.1 Declarations

Declarations D include definitions of types, channels, process abstractions, agents, and also a migration
primitive.

type T = T’ type abbreviation
new c:T P new channel name creation
agent a=P and ... and a’=P’ in Q agent creation
migrate to s P agent migration
def f[...]=P and ... and f’[...]=P’ Q

process abstraction

The declaration typeT = T’ P introduces a new name T for complex type T’. Execution of new c:^T P

creates a new unique channel name for carrying values of type T; c is binding in P. The execution of the
construct agent a=P in Q spawns a new agent on the current site, with body P. After the creation, process
Q commences execution, in parallel with the rest of the body of the spawning agent. The new agent has a
unique name which may be referred to both in its body and in the spawning agent (i.e. a is binding in P

and Q). A group of agent definitions introduced by agent and separated by and can be mutually recursive,
i.e. each of the bodies P can refer to any of the defined agent names. Agents can migrate to named sites —
the execution of migrate to s P as part of an agent results in the whole agent migrating to site s. After
the migration, process P commences execution in parallel with the rest of the body of the agent. The def

declarations are used to define process abstractions (i.e. process expressions prefixed by patterns); they are
described in Chapter 3.

1.1.2 Processes

Processes P,Q,... form a separate syntactic category.

(P | Q) parallel composition
(D P) local declaration
() null process

The body of an agent may consist of many process terms in parallel, i.e. essentially of many lightweight
threads. They will interact only by message passing. We can write a composition of more than two processes
as (P1 | ... | Pn). Large programs often contain processes with long sequences of declarations like (new
x1:T1 ... (new x2:T2 P)). We can avoid many nested parentheses and simply write (new x1:T1 ...
new x2:T2 P). In sequences of declarations, it is convenient to start some process running in parallel with
the evaluation of the reminder of the declarations. We can use the Pict declaration keyword run for this
purpose, e.g. a program

(new x:T

run print!"Hello"

new y:T

P)

will be transformed into (new x:T (print!"Hello" | (new y:T P)))

c!v output v on channel c in the current agent
c?p = P input from channel c
c?*p = P replicated input from channel c
if v then P else Q conditional

To express computation within an agent, while keeping a lightweight implementation and semantics, we
include π-calculus-style interaction primitives of Pict. An output c!v (of value v on channel c) and an input
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c?p=P in the same agent may match, resulting in P with the appropriate parts of the value v bound to the
formal parameters in the pattern p. The communication is asynchronous, i.e. the output is never blocked.
The implementation uses local environments to store bindings of parameters to actual values. A replicated
input c?*p=P behaves similarly except that it persists after the matching, and so may receive another value.
In both c?p=P and c?*p=P the names in p are binding in P.

iflocal <a>c!v then P else Q test-and-send to agent a on this site
<a>c!v send to agent a on this site
<a@s>c!v send to agent a on site s

wait c?p=P timeout t -> Q input with timeout

Finally, the low-level language includes primitives for interaction between agents. The execution of iflocal
<a>c!v then P else Q in the body of an agent b has two possible outcomes. If agent a is on the same
site as b, then the message c!v will be delivered to a (where it may later interact with an input) and P will
commence execution in parallel with the rest of the body of b; otherwise the message will be discarded, and
Q will execute as part of b. The construct is analogous to test-and-set operations in shared memory systems
— delivering the message and starting P, or discarding it and starting Q, atomically. The test-and-send can
greatly simplify algorithms that involve communication with agents that may migrate away at any time, yet
is still implemented locally, by the runtime system on each site. Two other useful constructs can be expressed
in the language introduced so far (using migration, agent creation, and test-and-send): <a>c!v and <a@s>c!v

attempt to deliver c!v to agent a, on the current site and on s respectively. They fail silently if a is not
where expected and so are usually used only where a is predictable. For implementing infrastructures that
are robust under some level of failure, or support disconnected operation, some timed primitive is required.
The low-level language includes a single timed input as above, with timeout value n. If a message on channel
c is received within n seconds then P will be started as in a normal input, otherwise Q will be. The timing
is approximate, as the runtime system may introduce some delays.

terminate terminate execution of the current agent

We also include constructs for garbage collection. The execution of terminate terminates the current agent
and removes its closure from the heap, releasing memory occupied by the agent. Any I/O operations (e.g.
input from a keyboard) will be abruptly killed.

1.2 Names and Scope Extrusion

Names play a key rôle in the Nomadic Pict language. New names of agents and channels can be created
dynamically. These names are pure, in the sense of Needham [Nee89]; no information about their creation is
visible within the language (in our current implementation they do contain site IDs, but could equally well
be implemented by choosing large random numbers). Site names, contain an address and port number of
the runtime system which they represent.

Channel, agent, and site names are first-class values and they can be freely sent to processes which are
located at other agents. As in the π-calculus, names can be scope-extruded — here channel and agent names
can be sent outside the agent in which they were created. For example, if the body of agent a is

agent b =

(

new d : T

iflocal <a>c!d then () else ()

)

in

c?x=x![]

then channel name d is created in agent b. After the output message c!d has been sent from b to a (iflocal)
and has interacted with the input c?x=x![] there will be an output d![] in agent a.

We require a clear relationship between the semantics of the low-level language and the inter-machine
messages that are sent in the implementation. To achieve this we allow direct communication between
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outputs and inputs on a channel only if they are in the same agent — messages can be sent from one
agent to another only by iflocal (and derived forms for sending to an agent on a site, such as <a>c!v and
<a@s>c!v). Intuitively, there is a distinct π-calculus-style channel for each channel name in every agent. For
example, if the body of agent a is

agent b =

(

new d : T

(d?=()

| iflocal <a>c!d then () else ())

)

in

c?x=x![]

then after some reduction steps a contains an output on d and b contains an input on d, but these cannot
react. At first sight this semantics may seem counter-intuitive, but it reconciles the conflicting requirements
of expressiveness and simplicity of the language. An implementation creates the mailbox datastructure — a
queue of pending outputs or inputs — required to implement a channel as required; it is garbage collected
when empty. The queue is part of an agent’s state which is transferred with every move of the agent. We
could further develop our example and send name d back to agent b and use it for communication with the
input on d inside agent b. The output on d can be placed anywhere inside agent b (in particular outside the
lexical scope of d) but it may still interact with the input on d as long as both the input and output are in
the same agent.

1.3 Types

All bound variables (and wildcards) are explicitly typed. In practice, however, many of these type annotations
can be inferred automatically by the compiler. Therefore we do not include them in the syntax above. Types
are required in definitions, e.g. execution of new c:^T P creates a new unique channel name for carrying
values of type T. The language inherits a rich type system from Pict, including simple record types, higher-
order polymorphism, simple recursive types and subtyping. It has a partial type inference algorithm. Below,
we summarise the key types, see [PT97b] for details.

1.3.1 Base types

The base types include String of strings, Char of characters, Int of integers, and Bool of Booleans. They
are two predefined Boolean constants false and true of type Bool. Nomadic Pict adds new base types Site
and Agent of site and agent names.

1.3.2 Channel types and subtyping

Pict’s four channel types are as follows:

• ^T is the type of input/output channels carrying values of type T

• !T is the type of output channels accepting T

• ?T is the type of input channels yielding T

• /T is the type of responsive output channels carrying T; we use this type to define process abstractions
and functions.

The type ^T is a subtype of both !T and ?T. That is, a channel that can be used for both input and output
may be used in a context where just one capability is needed. The type /T is a subtype of !T and it was
introduced to define process abstractions and channels carrying results in a functional style (see examples
in Chapter 3). It should not be used for channels which are for communication between agents; we have
types ^T, !T, and ?T for this. In principle, type /T guarantees that there is exactly one (local) receiver. We
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define a type Sig as /[] to mark responsive channels which are used to signal completion rather than for
exchanging data.

1.3.3 Records, polymorphic and recursive types

We can use tuples [T1...Tn] of types T1...Tn and existential polymorphic types such as [#X T1...Tn] in
which the type variable X may occur in the field types T1...Tn. We can add labels to tuples obtaining
records such as [label1=T1...labeln=Tn]. Recursive types are constructed as (rec X=T), in which the
type variable X occurs in type T.

1.3.4 Variant and dynamic types

In Nomadic Pict we added a variant type [label1>T1...labeln>Tn] and a type Dyn of dynamic val-
ues. The variant type [label1>T1...labeln>Tn] denotes all values [label>v:T] such as (label, T ) ∈
{(label1, T1), ..., (labeln, Tn)}, and can be used for expressing variants and types of channels carrying values
of a finite set of types. The dynamic type is useful for implementing traders, i.e. maps from string keywords
(or textual descriptions) to dynamic values. Dynamic values are implemented as pairs (v, T ) of a value and
its type.

1.3.5 Defining types and type operators

We can use a declaration keyword type to define new types and type operators, e.g. type (Double X) =

[X X] denotes a new type operator Double which can be used as in new c:^(Double Int). In Nomadic Pict
programs, we often use a type operator Map from the libraries, taking two types and giving the type of maps,
or lookup tables, from one to the other (examples of using maps are in Chapter 4).

1.4 Values and Patterns

Values Channels allow the communication of first-order values, consisting of channel, agent, and site
names, constants, integers, strings, characters, tuples [v1...vn] of the n values v1...vn, packages of
existential types [#T v1...vn], elements of variant types [label>v], and dynamic values. A dynamic value
can be constructed using a constructor dynamic, as in (dynamic T). Values are deconstructed by pattern
matching on input or, in the case of variants and dynamic values, using syntactic sugar switch and typecase.

The language does not support communication of processes (except for the migration of whole agents)
but for experimental reasons it permits higher-order functions to be communicated between agents. They
will be described in Chapter 3, together with derived forms.

Characters constants are written by enclosing a single character in single-quotes, as in ’a’. Similarly,
string constants are written by enclosing a sequence of zero or more characters in double-quotes. The
following escape sequences from Pict can be used to write special characters in constants:

’ single quote
" double quote
\ backslash
\n newline (ascii 13)
\t tab (ascii 8)

Patterns p are of the same shapes as values (but names cannot be repeated), with the addition of a
wildcard. The wildcard pattern instead of named variables can be used to reduce the number of irrelevant
variable bindings.



Chapter 2

High-Level Language

Nomadic Pict promotes a hierarchical or layered process of building distributed applications, where each
layer represents different concerns. The communication infrastructure encoding is the layer which formally
defines properties of the agent communication. It can often be useful to design the encoding with an
application in mind, i.e. take into account the application demands and important properties, and design
a good infrastructure which gurantees these properties. This allows for better use of system resources, e.g.
in wide-area and mobile networks, and when some higher levels of security are required. A more traditional
approach aims at building “middleware” systems as black boxes, trying to satisfy all possible demands of
all current and future applications. Below we describe the primitives of the high-level language and the
language for expressing the infrastructure encodings.

2.1 Primitives

The high-level language is obtained by extending the low-level language with a single location-independent
communication primitive.

c@a!v location-independent output to channel c at agent a

The intended semantics of an output c@a!v is that its execution will reliably deliver the message c!v to agent
a, irrespective of the current site of a and of any migrations. The low-level communication primitives are also
available, for interacting with application agents whose locations are predictable. The actual semantics of
c@a!v will depend on the encoding (or compilation-time library) of this primitive in the low-level language.
The Nomadic Pict distribution files contain some example encodings which guarantee the intended semantics
if the underlying distributed system is mostly reliable. Infrastructures which can tolerate different failures
may be added in future.

Other low- and high-level communication primitives may be added in future, e.g. in order to support
stream communication. They can be encoded as functions or using the syntax as below.

do "key" v in P a placeholder for macro definition ”key”

The compiler will replace each occurrence of do "key" v in P by a macro definition in the low-level lan-
guage which has a string name "key". The parameter v should have a type which is expected by a macro
definition. Alternatively, we can simply define a function (or process abstraction) in the high-level program
and reimplement this function in Low-Level Nomadic Pict using the construct {def f ... }e = P, de-
scribed in §2.2. The Nomadic Pict compiler will replace function definitions in the high-level program by
their equivalents defined in the compositional translation.

2.2 Expressing Encodings

The language for expressing encodings of high-level language primitives allows the translation of each inter-
esting phrase (all those involving agents or communication) to be specified and type checked; the translation

11
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of a whole program (including the translation of types) can be expressed using this compositional translation.
Below we describe the concrete syntax of the language for expressing encodings; the example infrastructure
in Chapter 4 should give the idea how to use our language (see also Appendix). We will introduce the main
language primitives in groups.

program par:T = P Program declaration
{toplevel P par}T’ = Q Top level creation

The construct program par:T = P declares a program with body P, expressed in the high-level language.
The name par of type T is the program parameter which may be referred to in the body P (i.e. par is binding
in P). In order to execute a program P with the formal parameter par we need to define a toplevel using the
construct {toplevel P par}T’ = Q.

The execution of {toplevel P par}T’ = Q spawns a new toplevel on the current site, with body Q

expressed in the low-level language. After the creation, the runtime system commences execution of process
Q. The names P and par are binding in Q and denote a user-defined program, declared by using the construct
program, and the program parameter, which must be initiated in the toplevel body Q. The type T’ in
{toplevel P par}T’ = Q is the type of the translation parameter (explained below), not to be confused
with the type T of the program parameter par in program.

{P}e a placeholder for translation of process P

We can use a placeholder {P}e inside the toplevel body Q. The Nomadic Pict compiler will replace {P}e by
translation of program P into the low-level language, i.e. program P with all high-level language primitives
replaced by their encodings into the low-level language. The translation has a parameter e of type T’ (i.e.
the type defined in the toplevel phrase). The parameter value must be initialised in the body Q.

{Agent} = T translation of type Agent

{Site} = T translation of type Site

In the infrastructure encoding, we may want to store additional data in values of type Agent and Site, such
the name of a daemon agent on a site, or the address of a local server. This will require to encode types
Agent and Site as tuples of basic types. The constructs {Agent} = T and {Site} = T are used to define
the translation of types Agent and Site into complex types. The compiler will use this translation to type
check the compositional translation of the high-level language primitives into the low-level language.

{agent a = P in Q}e = Proc translation of agent creation
{migrate to s P}e = Proc translation of migration
{c@a!v}e = Proc translation of location-independent output
{c?*p=Q}e = Proc translation of replicated input
{<a@s>c!v}e = Proc translation of output to agent on site
{<a>c!v}e = Proc translation of output to adjacent agent
{iflocal <a>c!v then P else Q}e = Proc

translation of test-and-send to agent
{wait c?p=P timeout t->Q}e = Proc translation of timed input

These are constructs of the compositional translation of the high-level language into the low-level language.
The first three constructs are the most often used. We can usually omit the rest since the translation is
trivial. Proc in each clause of the compositional translation is the process in the low-level language which will
replace the primitive of the high-level language. The compositional translation of each high-level language
phrase has a translation parameter e whose value must be initialised in the toplevel and passed to the
encoding by using the construct {P}e (described above).

!a a pattern refering to translation variable a

Names a, par, and p in translation definitions: {agent a = P in Q}e = Proc, {toplevel P par}T = Proc

and {c?*p=Q}e = Proc, are binders which should be created inside Proc. We can use pattern !a in Proc in
order to refer to translation variable a and, e.g. assign value v to a using val !a=v.

{do "key" x in P }e = Proc macro definition ”key”
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A rudimentary module system allows encodings of any new phrases of the high-level language to be expressed
as macro definitions. We can use the macros in programs writing do "key" x in P. Here, the type of x is
not known until the macro definition is applied and the type information can be inferred.

{def f}e [...] = Proc Redefinition of process abstraction
{def f}e (...):T = Proc Redefinition of function

All process abstractions and functions in the high-level language which have types (of parameters or returned
values) containing Site or Agent which have been encoded as complex types must be reimplemented in the
low-level language. To express these translations we use the constructs {def f}e [..]= P and {def f}e
(..):T = P. The Nomadic Pict compiler will use a new definition P to generate the executable code for f,
thus replacing any implementations of f which were in the original program.



Chapter 3

Derived Forms and Idioms

Below we give some useful syntactic sugar and programming idioms. Most are standard distributed pro-
gramming idioms such as remote procedure calls (RPC) and distributed objects; other idioms are more
experimental such as composite events.

3.1 Syntactic Sugar

The core language described in Chapters 1 and 2 lacks some constructs which are useful in programming. In
order to avoid complicating the semantics of the core language, additional programming features are made
as syntactic sugar, i.e. there is an unambiguous translation of the code with the additions into code without
them. Below we describe some syntactic sugar. Most are standard Pict forms; some are new. Interested
readers are directed to a formal description of the source-to-source translations in Pict in [PT97b], where all
Pict forms are described in detail.

3.1.1 Process abstractions and a functional style

In Pict, we can define process abstractions, i.e. process expressions prefixed by patterns, via the declaration
keyword def, as in

def f [x:T1 y:T2] = (x!y | x!y)

and instances are created using the same syntax as output expressions, as in f![a b]. The name f has type
/[T1 T2]. Recursive and mutually recursive definitions

def f [..] = ... g![..] ...

and g [..] = ... f![..] ...

are also allowed.
A functional style is supported by a small extension to the syntactic class of abstractions. For example,

we can replace a process abstraction def f [a1:T1 a2:T2 r:/T] = r!v, where v is some complex value,
by a ‘function definition’

def f (a1:T1 a2:T2) : T = v

and avoid explicitly giving a name to the result channel r. For simplicity, we often confuse process abstrac-
tions as above and process abstractions which do not return any values, using a single term “functions”.

We can define anonymous abstractions as in Pict

\[...] = ...

For example, below is a function f which accepts process abstractions of type String -> Sig

def f g:/[String Sig] = ((g "foo"); ())

14
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We can create an instance of f passing an anonymous function which prints an argument s and sends an
acknowledment signal on channel r as follows

f!\[s:String r:Sig] = ((pr s); r![])

Functions can be effectively used in Nomadic Pict by all agents which have been defined in the lexical
scope of function definitions. So formally it looks as though each agent has a private copy of each function it
might ever use. Similarly, any public library functions can be used in all agents defined in the program which
has imported these libraries. Declarations of library modules precede lexically any program declarations,
therefore the names of library functions are visible inside any agent in a normal way, just as any other names
defined in the lexical scope. All functions defined inside an agent are private to this agent.

3.1.2 Declaration values and applications

The syntactic category of values is extended with declaration values of the form (D v), as in

c!(new d:T d)

The complex value is always evaluated to yield a simple value, which is substituted for the complex expression;
the process above creates a fresh channel d and sends it off along c, as in (new d:T c!d).

In value expressions, we allow the application syntax (v v1 ... v2). For example, we can define a
process abstraction

def double [i:Int r:/Int] = +![i i r]

and then, in the scope of the declaration, write (double i) as a value, dropping the explicit result channel
r, e.g. printi!(double 2) would compute 4 and print it out on the console, using the library channel
printi.

3.1.3 Value declarations

A declaration

val p=v

evaluates a complex value v and names its result. Formally, a val declaration (val p=v e) is translated using
the continuation-passing translation, so that the body e appears inside an input prefix on the continuation
channel which is used to communicate a simple value evaluated from the complex value v. This means that
val declarations are blocking : the body e cannot proceed until the bindings introduced by the val have
actually been established.

3.1.4 Other syntactic sugar

The idiom “invoke an operation, wait for a signal (i.e. a null value []) as a result, and continue” appears
frequently, so it is convenient to introduce ; (semi-colon), as in

(v1 ...); (v2 ...)

for the sequence of operations v1 and v2.

3.1.5 Matching variants and dynamic values

In Nomadic Pict programs we use a variant type [label1> T1 ... labeln> Tn] so often, that it is con-
venient to introduce a new construct switch, as in

c?v= switch v of

(

label1> p1 -> P1

...

labeln> pn -> Pn

)
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that matches a value v of variant type with all the variants, chooses the one which has the same label as v,
and proceeds with a process P of the matched variant.

We can compare dynamic values at runtime using the construct typecase, as in

c?v= typecase v of

s:String -> print!s

[s:String d:^String] -> d!s

else print!"Type not recognised."

where c has type ^Dyn. Instances of dynamic values are created using (dynamic v). For example, c!(dynamic
["ala" x]) in parallel with the process term above may synchronise, resulting in "ala" being sent along
the channel x, c!(dynamic "ala") would print "ala", but any other (dynamic) value sent on c would
print an error message. The constructs switch and typecase are desugared using the value equality testing
primitive. In the examples above, switch and typecase are process terms but we can also use these
constructs in expressions yielding a value.

3.2 Procedures

Within a single agent one can express ‘procedures’ in Nomadic Pict as simple replicated inputs. Replicated
inputs are useful to express server agents. Below is a first attempt at a pair-server, that receives values x on
channel pair and returns two copies of x on channel result, together with a single invocation of the server.

new pair : ^T

new result : ^[T T]

( pair?*x = result![x x]

| pair!v

| result?z = ... z ... )

This pair-server can only be invoked sequentially—there is no association between multiple requests and their
corresponding results. A better idiom is below, in which new result channels are used for each invocation.
The pair-server has a polymorphic type (X is a type variable), instantiated to Int by a client process.

type (Res X) = ^[X X]

new pair : ^[#X X (Res X)]

( pair?*[#X x r] = r![x x]

| (new result:(Res Int) (pair![1 result] | result?z =... z ...))

| (new result:(Res Int) (pair![2 result] | result?z =... z ...)))

The example can easily be lifted to remote procedure calls between agents. We show two versions, firstly for
location-dependent RPC between static agents and secondly for location-independent RPC between agents
that may be migrating. In the first, the server becomes

new pair : ^[#X X (Res X) Agent Site]

pair?*[#X x r b s] = <b @ s>r![x x]

which returns the result using location-dependent communication to the agent b on site s received in the
request. If the server is part of agent a1 on site s1 it would be invoked from agent a2 on site s2 by

new result : (Res Int)

( <a1 @ s1>pair![7 result a2 s2]

| result?z = ...z... )

If agents a1 or a2 can migrate this can fail. A more robust idiom is easily expressible in the high-level
language—the server becomes

new pair : ^[#X X (Res X) Agent]

pair?*[#X x r b] = r@b![x x]

which returns the result using location-independent communication to the agent b. If the server is part of
agent a1 it would be invoked from agent a2 by

new result : (Res Int)

( pair@a1![3 result a2]

| result?z= ...z... )
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3.3 Mobile Agents

Nomadic Pict agents are located at sites and they can freely migrate to other named sites. Agents carry
their computation state with themselves and their execution is resumed on a new site from the point where
they stopped on previous site. Mobile agents can exchange messages on channels. A channel name can be
created dynamically and sent to other agents which can use it for communication.

Below is a program in the high-level language showing how a mobile agent can be expressed. It defines a
function spawn (which is assumed to be part of an agent a), containing a definition of agent b. The function
is invoked twice, each time creating a new agent b

new answer : ^String

def spawn [s:Site prompt:String] =

(agent b =

(migrate to s

answer@a!(sys.read prompt))

in

())

( spawn ! [s1 "How are you?" ]

| spawn ! [s2 "When does the meeting start?" ]

| answer ?* s = print!s

...

which migrates to site s, passed as the parameter of the function spawn. After migration, agent b prints a
string prompt and reads from a standard input. The input read on site s is sent back to agent a on answer

(using location-independent output) and printed out.
The location-independent message delivery (including any internal encodings of agent and site names

for different addressing schemas) is not part of the runtime system — it has to be encoded explicitly in
the language, using the language for expressing encodings described in Chapter 2. In Chapter 4, we give a
complete example program to illustrate the idea.

3.4 Locks, Methods and Distributed Objects

The language inherits a common idiom for expressing concurrent objects from Pict [PT95]. The process

new lock:^StateType

( lock!initialState

| method1?*arg = (lock?state = ... lock!state’ ...)

...

| methodn?*arg = (lock?state = ... lock!state’’ ...))

is analogous to an object with methods method1. . .methodn and a state of type StateType. Mutual exclusion
between the bodies of the methods is enforced by keeping the state as an output on a lock channel; the lock
is free if there is an output and taken otherwise. For more detailed discussion of object representations in
process calculi, the reader is referred to [PT95]. It contains an example program illustrating how a simple
reference cell abstraction can be defined in Pict. Below we rewrite the example to show how distributed
objects can be expressed in Nomadic Pict. The program uses mobile agents and many of the derived forms
described in previous sections.

A reference cell can be modeled by an agent with two procedures connecting it to the outside world –
one for receiving set requests and one for receiving get requests. Below our cell holds an integer value (in
channel contents) that initially contains 0.

type RefInt =

[

set=/[Agent Int Sig]

get=/[Agent /Int]

]
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def refInt [s:Site r:/RefInt] =

(

new set:^[Agent Int Sig]

new get:^[Agent !Int]

agent refIntAg =

(

new contents:^Int

run contents!0

migrate to s

( set?*[a:Agent v:Int c:Sig]= contents?_ = (contents!v | c![])

| get?*[a:Agent res:!Int]= contents?v = (contents!v | res@a!v))

)

r![

set = \[a:Agent v:Int c:Sig] = set@refIntAg![a v c]

get = \[a:Agent res:!Int] = get@refIntAg![a res]

])

A function refInt defines two method channels set and get and creates a cell agent refIntAg which
immediately migrates to site s. The cell agent maintains the invariant that, at any given moment, there is at
most one process ready to send on contents and when methods set and get are not active, there is exatly
one value in contents. The function refInt returns a record which defines an interface to procedures of
the cell agent. The record contains two labelled fields with anonymous functions implementing the location-
independent access to the procedures. Now, we can create two instances (objects) cell1 and cell2 of our
cell, one on site s1 and second on site s2

val cell1 = (refInt s1)

val cell2 = (refInt s2)

agent a =

(

(cell2.set ag 5);

(prNL (int.toString (cell1.get a)));

(prNL (int.toString (cell2.get a)));

()

)

and use them in some agent a. The agent a first stores 5 at object cell2, then gets stored values from both
objects and prints them out. Distributed objects are used in some Nomadic Pict libraries.

3.5 Higher-Order Functions

The core Nomadic Pict language does not support communication of active processes (except for the migra-
tion of whole agents). The question can be risen why not to treat process terms as values which could be
communicated between agents, similarly to the class serialisation mechanism in Java? This would be a fairly
serious step since we had to define the execution of the process term in all possible contexts. In fact, we have
already taken a similar but moderate step allowing library and other function names defined in one place
to be used by all (potentially mobile) agents which have been created in the lexical scope of the function
definition. For experimental reasons, we allow functions defined by def to be first-class values, which means
that any private or public functions can be sent to other agents, which can receive them on channels and
invoke in the same way as their own functions. However, we make no attempt to define the semantics of
higher-order functions formally. In particular, they are not part of the Nomadic π-calculus definition which
is described in [SWP99].

Below is a program which defines a channel carrying functions (of type String -> String) and two
agents a and b:

new c: ^/[String /String]
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agent a =

(

def f (s:String) : String = (+$ s s)

<b@glia>c!f

)

and b =

(

...

c?f= (val w = (f "Voo")

())

)

The agent a creates a private function f which returns a string given as the function parameter, concatenated
with itself, and sends off this function to agent b which is supposed to be on site glia. The agent b receives
the function on channel c, and invokes it, passing "Voo" as a parameter. The function prints VooVoo on a
local console.

In principle, in our statically-typed language the execution of functions which have been exported to some
other agent, likely to be executed on a remote machine, should not cause any runtime errors. Currently,
the function code is sent together with all other functions and global values which will be needed by the
exported function. Therefore the runtime errors “variable not bound” should not happen. Note, that if the
exported function had used standard Pict channels for communication with any external processes then the
function behaviour would depend on the new local context.

Higher-order functions add more expressiveness to the language but they complicate the language se-
mantics and may prevent from some highly optimised implementations in the future. Therefore, please keep
in mind that future versions may not support higher-order functions.

3.6 Distributed Composite Events

Nomadic Pict has a library (written in Nomadic Pict) which implements distributed events and a composite
event language for manipulating composite event expressions (such as a sequence of event types).

A distributed event in Nomadic Pict is an asynchronous time-stamped message. The timestamp is the
event creation time (e.g. a local clock value assigned at the event source). Events can be generated at
arbitrary many distributed event sources and multicast to agents (clients) that subscribed for the event
type. Events are delivered to each client according to the timestamp order. Events are distributed through
a third party called an event mediator, which can be spawned at any location whatsoever, e.g. at a site of
the event source, using a function engine.

Events are sent on event channels. An event channel is simply a standard channel created by new, carrying
values of abstract type Event X, e.g.

new badge : ^(Event ActiveBadge)

The Event type includes an event timestamp, a sequence number, and a value of the event type. Event
channels must be either created in the lexical scope of the event sources and clients, or extruded to the
sources and/or clients along other channels.

Before event sources can send any values to the event channel (using submit) the channel has to be first
declared (using declare) at some mediator agent which is selected for dealing with the event type (there can
be many mediators in a distributed system). Before receiving events clients must register for the event type
at the mediator agent (using register), specifying the name of the event channel. Then they can receive
events by simply listening to the event channel, e.g.

badge ?* e = ...

The input is blocking, waiting for events to come.
The composite event language can be used to create composite event channels from standard event

channels and other composite event channels. Once created, they can be used by the event client for
receiving notifications about the composite events of some complex event type (there is no need for an
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explicit registration at mediators in this case since the library does it automatically for the client which
created the channel). The composite event language (derived from the composite event language of the
Cambridge Event Architecture[BBHM95, Hay96]) implements following primitives:

inclusiveor

without

followbywithout

followby

and timed versions of the above (i.e. event channels will be active only for a prescribed time). The functions
followbywithout and followby are available each in four different variants to accommodate different se-
mantics. The underscore ( ) before and/or after the core name of the function denotes a different semantics
of the primitive, e.g. if we have a sequence of events: A1 A2 B1 B2 of event types A and B, then

A followby B signals an event (A2, B1) only
A followby B signals (A1, B1) and (A2, B1)
A followby B signals (A2, B1) and (A2, B2)
A followby B signals (A1, B1) and (A2, B1) and (A2, B1) and (A2, B2)

For more details, see the library description in [Woj00b] and an example program in the distribution.
The mediator can (optionally) delay sending of event notifications to clients which subscribed for the

event. The delay time (given as a parameter when spawning the mediator) can be used for making sure that
all events of some complex composite event type, which have been created at different distributed sources
at roughly the same time, will arrive to the mediator before the composite event is created, so that it can
be created having the best knowledge possible. Of course, this works well only if the anticipated delay is set
up correctly, which may not always be possible.

The event types are all basic and complex values which can be built and sent along channels (this version
of Nomadic Pict allows higher-order functions, so an event type can also be a program).



Chapter 4

Example Program

In this section we describe a small application in order to illustrate Nomadic Pict features, such as mobility,
communication primitives, the use of channel names outside their declaration scope, and expressing the
encoding of the high- into the low-level language. The program uses libraries: Map for expressing maps or
dictionaries, and Graphics for a simple graphics (based on X11). We included a complete source code of the
application and infrastructure encoding. The source files can be found in the examples directory (see also
other examples and demos).

We consider the support of collaborations within (say) a large computer science department, spread over
several buildings. Most individuals will be involved in a few collaborations, each of 2–10 people. Individuals
move frequently between offices, labs and public spaces; impromptu working meetings may develop anywhere.
Individuals would therefore like to be able to summon their working state (which may be complex, consisting
of editors, file browsers, tests-in-progress etc.) to any machine. These summonings should preserve any
communications that they are engaged in, for example audio/video links with other members of the project.

To achieve this, the user’s working state can be encapsulated in a mobile agent, an electronic personal
assistant (PA), that can migrate on demand. Below, we describe a prototype of the application, where the
PA agent is used only for delivering messages to moving people. In Section 4.2 we give the encoding of an
example communication infrastructure.

4.1 High-Level Architecture

In the beginning of the program we need to import libraries which are not imported by default, using a
keyword import.

import "Nstd/Map"

import "Graphics/Graphics"

After imports we can define any global names, values, and functions defined using def which will be used in
the main program and infrastructure encoding (here we do not have any such data). Then, we declare the
PA program

program hosts : [Site Site Site] =

(

...

)

The program accepts a list of site names. Below we describe the body of the program in detail. We
implement the PA application with three classes of agents: the PAs themselves, which migrate from site
to site; summoner agents, which are static (one per site) and are used to call the PAs; and a single name
server agent, also static, which maintains a lookup table from the textual keys of PAs to their internal agent
names. They interact using location-independent communication on channel names

new regist : ^[String Agent]

new summon : ^[String Site Agent]

21
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new name : ^[Bool String Agent]

new mid : ^[String Agent]

new move : ^[Site Agent]

new notFound : ^String

new done : ^[]

new main : ^[]

The program involves finite maps from Nomadic Pict standard library. We make use of the following
constructs:

c!(map.make eq)

outputs the empty map on channel c (where eq is a comparing function over the keys),

map.add m key v

returns a map containing the same binding as m, plus a binding of key to v; if key was already bound in m,
its previous binding disappears,

switch (map.lookup m key) of

(

Found> w:T -> P

NotFound> _:[] -> Q

)

looks up key in map m. The Map library contains four additional functions: for removal, testing, and iterations.
The name server below maintains a map from strings to agent names; it receives new mappings on regist.
The map is stored as an output on the internal channel names. Summon requests are received on summon,
containing a textual key and the name/site of the summoner. If the key has been registered the name server
sends a migration command to the corresponding PA agent, otherwise it sends the notFound message to the
summoner. Inquiries about agent names are received on name, containing the key and caller name. Replies
are sent back on name, containing true and key/name if the name is found, and false otherwise.

agent NameServer =

(new names : ^(Map String Agent)

def eq (a:String b:String) : Bool = (==$ a b)

( names!(map.make eq)

| regist?*[key PA] = names?m = names!(map.add m key PA)

| summon?*[key s Su] = names?m =

switch (map.lookup m key) of (

Found> PA:Agent -> (move@PA![s Su] | names!m)

NotFound> _:[] -> (notFound@Su!key | names!m))

| name?*[_ key a] = names?m=

switch (map.lookup m key) of (

Found> PA:Agent -> (name@a![true key PA] | names!m)

NotFound> _:[] -> (name@a![false key a] | names!m))

))

The summoner at site s is as below. It displays a little window on workstation and waits until one of the
events specified in the given Xevent list occurs. Then, it returns the status stat of the mouse and keyboard
at that time and executes the function main. If a mouse button has been pressed it gets strings from the local
console, sending them as requests to the name server. In parallel, it closes the window and after receiving
a mesage on done, the function is repeated. The event list Xevents is defined using the List library (see
[Woj00b] for details).

val Xevents = (cons #Event [Poll>[]]

(list.make #Event 1 [Button_down>[]]))

agent Summoner =

(

def err s:String = print!(+$ "Error:" s)
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def open_window () : Status =

(

(open_graph (+$ workstation " 100x50+0-0") err);

(moveto 30 30); (set_color red); (draw_string "DAEMON");

(moveto 10 15); (set_color black); (draw_string "Click mouse");

(wait_next_event Xevents)

)

def main stat:Status =

if stat.button then

(run print!"A mouse button has been pressed"

val key = (sys.read "Summon PA : ")

(summon@NameServer![key s Summoner]

| ((close_graph); done?_ = main!(open_window))

| notFound?key= (print!(+$ key " not found!") | done![])))

else main!(wait_next_event Xevents)

main!(open_window)

)

A sample PA (identified by a string a) is below. It has 4 parallel components; a registration message, a loop
main for sending messages to another PA, a replicated input that receives data from other PAs and prints
it, and a replicated input that receives migration commands and executes them.

agent PA =

( regist@NameServer![a PA]

| main?*_ =

(name@NameServer![true (sys.read "Send to? ") PA]

| name?[ok key dest]=

if ok then

mid@dest![(sys.read (+$ "Type to " key)) PA]

else (print!(+$ key " not found.") | main![]))

| mid?*[d source] = (print!(+$ "Incoming: " d) | main@source![])

| move?*[s Su] = (migrate to s (print!(+$ a " has moved here.") | done@Su![]))

| main![])

The program launches summoners and PA agents dynamically, using the standard migration primitive, onto
the list of active sites. A function spawnSummoner takes the name of the site where the summoner will be
spawned and the name of computer on which the graphics window will be displayed.

def spawnSummoner [s:Site workstation:String] =

(

agent Summoner =

(

...

def open_window () : Status = (...)

def main stat:Status =

...

migrate to s

run print!"Summoner installed."

main!(open_window)

)

in ()

)

A function spawnPA takes a textual name of the PA agent

def spawn a:String =

(agent PA =

...

in

print!(+$ a " spawned."))
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( spawnSummoner![s0 "glia:0.0"]

| spawnSummoner![s1 "ouse:0.0"]

| spawnSummoner![s2 "iris:0.0"]

| spawn!"Ala"

| spawn!"Kotek")

For simplicity the implementation uses location-independent communication throughout, despite the fact
that the name server and summoners are static.

4.2 Low-Level Translation

A usable infrastructure for the PA application can only be designed in the context of detailed assumptions,
both about the system properties (e.g. the size of the network and reliability) and about the expected
behaviour of the high-level agents. The PA application also demands disconnected operation (on laptops)
and a higher level of fault-tolerance. We discuss infrastructure design addressing these, in [Woj00a], but
for the sake of a clear example infrastructure we neglect them here. Below we describe one of the simplest
algorithms possible, with a centralized server daemon. The algorithm assumes a large essentially-reliable
LAN. It has been chosen to illustrate the characteristic features of Nomadic Pict, such as encoding of basic
types and the use of channel names outside their declaration scope. Algorithms that are widely applicable
to actual mobile agent systems would have to be yet more delicate, both for efficiency and for robustness
under partial failure.

4.2.1 Algorithm

The algorithm involves a central daemon that keeps track of the current sites of all agents and forwards any
location-independent messages to them. The daemon is itself implemented as an agent which never migrates;
the translation of a program then consists roughly of the daemon agent in parallel with a compositional
translation of the program. For simplicity we assume that programs are initiated as single agents, rather
than many agents initiated separately on different sites. (Programs may, of course, begin by creating other
agents that immediately migrate). In Chapter 5 we describe how to deal with the case when programs are
split in many files.

The precise definition is given in 4.1 and Figures 4.2. Figure 4.1 defines a top-level. It takes name P of a
user-defined program and name hosts of a parameter which is used to pass active sites to the program. The
definition of toplevel involves creation of the daemon agent D, and an auxiliary compositional translation
{P}[a currentloc D SD], defined phrase-by-phrase, of P considered as part of the body of agent a, where
the daemon agent D is assumed to be at site SD. The compositional translation is given in Figure 4.2. For
each term P of the high-level language, the result {P}[a currentloc D SD] of the translation is a term of
the low-level language.

4.2.2 The top level

Let us look first at the daemon. It contains two replicated inputs, on the migrating and message channels,
for receiving messages from the encodings of agents. The daemon is multi-threaded — operations dealing
with different agents are executed in parallel. The channel loc is used to enforce mutual exclusion between
the bodies of the replicated inputs which deal with the same agent name (e.g. the daemon will block
forwarding a message to agent b if b is in the middle of migration), and the code preserves the invariant that
at any time there is at most one output on loc. The loc channel is also used to record the current site of
an agent. The body of each replicated input begins with an input on loc, thereby acquiring both the lock
and the site name.

Putting the daemon and the compositional encoding together, the top level translation, defined in Fig-
ure 4.1, creates the toplevel agent top, spawns the daemon agent D, waits for acknowledgement from the
daemon and then initializes the lock channel currentloc for top, installs the replicated input on deliver

for top, and starts the encoding of the body {P}[a currentloc D SD]. The daemon registers agent top to
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new migrating : ^[Agent ^Site]

new message : ^[#X [Agent ^Site] ^X X]

new deliver : ^[#X ^X X Site]

new ack : ^[]

new done : ^^Site

{Agent} = [Agent ^Site]

{Site} = Site

{ toplevel P hosts }[Agent ^Site Agent Site] =

(

val s0 = (get_site 0)

val s1 = (get_site 1)

val s2 = (get_site 2)

agent top =

(new currentloc : ^Site

agent D =

(print!"Server installed."

| <top@s0>ack![] | currentloc!s0

| migrating?*[b:Agent loc:^Site]=

loc?s= <b@s>ack![]

| message?*[#X [b:Agent loc:^Site] c:^X v:X]=

loc?s= <b@s>deliver![c v s])

in

val SD = s0

ack?_=

( currentloc!s0

| deliver?*[#X c:^X v:X s:Site] = (<D@SD>currentloc!s | c!v)

| (val !hosts = [s0 s1 s2]

{ P }[top currentloc D SD])))

())

Figure 4.1: The Top Level and the Daemon

be at site s0. We assume that the names of sites which are active in the system are stored in a configuration
file and we use a library function get site to read this file. The function returns the i-th site from the file.
Chapter 5 presents alternative ways of configuring the Nomadic Pict system.

Turning to the compositional translation {P}[a currenloc D SD], only three clauses are not trivial
— for the location-independent output, agent creation, and agent migration primitives. We discuss each,
together with their interactions with the daemon, in turn.

4.2.3 Location-independent output

A location-independent output in an agent a is implemented simply by using a location-dependent output
to send a request to the daemon D, at its site SD, on its channel message:

{ c@b!v }e =

(val [a _ D SD] = e

<D@SD>message![b c v])

The corresponding replicated input on channel message in the daemon
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{ c@b!v }e =

(val [_ _ D SD] = e

<D@SD>message![b c v])

{ agent b=P in Q }e =

(

val [a loc D SD] = e

loc?s=

(agent B =

(

new currentloc : ^Site

val !b = [B currentloc]

( <D@SD>currentloc!s

| iflocal <a>done!currentloc then

( currentloc!s

| {P}[B currentloc D SD])

else ()

| deliver?*[#X c:^X v:X s:Site] = (<D@SD>currentloc!s | c!v))

)

in

done?c = (loc!s

| (val !b = [B c]

{Q}e)))
)

{ migrate to s P }e =

(

val [a currentloc D SD] = e

currentloc?_=

( <D@SD>migrating![a currentloc]

| ack?_ = (migrate to s

( <D@SD>currentloc!s

| currentloc!s

| {P}e
)))

)

Figure 4.2: The Compositional Translation
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| message?*[#X [b:Agent loc:^Site] c:^X v:X]=

loc?s= <b@s>deliver![c v s])

first acquires the lock and the target agent’s site name s and sends a location-dependent message to the
deliver channel of that agent. The lock is relinquished by the agent after it will receive the message. This
prevents the agent migrating before the deliver message arrives. Note that the input on loc will always
succeed, as the algorithm ensures that all agents register upon creation and we assume that messages are
never lost. The inter-agent communications involved in delivery of a single location-independent output are
illustrated below.

a D b@s

❳
❳

❳
❳

❳
❳

❳
❳❳③

message![b c v]

❳
❳

❳
❳

❳
❳

❳
❳❳③

deliver![c v s]

✘
✘

✘
✘

✘
✘

✘
✘✘✾

loc!s

4.2.4 Creation

In order for the daemon’s location channel loc to be kept up to date, agents must register with the daemon,
telling it their site, both when they are created and after they migrate. Each agent records its current site
internally as an output on its currentloc channel. This channel is also used as a lock, to enforce mutual
exclusion between the encodings of all agent creation and migration commands within the body of the agent.
The encoding of an agent creation in an agent a

{ agent b=P in Q }e =

(

val [a loc D SD] = e

loc?s=

(agent B =

(

new currentloc : ^Site

val !b = [B currentloc]

( <D@SD>currentloc!s

| iflocal <a>done!currentloc then

( currentloc!s

| {P}[B currentloc D SD])

else ()

| deliver?*[#X c:^X v:X s:Site] = (<D@SD>currentloc!s | c!v))

)

in

done?c = (loc!s

| (val !b = [B c]

{Q}e)))
)

first acquires the lock and current site s of a, and then creates the new agent B. The body of B sends
a currentloc message to the daemon and an acknowledgement to a on done (passing the name of B’s
currentloc channel). It then initializes the lock for B and allows the encoding of the body P of B to proceed.
Meanwhile, in a the lock is kept until the acknowledgement from B is received. The name b from the high-
level language is encoded as a pair of B and currentloc. The body of B is put in parallel with the replicated
input

| deliver?*[#X c:^X v:X s:Site] = ( <D@SD>currentloc!s | c!v )

which will receive forwarded messages for channels in b from the daemon, send an acknowledgement back
(on currenloc), and deliver the value locally to the appropriate channel.



The Nomadic Pict Language 28

The inter-agent communications involved in a single agent creation are illustrated below.

a b D

agent b = ...

✛

done!currentloc
s
❳

❳
❳

❳
❳

❳
❳

❳❳③

currentloc!s

4.2.5 Migration

The encoding of a migrate in agent a

{ migrate to s P }e =

(

val [a currentloc D SD] = e

currentloc?_=

( <D@SD>migrating![a currentloc]

| ack?_ = (migrate to s

( <D@SD>currentloc!s

| currentloc!s

| {P}e
)))

)

first acquires the lock for a (discarding the current site data). It then sends a migrating message to the
daemon, waits for an ack, migrates to its new site s, sends a currentloc message to the daemon (with the
new site s), thereby relinquishing the lock at the daemon, and releases the local lock (also with the new site
s). The replicated input on migrating in the daemon

| migrating?*[b:Agent loc:^Site]=

loc?s= <b@s>ack![]

first acquires the lock and the current site of a and sends an ack to a at that site. The inter-agent commu-
nications involved in a single migration are shown below.

a D

❳
❳

❳
❳

❳
❳

❳
❳❳③

migrating!a

✘
✘

✘
✘

✘
✘

✘
✘✘✾

ack!

migrate to s
❳

❳
❳

❳
❳

❳
❳

❳❳③

currentloc!s

The whole program structure is in Figure 4.3. In our translation we have made an assumption that the
application program and translation encoding are compiled and executed together, and so the program
begins from a single toplevel which creates a daemon and other agents that immediately migrate if necessary.
Since Nomadic Pict is thought of to be a language for prototyping this is fair enough. However, distributed
programs can often be split in many files which we should be able to compile and execute on separate
machines. In this case, we should include the daemon definition only for one executable and export its name
(and all other names which are used to communicate with the daemon) using the library functions for trading
names in the system. Other executables would have to subscribe for these names before they can use them.
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import "Nstd/Map"

import "Graphics/Graphics"

program hosts : [Site Site Site] =

(

...

)

new migrating : ^[Agent ^Site]

new message : ^[#X [Agent ^Site] ^X X]

new deliver : ^[#X ^X X Site]

new ack : ^[]

new done : ^^Site

{Agent} = [Agent ^Site]

{Site} = Site

{ toplevel P hosts }[Agent ^Site Agent Site] =

(

...

)

{ c@b!v }e = ...

{ agent b=P in Q }e = ...

{ migrate to s P }e = ...

Figure 4.3: The Program Structure
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Compilation and Execution

5.1 To Get Started

To execute a Nomadic Pict program, e.g.

run print!"Hello world!"

first place it in a file named with a .pi suffix, e.g. prog.pi, and then compile and execute this file by
running the Nomadic Pict compiler as follows:

np prog.pi

This spawns a Nomadic Pict virtual machine on your current machine which will execute the program. If
your program contains only the Pict language, you may prefer to choose a standard Pict compiler as follows

np -set cc prog.pi -o prog

or simply pict prog.pi -o prog, and execute prog. The native code generated by the Pict compiler is
much faster then the code interpreted by the Nomadic Pict virtual machine but then you cannot use the
primitives which are characteristic for Nomadic Pict.

5.2 Separate Compilation

The compiler provides a simple facility for breaking up large programs into parts (modules), storing the
parts in separate files, and compiling these files separately. In the beginning of a program you can write

import "name"

where "name" is an absolute or relative pathname (not including the suffix .pi) of a separately compiled
module to be imported. The module will be included at the point where the first import for this module
name appears. If a relative pathname is used, both the current directory and a central directory of Nomadic
Pict library files are searched.

Before a file can be imported by other files, it must be compiled by the compiler to yield a file with suffix
.px, e.g. this below

np -set sep prog.pi -o prog.px

produces an object file prog.px and does not spawn a runtime system to execute it. Then we can import
the module in other programs using import "prog" and compile as before. A few basic library modules are
imported by default.

The Pict libraries of precompiled modules often contain C procedures and so they cannot be directly
used in programs which are interpreted by the Nomadic Pict virtual machine (one can, of course, use them

30
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in programs which are compiled to the native code). Therefore we tried to support in the Nomadic Pict
virtual machine all Pict core libraries and all those which are often used (more libraries may be ported in the
future). The new libraries have the same names and interfaces — just a different path need to be specified
in the import declaration. A rule of thumb is that if an original Pict library has name Path/Name then the
library which is recognised by the virtual machine will have a name Npath/Name (this does not work for
libraries which are supported by the Nomadic Pict system only — they may have arbitrary names).

The current distribution includes libraries implementing a variety of data structures, interfaces to op-
erating system and the Nomadic Pict runtime system, and some experimental services, such as distributed
events. Those libraries which use calls to the Nomadic Pict runtime system or contain any constructs which
are characteristic for Nomadic Pict will not compile using the original Pict compiler. All libraries supported
by the Nomadic Pict virtual machine are described in full in [Woj00b].

Unfortunately, the standard libraries from the Nomadic Pict distribution can only use Low-Level Nomadic
Pict (and so only distributed idioms which are location-aware). This is a result of early design decisions
to put the translation from High- to Low-Level Nomadic Pict at the top of the compiler architecture. The
modules of libraries are precompiled to an intermediate code which can be linked with user-defined programs.
The intermediate code is fairly low-level and is linked after the definitions of the translation from High- to
Low-Level Nomadic Pict are applied in programs. The rest of this chapter mostly deals with distributed
programming in the Nomadic Pict system.

5.3 Language Translations

If our program does not use any high-level language primitives then it can be organised simply as a file
containing a sequence of declarations preceded by a number of import clauses. Otherwise, we need to
structure the program as follows

import "name"

{- other imports and any global declarations -}

program par : T =

(

{- a user-defined program in the high-level language -}
)

{-*****************************************************************

any global declarations of the compositional translation here -}

{toplevel par} T’ =

(

{- top-level definition here -}
)

{- a compositional translation of types and primitives -}

After imports we can have any global declarations such as constants and global functions which we want to
use in a program and the compositional translation. Then we can define an actual program in the high-level
language using the program construct.

Following the star line are declarations of the compositional translation (they can be stored in a separate
file if required). Firstly, we declare any global constants, functions, and channel names which are used by
the definitions of the compositional translation, then we define a top-level (in the low-level language) using
toplevel. The top-level defines the top-level actions such as spawning the distributed infrastructure which
have to be executed before the high-level program starts. Finally, we have definitions of the compositional
translation of all interesting types and high-level prmitives. If some definition is missing, the compiler will
replace a high-level primitive by its direct equivalent in the low-level language if it exists; the location-
independent output c@a!v will be replaced by iflocal <a>c!v then () else ().

The Nomadic Pict distribution contains a few example distributed infrastructure encodings (each in one
file). They can be included in user-defined programs below the star line as above, with just minor changes
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in the top-level declaration. The top-level of each infrastructure encoding defines a tuple of a few (usually
2-3) active sites which is passed to the user-defined program via the parameter par of type T = [Site ...

Site]. This parameter is likely to be customized to accommodate the real number of sites which are going
to be used. This may sometimes require to analyse the code of the top-level and, e.g. spawn additional
daemons on sites, etc. In the end of this chapter, we describe how to pass real machine and port numbers
to Nomadic Pict programs, and configure the distributed Nomadic Pict runtime system to run on many
machines.

More changes in the translations are required if a user-defined program is scattered in many files to be
compiled on different machines. In this case, we have to copy the top-level and the compositional translation
in all files, modifying the top-level accordingly, e.g. selecting one to be a server and other the clients, etc.
We also have to trade names and values in the distributed system so that different parts of the compositional
translation can communicate using the same names of channels and agents. Below we describe the idea, see
also example programs included in the Nomadic Pict distribution for details.

5.4 Trading Names and Values

Nomadic Pict has been designed as a language for prototyping distributed applications and we almost never
needed to split programs in many files which are compiled and executed separately on different machines.
We were simply spawning different parts of distributed programs dynamically on “empty” Nomadic Pict
runtime systems, using agents and migration. However, occasionally it is convenient to compile and execute
server and client programs (likely to be on different machines) separetly and at different time, e.g. in demo
programs.

The Nstd/Sys library offers two functions publish and subscribe that can be used in order to exchange
names, basic values, and any complex values which can be sent along channels at runtime, thus making
possible to set up connection between different programs. Below is an example program which is split into
files server.pi and client.pi.

{- server.pi -}
new c : ^String

val s = (this_site)

agent b = ((publish "foo" (dynamic [b s c]));

c?p= print!p)

In file server.pi, the program creates a new channel name c, assigns the current site name to s, creates
agent b and publishes a record containing c, s, and b at the system trader. After the names are published,
the program waits for a message on c and prints the message out. The function publish takes as arguments
a value to be published (which must be converted to a type Dyn) and a string keyword to identify the value.

{- client.pi -}
agent a =

typecase (subscribe "foo" a) of

[ag:Agent si:Site ch:^String] ->

<ag@si>ch!"Hello world!"

else print!"Type mismatch for foo"

In file client.pi, the program creates agent a and subscribes for the value published in file server.pi. The
function subscribe takes two parameters: the string keyword "foo" which was used to publish the value at
the trader, and the name of the current agent. The function blocks until the value is available. The value
returned by subscribe is a dynamic value which can be matched against expected types using typecase.
If the dynamic typechecking succeeds then basic values extracted from the dynamic value can be used for
communication (e.g. in the program above we send a message on c to agent b which is supposed to be at s).

When the runtime system starts up, we have to specify — using options -trader and -tport, an address
and port number for the runtime system selected to be a trader. By default the current runtime system is
chosen. For example, if we compile server.pi on glia.cl.cam.ac.uk as below

np server.pi
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then the local machine glia will be selected to trade names subscribed or published by any local subscribe
and publish function calls. The execution of nc will display a local port number selected by the runtime
system, e.g. 5000. We can then use this information and execute the client program on another machine as
follows

np client.pi -trader glia.cl.cam.ac.uk -tport 5000

This will select the runtime system on glia.cl.cam.ac.uk, listening on a port 5000, to be a trader, and
execute the client program on the local machine.

The functions publish and subscribe will almost certainly change in the future releases of Nomadic
Pict to accommodate possible inavailablity of the trader (e.g. during the disconnected operation on laptop
computers); currently we assume that there is connection with the trader when performing these functions.

5.5 Configuring the System

The names of sites can be either obtained from a local configuration file or a trader, using different library
functions. Below we describe both methods.

5.5.1 Using a config file

The configuration file should contain pairs of DNS names (enclosed in double-quotes) and port numbers of
the active sites that we want to use in our programs; we can use # to comment lines. For example, a valid
configuration file may look as follows

"glia" 5002

"vesicle" 5001

#"britten" 5000

"iris.cl.cam.ac.uk" 5003

#"puccini" 5000

The configuration file has a default name config; the compiler’s option -f can be used to name other file.
When the runtime system starts up on a local machine, it opens the config file (or the file specified by
option -f) and looks up for the first occurance of the Internet address of the local machine, choosing the
port name given next to the address.

We can use a library function get site i, where i = 0, 1, ..., to return a site name built using the IP
address and port number from the i-th valid line of the config file (commented lines are ignored). Another
useful library function is this site, which returns the Nomadic Pict name of the current site (or more
precisely of the current instantiation of the runtime system on the local machine).

In order to execute a distributed program on many machines, we must run a runtime system on each
machine. The execution of a program spawns a runtime system on a local machine. We can start an “empty”
runtime system on other machines using nc without specifying a program name as follows

np -f config_file

or simply

np

Using the config file is good enough for quick prototyping. The translation encodings in the Nomadic
Pict distribution usually assume this method and use the function get site to obtain site names from a
local file. This, however, can be easily modified. Below we describe using a trader mechanism which is more
elegant.

5.5.2 Using a trader

If the runtime system cannot find the configuration file in a local directory then it will select a free port
number automatically, create a new fresh name of the site, and publish it with the “dotted” symbolic name
of the local host machine, e.g. sinapsi.cl.cam.ac.uk, as a keyword (to be precise this is a string name
returned by a Unix function gethostname). If we type
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np

to start an ‘empty‘” runtime system then a local trader will be selected by default (and a port number of
the runtime printed out). We can choose another trader using the options -trader and tport, e.g.

np -trader <host_address> -tport <port_number>

Then, any programs executed on other machines can use a function subscribe site to obtain the site name
from the trader, specifying a full “dotted” symbolic name of the host which runs the site. This below

agent top =

(

val s = (subscribe_site <host_address> top

...

)

returns the name s of type Site of the runtime system running on sinapsi.cl.cam.ac.uk and can be used
later in the program (each execution of subscribe site may involve network communication, so it should
be executed only once for each site, e.g. in the beginning of the program). Note that this mechanism assumes
only one runtime system per machine — this however can be changed by modifying the bootstrapping file,
described below.

The user-defined programs must be compiled with options -trader and -tport, so that the runtime
system will know which trader should be contacted, e.g.

np prog.pi -trader <host_address> -tport <port_number>

5.5.3 Bootstrapping the system

Actually, if we do not specify any program name, the directive nc will execute a default bootstrapping
program defined in a system file bootstrap.pi (to find the file first the current directory will be search then
a central directory of Nomadic Pict libraries)

(publish_this_site (sys.gethostname)); (pr "Ready...");

new foo : ^[]

agent a =

foo?*_ = ()

The program publishes the site name of the local host identified by the Internet address of the local host
machine and executes an empty loop. Additional behaviour can be added if required by modifying this file.
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Syntax

This chapter describes the syntax of Nomadic Pict programs (for description of lexical rules and Pict syntax
we use extracts from [PT97b], by courtesy of Benjamin C. Pierce).

6.1 Lexical Rules

Whitespace characters are space, newline, tab, and formfeed (control-L). Comments are bracketed by {- and
-} and may be nested. A comment is equivalent to whitespace.

Integers are sequences of digits (negative integers start with a - character). Strings can be any sequence
of characters and escape sequences enclosed in double-quotes. Sites can be any sequence of characters and
escape sequences enclosed in double single-quote characters (’’), used to denote the IP address, followed by
a colon and integer, to denote a port number. The escape sequences \", \n, and \\ stand for the characters
double-quote, newline, and backslash. The escape sequence \ddd (where d denotes a decimal digit) denotes
the character with code ddd (codes outside the range 0..255 are illegal). Character constants consist of a
single quote character (’), a character or escape sequence, and another single quote.

Alphanumeric identifiers begin with a symbol from the following set:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Subsequent symbols may contain the following characters in addition to those mentioned above:

0 1 2 3 4 5 6 7 8 9 ’

Symbolic identifiers are non-empty sequences of symbols drawn from the following set:

~ * % \ + - < > = & | @ $ , ‘

6.2 Reserved Words

The following symbols are reserved words:

Agent agent and Bool ccode Char def dynamic else false

if iflocal import inline Int in migrate new now of

program rec run Site String terminate then timeout to Top

toplevel true Type type typecase val switch wait where with

@ ^ \ / . ; : = | !

# ? ?* _ < > -> { ( [

} ) ]

35
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6.3 Concrete Syntax

For each syntactic form, we note whether it is part of the core language (C), the language for expressing
encodings (T), a derived form (D), an optional type annotation that is filled in during type reconstruction
if omitted by the programmer (R), or an extra-linguistic feature (E). Syntactic forms characteristic for the
Nomadic Pict language are marked by n.

6.3.1 Compilation units

TopLevel = Import . . . Import Dec . . . Dec E Compilation unit
Import . . . Import TopDec . . . TopDec En Compilation unit

Import = import String E Import statement

6.3.2 Top-level declarations

TopDec = Dec Declaration
{ Agent } = Type Tn Agent type
{ Site } = Type Tn Site type
program Id : Type = Proc Tn Program declaration
{ toplevel Id Id } Type = Proc Tn Toplevel declaration
{ def Id } Id Abs Tn Process abstraction
{ agent Id = Id in Id } Id = Proc Tn Agent creation
{ migrate to Id Id } Id = Proc Tn Agent migration
{ Id ?* Id = Id } Id = Proc Tn Replicated input
{ < Id @ Id > Id ! Id } Id = Proc Tn Output to agent on site
{ < Id > Id ! Id } Id = Proc Tn Output to adjacent agent
{ iflocal < Id > Id ! Id then Proc else Proc } Id =

Proc
Tn Test-and-send to agent

{ Id @ Id ! Id } Id = Proc Tn Location-independent output
{ do String Id in Id } Id = Proc Tn Macro definition

6.3.3 Declarations

Dec = new Id : Type C Channel creation
val Pat = Val D Value binding
run Proc D Parallel process
Val ; D Sequential execution
inline def Id Abs D Inlinable definition
def Id1 Abs1 and ... and Idn Absn C Recursive definition (n ≥ 1)
type Id = Type D Type abbreviation
type ( Id KindedId1 . . . KindedIdn ) = Type D Type operator abbrev (n ≥ 1)
now ( Id Flag . . . Flag ) E Compiler directive
agent Id1 = Proc1 and ... and Idn = Procn Cn Agent creation (n ≥ 1)
agent Id1 = Proc1 and ... and Idn = Procn in Cn Agent creation (n ≥ 1)
migrate to Val Cn Migrate to site
do String Val Tn Macro inlining
do String Val in Tn Macro inlining
{ Id } Val Tn Declaration inlining

Flag = Id E Ordinary flag
Int E Numeric flag
String E String flag
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6.3.4 Abstractions

Abs = Pat = Proc C Process abstraction
( Label FieldPat . . . Label FieldPat ) RType = Val D Value abstraction

6.3.5 Patterns

Pat = Id RType C Variable pattern
[ Label FieldPat . . . Label FieldPat ] C Record pattern
( rec RType Pat ) C Rectype pattern
_ RType C Wildcard pattern
Id RType @ Pat C Layered pattern
! Id T Reference pattern

FieldPat = Pat C Value field
# Id Constr C Type field

6.3.6 Type constraints

Constr = 〈empty〉 D No constraint
< Type C Subtype constraint
= Type C Equality constraint

6.3.7 Processes

Proc = Val ! Val C Output atom
Val ? Abs C Input prefix
Val ?* Abs Cn Replicated input
wait Val ? Abs timeout Val -> Proc Cn Timed input
< Val @ Val > Val ! Val Dn Output to agent on site
< Val > Val ! Val Dn Output to adjacent agent
iflocal < Val > Val ! Val then Proc else Proc Cn Test-and-send to agent
Val @ Val ! Val Dn Location-independend output
( ) C Null process
( Proc1 | ... | Procn ) C Parallel composition (n ≥ 2)
( Dec1 . . . Decn Proc ) C Local declarations (n ≥ 1)
if Val then Proc else Proc C Conditional
terminate C Agent termination
typecase Val of Pat1 -> Proc1 ... Patn -> Procn

else Procn+1

Dn Type matching (n ≥ 1)

switch RType Val of ( Id1 > Pat1 -> Proc1 ... Idn

> Patn -> Procn )

Dn Variant matching (n ≥ 1)

{ Id } Val Tn Process inlining
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6.3.8 Values

Val = Const C Constant
Path C Path
\ Abs D Process abstraction
[ Label FieldVal . . . Label FieldVal ] C Record
if RType Val then Val else Val D Conditional
( Val RType with Label FieldVal . . . Label FieldVal ) D Field extension
( Val RType where Label FieldVal . . . Label FieldVal )D Field override
( RType Val Label FieldVal . . . Label FieldVal ) D Application
( Val > Val1 . . . Valn ) D Right-assoc application (n ≥ 2)
( Val < Val1 . . . Valn ) D Left-assoc application (n ≥ 2)
( rec RType Val ) C Rectype value
( Dec1 . . . Decn Val ) D Local declarations (n ≥ 1)
( ccode Int Id String FieldVal . . . FieldVal ) E Inline C code (Pict only)
( ccode Int Id String FieldVal . . . FieldVal ) En System function call
( dynamic Val RType ) Dn Typed value
[ Id > Val ] Dn Variant
typecase RType Val of Pat1 -> Val1 ... Patn ->

Valn else Valn+1

Dn Type matching (n ≥ 1)

switch RType Val of ( Id1 > Pat1 -> Val1 ... Idn

> Patn -> Valn )

Dn Variant matching (n ≥ 1)

{{ Id }} Tn Value inlining

Path = Id C Variable
Path . Id C Record field projection

FieldVal = Val C Value field
# Type C Type field

Const = String C String constant
Char C Character constant
Int C Integer constant
true C Boolean constant
false C Boolean constant
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6.3.9 Types

Type = Top C Top type
Id C Type identifier
^ Type C Input/output channel
! Type C Output channel
/ Type C Responsive output channel
? Type C Input channel
Int C Integer type
Char C Character type
Bool C Boolean type
String C String type
[ Label FieldType . . . Label FieldType ] C Record type
( Type with Label FieldType . . . Label FieldType ) D Record extension
( Type where Label FieldType . . . Label FieldType ) D Record field override
\ KindedId1 . . . KindedIdn = Type C Type operator (n ≥ 1)
( Type Type1 . . . Typen ) C Type application (n ≥ 1)
( rec KindedId = Type ) C Recursive type
Agent Cn Agent type
Site Dn Site type
Dyn Dn Dynamic type
[ Id1 > Type1 ... Idn > Typen ] Dn Variant type
{ Id } Tn Type inlining

FieldType = Type C Value field
# Id Constr C Type field

RType = 〈empty〉 R Omitted type annotation
: Type C Explicit type annotation

6.3.10 Kinds

Kind = ( Kind1 . . . Kindn -> Kind ) C Operator kind (n ≥ 1)
Type C Type kind

KindedId = Id : Kind C Explicitly-kinded identifier
Id D Implicitly-kinded identifier

6.3.11 Labels

Label = 〈empty〉 C Anonymous label
Id = C Explicit label



Bibliography

[BBHM95] J. M. Bacon, J. Bates, R. J. Hayton, and K. Moody. Using events to build distributed applications. In
Proceedings of SDNE ’95, 1995.

[Bou92] Gérard Boudol. Asynchrony and the pi-calculus. Technical Report RR-1702, Inria, Institut National de
Recherche en Informatique et en Automatique, 1992.

[Hay96] Richard Hayton. OASIS: An Open Architecture for Secure Interworking Services. PhD thesis, University
of Cambridge, 1996.

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asynchronous communication. In Pierre America,
editor, Proceedings of the European Conference on Object-Oriented Programming (ECOOP ’91), volume
512 of Lecture Notes in Computer Science, pages 133–147. Springer-Verlag, 1991.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I and II. Information and
Computation, 100(1):1–77, 1992.

[Nee89] R. M. Needham. Names. In S. Mullender, editor, Distributed Systems, pages 89–101. Addison-Wesley,
1989.

[PT95] Benjamin C. Pierce and David N. Turner. Concurrent objects in a process calculus. In Takayasu Ito
and Akinori Yonezawa, editors, Proceedings of the Theory and Practice of Parallel Programming (TPPP,
Sendai, Japan, 1994), volume 907 of Lecture Notes in Computer Science, pages 187–215. Springer Verlag,
1995.

[PT97a] Benjamin C. Pierce and David N. Turner. Pict: A programming language based on the pi-calculus.
Technical Report CSCI 476, Computer Science Department, Indiana University, 1997. Appeared in
Proof, Language and Interaction: Essays in Honour of Robin Milner, Gordon Plotkin, Colin Stirling, and
Mads Tofte, editors, MIT Press, 2000.

[PT97b] Benjamin C. Pierce and David N. Turner. Pict Language Definition, 1997. Available electronically as
part of the Pict distribution.

[PT97c] Benjamin C. Pierce and David N. Turner. Programming in the Pi-Calculus. A Tutorial Introduction to
Pict, 1997. Available electronically as part of the Pict distribution.

[SWP99] Peter Sewell, Pawe l T. Wojciechowski, and Benjamin C. Pierce. Location-independent communication
for mobile agents: A two-level architecture. In Henri E. Bal, Boumediene Belkhouche, and Luca Cardelli,
editors, Internet Programming Languages (ICCL ’98 Workshop, Chicago, USA, May 1998), volume 1686
of Lecture Notes in Computer Science, pages 1–31. Springer, 1999. Also appeared as Technical Report
462, Computer Laboratory, University of Cambridge, April 1999.

[Tur96] David N. Turner. The Polymorphic Pi-calculus: Theory and Implementation. PhD thesis, University of
Edinburgh, 1996.

[Woj00a] Pawe l T. Wojciechowski. Nomadic Pict: Language and Infrastructure Design for Mobile Computation.
PhD thesis, University of Cambridge, 2000. Also appeared as Technical Report 492, Computer Laboratory,
University of Cambridge, June 2000.

[Woj00b] Pawe l T. Wojciechowski. Nomadic Pict Language Libraries, 2000. Available electronically as part of the
Nomadic Pict distribution.

40


