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Preface

In this book, we design novel language constructs and runtime algorithms for
atomicity, declarative synchronization, and dynamic protocol update. They
can be used to build communicating systems from modular protocols, that
can be replaced dynamically.

• Atomicity provides guarantees that a set of operations executed in a
network site (machine) can be regarded as a single unit of computation,
regardless of any other operations occurring concurrently.

• Declarative synchronization is the mean to implement control of various
concurrent actions or events in the system, by defining a synchronization
policy (such as atomicity). The policy is defined using a set of rules,
separately from the code of components. This approach allows protocol
components to be reusable in different protocol stacks, and facilitates
dynamic replacement of protocol components.

• Dynamic protocol update means transparent replacement of protocols
at runtime, so that the use of services implemented by these protocols
is not disrupted. Concurrent, dynamic replacement of protocol compo-
nents located on different network sites occurs under control of switching
algorithms.

The book has the following structure. We begin by discussing motivations
and contributions. Then, we describe the versioning algorithms for concur-
rency control in atomic tasks. In the following chapter, we design the calculus
of atomic tasks, i.e. atomic, roll-back free transactions that may have I/O ef-
fects. The calculus has a type system for static verification of data required
by dynamic versioning, which guarantees that the constructs of the calculus
are used correctly. Then, we describe two different approaches to declarative
synchronization: (1) the calculus of concurrency combinators, with type-based
verification of combinator satisfiability (which guarantees that the combinators
are used correctly), and (2) a constraint language for the role-based synchro-
nization. Next, we describe a model of dynamic protocol update, and give two
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example switching algorithms. Finally, we design the class-based object calcu-
lus of dynamic rebinding, and use it to show the application of atomic tasks
and combinators when rebinding concurrent objects. In the appendix, we have
included proofs of type soundness for the calculus of atomic tasks, including
the proof of dynamic correctness of an example versioning algorithm.
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Olivier Rütti, Daniel Bünzli, and Rachele Fuzzati, for many interesting discus-
sions within our joint project: “Semantics-guided design and implementation
of group communication middleware”.
I also thank prof. Martin Odersky for giving me the opportunity to expand

my knowledge of programming languages, through seminars and meetings.
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Chapter 1

Introduction

There is a growing interest in the design of new programming languages that
combine features such as concurrency (or parallelism) and possibility of adding
new code during program execution. These features support multi-core CPUs
and dynamic software updating. Example applications are distributed services
that must run ”non-stop”, such as financial trading, telephone switches, flight
reservations, and air traffic control. Stopping ”non-stop” services results in
loss of revenue; it may also compromise safety. The service providers must be
therefore able to repair, update or extend their systems with minimal service
interruption. Another class of distributed “non-stop” systems are various ubiq-
uitous and pervasive devices. From pragmatic reasons, it should be possible
to update or extend their software without human intervention. The common
feature of all these systems is the ability to communicate. Communication
enables useful applications but it also makes the implementation of dynamic
update challenging. Dynamically updateable, distributed systems can be im-
plemented using popular programming languages, that allow software com-
ponents to be loaded and bound dynamically. However, in order to facilitate
programming, and be able to guarantee robustness, novel programming ab-
stractions are needed.

In this book, we have identified three essential programming abstractions:
atomicity, synchronization, and dynamic update. They can be used to imple-
ment communicating systems from modular protocols, that can be replaced
dynamically. Atomicity provides guarantees that a set of operations executed
in a network site (machine) can be regarded as a single unit of computation,
regardless of any other operations occurring concurrently; this property allows
dynamic updates to be applied consistently. Synchronization is the mean to
control various concurrent actions or events occurring on a single machine,
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as well as on distributed machines. To support dynamic update, it should be
possible to rebind components at runtime, with guarantees of preserving any
synchronization constraints between concurrent actions of the components.
Finally, dynamic update means transparent replacement of distributed, com-
municating components on-the-fly, with some robustness guarantees; we call
this operation dynamic protocol update. For instance, any software update of
device A should not disturb another device that happens to communicate with
device A at the same time. Traditional programming languages and middle-
ware systems do not provide good support for implementing atomicity, syn-
chronization and dynamic update in communicating systems, as we briefly
explain below, and in the following sections.
Combination of two features: concurrency and irrevocable communication,

makes the use of traditional atomicity constructs not suitable for implement-
ing communicating systems. For instance, traditional monitors do not support
internal concurrency, while local atomic transactions (as they are known in
database systems) do not support operations with irrevocable effects (we will
explain it in Section 1.2.1). Moreover, traditional synchronization constructs
(such as those for atomicity) do not compose well. Thus, any system decompo-
sition may require the programmer to analyze the code of individual compo-
nents and, if required, to modify the synchronization code. Unfortunately, this
procedure is cumbersome and error-prone. Also, it is difficult to implement
systems, in which synchronization policy (such as atomicity) must dynami-
cally change, based on the system’s modus operandi. Therefore, some better
language support of synchronization is required, which allows a synchroniza-
tion policy to be expressed in a declarative way. Finally, concurrent, dynamic
replacement of protocol components located on different network sites may
often require to synchronize various actions in the system. This can be done
using protocols that implement switching algorithms. The choice of a switch-
ing algorithm depends on the semantics of an application, which makes the
design of updateable, distributed systems a difficult task. Therefore, some lan-
guage and system support are needed, so that the algorithms could be applied
transparently, based on the required properties of applications.
In this book, we describe the results of our work aimed at providing bet-

ter language and system support for implementing dynamically updateable,
communicating systems. We describe novel language constructs with runtime
algorithms for atomicity, declarative synchronization, and dynamic update of
protocols. Our language constructs are typed, with type systems [84, 85, 17]
able to statically check some of the safety properties, which are critical for cor-
rect program behavior. They can make it easier to implement communicating
systems with safety and robustness guarantees.
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Appendix
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Chapter 6
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Figure 1.1: Chapter dependencies

Our book is aimed at researchers specialized in concurrent programming
languages, distributed systems, and type theory. However, it may also be useful
for readers from all areas of computer science who want an introduction to
the rigorous design of concurrent programming languages. Our work builds on
process calculi and operational semantics, which are the common means to
introduce and define precisely any new language constructs and features. To
avoid ambiguities of a pseudo-code, the operational semantics is also used to
define selected concurrent and distributed algorithms.

The book assumes no preparation in the theory of programming languages,
but readers should be familiar with at least one higher-order functional pro-
gramming language (ML, Haskell, Scheme etc.), and with basic concepts of
programming language design (abstract syntax, BNF grammars, evaluation,
abstract machines, etc.). This material is available in many textbooks, for
example The Formal Semantics of Programming Languages: An Introduction
byWinskel [110], Semantics of Programming Languages – Structures and Tech-
niques by Gunter [39], and in more recent books, such as Types and Program-
ming Languages by Pierce [84] and Practical Foundations for Programming
Languages by Harper [43]. Popular books on Standard ML include those by
Paulson [82] and Ullman [104]. Some knowledge of distributed algorithms [65]
will be also helpful.

The book has the following structure. In the remainder of this chapter, we
define basic terms and discuss motivations and contributions. In Chapter 2,
we describe the versioning algorithms for concurrency control in atomic tasks.
In Chapter 3, we design the calculus of atomic tasks. In Chapter 4, we de-
fine two different approaches to declarative synchronization: the calculus of
concurrency combinators, and the RBS constraint language for the role-based
synchronization. In Chapter 5, we discuss the problem of dynamic protocol
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update, and present two example switching algorithms. In Chapter 6, we de-
sign the class-based object calculus of dynamic rebinding. In Chapter 7, we
conclude. Finally, Appendix A includes proofs of type soundness for the calcu-
lus of atomic tasks, including the proof of dynamic correctness of an example
versioning algorithm.

The major dependences between chapters are outlined in Figure 1.1. As the
figure demonstrates, it is possible to start with Chapter 5 on dynamic update,
following the introductory Chapter 1, and postpone Chapters 2, 3 and 4 on
atomicity and synchronization. The Appendix may be left out by readers not
interested in proof techniques.

1.1 Basic Terms

Let us begin from defining basic terms. A protocol defines an algorithm that
solves a specific problem in a distributed system. For example, the TCP proto-
col solves the problem of having reliable, session-based point-to-point commu-
nication in an asynchronous network. Every protocol provides some service.
Conversely, service is an interface (or specification) of all protocols that imple-
ment it. To work correctly, a protocol may also require some other services. For
example, to provide the TCP service of reliable, session-based point-to-point
communication in an asynchronous network, the TCP protocol requires the IP
service. We will often use the notion “protocol” and “service” interchangeably,
unless it is ambiguous.

Each protocol can be encoded by identical protocol modules, located on
different network sites, where a protocol module (or module in short) is a soft-
ware component that implements the protocol’s interface (service). A protocol
stack is a set of protocol modules that are composed together and located
on a single network site. (We use the term “stack” due to historical reasons;
actually protocol modules in a protocol stack can be composed in an arbitrary
way, forming a graph.) Modules, possibly on different sites, can exchange mes-
sages. For example, the system in Figure 1.2 consists of two protocol stacks
located on network sites s1 and s2; the stacks implement two protocols P and
Q (composed into PQ) providing two services, respectively A and B. Services
exchange messages (m1, m2, ..).

Note that the protocol composition defines different levels of abstraction.
For instance, in the group communication middleware described in [70], an
Atomic Broadcast (also known as Total Order Broadcast) is composed above
a Distributed Consensus. The former service is used by the applications built
on top of the middleware to deliver messages reliably and in the same order
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A A

B
Q

Protocol P

Figure 1.2: An example architecture of a communicating system

at all sites in the distributed system. The latter service (required by Atomic
Broadcast) is used to deliver messages to every site despite of crash of some
sites in the distributed system.
Protocol modules are bound or unbound to/from a service. At most one

protocol module can be bound to a service at a time. When a service is called,
the module bound to that service is executed. A module may get a message
as the argument of the call; the message is processed by the module, and then
it can be passed to another service, or to the application App on top of the
stack. A computer network is represented as a service Net . Thus, by calling
services, applications can exchange messages over the network.
The basic terms introduced in this section will suffice to understand ma-

terial in this chapter; a more detailed model will be defined in Chapter 5.

1.2 Motivations and Contributions

Below we motivate our research, and give a capsule description of our con-
tributions, which include: (1) the calculus of atomic tasks for atomicity, with
type-based (static) verification of data required by dynamic versioning; (2)
the calculus of concurrency combinators for declarative synchronization, with
type-based verification of combinator satisfiability; and (3) a model of dynamic
protocol update, with the class-based object calculus of dynamic rebinding.

1.2.1 Atomic tasks and versioning

It can be observed that due to the physical limit on clock speed, a growing
number of desktop computers is being designed using new multi-core CPUs.
Such CPUs have now started becoming available and will continue to materi-
alise over the next several years. To fully exploit these future CPU through-
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put gains, applications (including protocols) will increasingly need to be mul-
tithreaded. Multithreading has already become an essential part of modern
software systems. Although threads simplify the program’s conceptual design
and allow parallelism on multiple processors, they also increase programming
complexity. Programmers must ensure that threads accessing shared data in-
teract correctly, which is notoriously a difficult task.

Consider a protocol stack in which messages are processed by concurrent
threads (this model of message processing appears in some protocol frame-
works, e.g. the x-kernel [52, 123] and Cactus [121, 18]). Actions executed by
a thread can be arbitrarily interleaved with actions of all other threads. We
can therefore achieve a lot of parallelism on multicore CPUs. In practice, how-
ever, thread interleaving often must be constrained, e.g. to avoid interference
between concurrent threads performing operations on shared data structures.
Therefore, it must be possible to declare a set of protocol operations to be
atomic. The execution of atomic operations appears as they would be exe-
cuted alone, with no concurrency at all.

An ad-hoc implementation of atomicity, e.g. using fine-grain locks, is error-
prone and may lead to deadlock. It is natural to ask whether atomic trans-
actions could be used; they maintain the illusion of exclusive access to the
whole data set while permitting concurrent access at a fine level. More pre-
cisely, the concurrent execution of transactions satisfies the isolation property
[9], also known as serializability [108]. It ensures that operations of different
transactions can be interleaved but the execution of transactions is equivalent
(in terms of the transactions’ effects) to some ideal serial execution of these
transactions, in which these operations are not interleaved. Thus, the isolation
property guarantees noninterference of transaction operations.

For example, an atomic transaction could be spawned upon receipt of ev-
ery new message (of some kind) from the network. Then, the transactions
would ensure noninterference for the message processing in the stack. More-
over, the order of delivering messages, e.g. to the application on top of the
stack, will agree with the order of receiving messages from the network, which
is often a required property. Contrary to single-threaded protocol stacks, how-
ever, this approach would allow protocols to better utilize multi-core CPUs,
while at the same time it leverages the programmer from writing the low-level
synchronization code (if the synchronization is required).

Example Let us consider an example system in Figure 1.2, which imple-
ments two services A and B on sites s1 and s2. The services are implemented
by protocols, respectively P and Q. A protocol stack on site s2 has received



1.2. MOTIVATIONS AND CONTRIBUTIONS 17

two messages: m1 and m2 (in the specified order); the messages are processed
by service methods and delivered to the application App on top of the stack.
We write, e.g., Am1, to denote service A processing messagem1. For simplicity,
we assume that each service method in the stack is atomic. Thus, concurrent
processing of these two messages within our stack can be described by one of
the following example traces of execution, or runs r:

1. r1 = Am1, Bm1, Am2, Bm2 (a serial run)

2. r2 = Am1, Am2, Bm1, Bm2 (an interleaved run)

3. r3 = Am1, Am2, Bm2, Bm1 (a nested run)

Are all these executions correct? It depends on the specification of proto-
cols. For instance, if services A and B would correspond to, respectively, the
Distributed Consensus and Atomic Broadcast in the group communication
stack (e.g. the one described in [70]), then the executions r1 or r2 on some
sites cannot occur at the same time with the execution r3 on other site(s).
This is because the order of delivering broadcast messages to the application
on top of the stack will not be the same on all sites, which contradicts the
intended semantics of the Atomic Broadcast service.
However, if each incoming message would be processed by a fresh atomic

transaction, then the isolation property of atomic transactions ensures that the
execution r3 cannot succeed, while executions r1 and r2 are permitted. Note
that in r1 and r2, the transaction processing message m2 can see the effects
of another transaction processing message m1, while the opposite is not true.
On the other hand, in the execution r3 (that does not satisfy the isolation
property) the transaction processing m2 can see an effect of the transaction
processing m1 through common service A, but the opposite also holds, i.e.
the transaction processing m1 can see the effects of processing m2 through
common service B.

The usual implementation of atomic transactions depends on rollback-
recovery , as follows. Transactions are executed concurrently by the transaction
manager. If some operations performed by transactions conflict with respect to
isolation, i.e. the property cannot be guaranteed any longer, then the transac-
tions are rolled back (restarted) and their state (if any) is recovered (recreated)
from the transaction log.
For example, consider the nested trace Am1, Am2, Bm2, Bm1. If an atomic

transaction processing message m1 would intend to call service B, then this
operation (Bm1) would be detected as conflicting with respect to isolation,
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and so it would cause all active transactions to rollback their execution. Thus,
the protocol execution that is allowed to eventually complete, would be either
r1 or r2, which is what we wanted. Unfortunately, it may not be possible to
use the rollback-recovery approach in the implementation of protocol stacks,
as we explain below.

The key issue in the design of support for atomicity in protocol stacks is the
answer to the question: what is an observational effect of a protocol execution?
For example, the observational effects in database systems are any changes
of data stored in the database. In communicating systems, however, we also
have Input/Output (I/O) effects, such as an input or an output of a message.
Recovering I/O effects is problematic. For instance, re-sending messages that
have already been output to the network may confuse remote participants of
the protocol. It would be inelegant and inefficient to require protocols to deal
with such erroneous cases. Thus, our goal was to design support of atomicity
in communicating systems, which allows atomic code to have arbitrary I/O
effects of its execution.

Do we need an explicit construct for transaction rollback? In database sys-
tems it can be useful, e.g. when implementing an interface with the database.
A database client should be able to either “commit” changes made to the
database, or “abort” these changes; the latter operation needs rollback. How-
ever, there is no such need in our case, since atomicity in protocol stacks is at
the lower level of abstraction; if rollback would be required by some protocol,
e.g. in order to make it fault-tolerant, then it had to be implemented as part
of the protocol itself.

Based on the above observation, we decided to design support of atomic-
ity (or isolation) that does not depend on rollback-recovery. The immediate
advantage of this design decision was that the problem of irrevocable effects
has been solved. The rollback-free execution of transactions can be achieved,
e.g. by scheduling operations with observational effects, so that any conflicts
between concurrent transactions can never occur.

Contribution

Our contribution in this area is the design of language support for atomic,
rollback-free transactions, called atomic tasks. Atomic tasks ensure atomicity
(isolation) without compromising task operations, i.e. it is plausible for atomic
tasks to have I/O effects. Since tasks can be internally multithreaded, they
provide a lot of flexibility in expressing atomicity in concurrent protocol stacks.

In Chapter 3, we describe an example design of atomic tasks. The imple-
mentation of atomic tasks can use our novel concurrency control algorithms
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that are based on versioning [119]; they schedule critical operations of concur-
rent tasks according to versions, so that the isolation property is preserved.
In Chapter 2, we describe the idea of versioning and give example algorithms.
The versioning algorithms, however, require some static (compile-time) data
to work correctly. Depending on the variant of the versioning algorithm, these
data can range from just names of verlocks [114] (or versioning locks) used to
mark operations whose effects must be isolated, to some quantitative and spa-
tial information; in short, the more data we can provide, the better interleaving
of concurrent tasks we can achieve (i.e. more concurrency possible).
The versioning algorithms can no longer work properly, and atomicity is

violated, if the data given to the versioning algorithms are wrong. We have
therefore proposed in [114] that these data could be specified (or derived) as
typing annotations of the language constructs that are used to spawn tasks,
with the compiler able to verify if the typing annotations are given as required
by the concurrency control algorithm. In practice, a positive round of a type
checker will provide an automatic proof that our safety property, isolation,
indeed holds in the protocol stack. Since the proof would be done at compile
time, before a protocol is ever executed, it also makes obsolete any runtime
checks and exceptions to handle any fatal errors or misbehaviour due to feeding
the algorithms with incorrect data.
To formally show safety of our language, we have designed the iso-calculus

of atomic tasks [114, 113], with a type system that can verify input data for
an example versioning algorithm. The calculus and the algorithm are defined
in Chapter 3. All expressions in the calculus whose execution might not guar-
antee isolation are rejected as “not well typed”. The type system essentially
guarantees two properties: (1) all operations that need to be isolated are pro-
tected by verlocks (“no race conditions can happen”)—this result builds on the
work of Flanagan and Abadi [31] on safe locking (using standard locks) that
we have adopted to our language of atomic tasks; and (2) all verlocks required
by an atomic task are known on task creation (“versioning is safe”)—this
result stems from our language.
The iso-calculus is equipped with operational semantics, that we have used

to prove the type soundness theorem. The theorem states that the execution of
any well-typed expression in our calculus cannot violate the isolation property
(informally, “well typed programs can’t go wrong”). The proof of the type
soundness theorem for our calculus (in the Appendix) has three main parts: (1)
type preservation, (2) progress, and (3) dynamic correctness of the versioning
algorithm. The proof is rather lengthy and standard, except for part (3) that
is nonstandard and can be instructive, e.g. it shows formal reasoning about
concurrent algorithms in the style of operational semantics.
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1.2.2 Declarative synchronization

One of the promises of modular protocol design is the possibility of reusing
components implementing individual protocols (or services), to compose dif-
ferent protocol stacks. In practice, however, reuse of such code is problematic.

Consider protocol stacks that are built from multithreaded protocols. For
instance, they could be built using protocol frameworks [116]—programming
packages that allow complex protocols to be implemented as a collection of
communicating components, each one implementing some sub-protocol (see,
e.g. [52, 121, 76, 119, 92] for example protocol frameworks). These tools can
help to support code reuse but they do not solve all the problems. For example,
protocol stacks usually implement some synchronization policy , that is re-
quired to restrict unconstrained concurrency within the stack (we have seen
an example of such requirement in the previous section). Reusing components
of such stacks in another protocol stack is not straightforward; it may require
to modify the code of components. In particular, any synchronization policy
may need to be revised, which means removing or adding some synchroniza-
tion constructs in the component code. This is however a counterexample to
the unanticipated reuse of protocol modules as “black-boxes”, since protocols
must be reimplemented when they are reused. To solve this dilemma, we need
programming abstractions for expressing any synchronization code indepen-
dently from software modules (or components), and to correctly apply this
synchronization when the modules are composed or executed. Our goal was
to design such programming abstractions.

Contribution

Our contribution in this area are two different models and languages for declar-
ative synchronization, which can be explained as follows. Programs are com-
posed from components using standard language facilities, such as classes or
modules. However, the error-prone synchronization code is no longer entan-
gled in the code of components but expressed as synchronization constraints,
using a specialized declarative language. This approach supports code reuse,
and also greatly simplifies programming of complex synchronization policies.

In Chapter 4, we describe two approaches to declarative synchronization. In
the first approach, an arbitrary synchronization policy can be declared in the
form of a type expression that abstracts away from any details of the synchro-
nization code. The type expressions are built (or composed) using concurrency
combinators, which are higher-order functions, or operators for specifying: true
parallelism, causal order, and atomicity; we denote them, respectively ‖, ⊲, and
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isol (and foll for a variant of isol). Atomicity provides guarantees that a
set of local operations on a site can be regarded as a single unit of computation,
regardless of any other operations that may occur concurrently.

In our original proposal, the concurrency combinators take as arguments
names that can be bound to arbitrary code fragments. Extending this to an
object-oriented language, such as Java [5], the concurrency combinators may
take as arguments interface names, e.g. A.m, of methods or object fields, where
A is some service, and m is a method or field of this service. By combining
operators, complex policies can be declared.

Example Let us consider again our small example protocol stack in Fig-
ure 1.2, which implements a composite service AB consisting of two services
A and B. We assume that protocols P and Q providing these services are
synchronization-free, i.e. they can be composed in different protocol stacks,
without worrying about any synchronization constraints. Then, we can use
the concurrency combinators to specify several different synchronization poli-
cies SP within our stack, e.g.:

1. SP1 = {A.m ‖ B.n}

2. SP2 = {A.m ⊲ B.n}

3. SP3 = {z = A.m ⊲ B.n, z isol z}

Policy SP1 requires methods m and n of services A and B to be called by
separate threads (i.e. each message in the stack can be processed by these
services concurrently). Policy SP2 requires that method A.m should be called
before method B.n (i.e. methods m and n cannot be called in the opposite
order by any composite protocol PQ). The last policy SP3, in addition, also
requires that any concurrent executions of PQ must guarantee atomicity (i.e.
all network messages will be delivered to the application App in the same order
as processed by both P and Q). The last property is required if, e.g. PQ would
be a TCP/IP, an atomic broadcast, or another protocol that guarantees the
order of message delivery.

Although, the language of concurrency combinators is fairly simple, it has
introduced a new problem of combinator satisfiability : the programmer has
to make sure that declarations of the synchronization policy expressed using
our language of concurrency combinators, and the code of the main (reusable)
protocol parts are compatible (e.g. ‖ requires a new thread to be spawned).
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In practice, checking this guarantee by hand or at runtime would be problem-
atic and error-prone. We have therefore proposed that a type system could
verify statically if this condition holds, thus giving an automatic proof that
the program is correct with respect to combinator satisfiability. We stated our
result formally by defining the CK-calculus of concurrency combinators, with
a type system able to verify if programs expressed in our language satisfy a
synchronization policy declared using the combinators.

We have also designed a different approach to declarative synchronization
[102], in which arbitrarily complex synchronization policies can be defined
as constraints between application-dependent semantic roles, such as produ-
cers and consumers; the constraints can be expressed using a constraint lan-
guage. We use the term role to mean one or possibly many concurrent threads,
spawned to execute some fragments of code; the threads logically represent the
semantic roles. Roles are subject of some predefined, role dependent, synchro-
nization rules (or “synchronization aspects”), which are predefined for a par-
ticular “role family”. For example, the Producer-Consumer family has a rule
which says that the Consumer should be blocked and wait till the Producer
produces some value. The actual implementation of synchronization rules is
provided separately by a corresponding synchronization package, implemented
in the host language. In Chapter4, we describe a general idea of the role-based
synchronization; the implementation details are in [102].

1.2.3 Dynamic protocol update and rebinding

The essence of dynamically updateable communicating systems is the ability
to modify its own code at runtime, i.e. without stopping the system. There
have been a lot of work on dynamic software updating (DSU) (see, e.g. [47,
28, 11, 4, 107, 66, 101, 12, 15, 105, 21, 57, 100]), and many implementations
have been developed.

Much of the recent work in this area concentrates on novel language sup-
port for DSU that does not break abstraction and can guarantee type safety de-
spite code replacement occurring at runtime (see, e.g. [66, 107, 47, 28, 12, 101]).
Different solutions enable dynamic update of arbitrary code fragments, or only
dynamic update of selected language structures. However, most of this research
does not explicitly deal with problems of concurrency and communication,
either assuming that updated code fragments are single-threaded and they do
not communicate, or compromising safety guarantees.

On the other hand, many middleware and component systems have been
developed, which support some form of dynamic code replacement (see, e.g.
[105, 57, 21] and other references in Chapter 5). These systems use tradi-
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tional programming languages, which allow whole objects or components to
be replaced dynamically on a site. The problems of concurrency and commu-
nication are solved using some synchronization means, built into the runtime
system. However, most of these implementations are rather ad-hoc, and often
they have been developed for a particular application only.

In this book, we are especially interested in language and runtime support
that is required to implement dynamic update of software systems, whose
different parts are distributed, and may need to communicate over the network.
We consider a problem of DSU, that can be defined by the following question:
what needs to be done, if dynamic software update means the change of a
network protocol? Or, in other words, how to dynamically replace protocol
modules in protocol stacks, without interrupting services implemented by these
stacks? We call this operation the Dynamic Protocol Update (DPU).

Consider the example protocol stack in Figure 1.2. We want to dynami-
cally replace a distributed protocol P implementing service A, for some new
protocol, also providing service A, so that a protocol Q (above in the protocol
stack) does not even notice that the protocol replacement has occurred. To
be able to do so, several local software updates or component replacements
(each one occurring on a separate machine) must be somehow coordinated or
synchronized. This is required in order to guarantee global service correctness
and availability while all the local updates or replacements take place.

Although some ad-hoc implementations exist (see, e.g. [21, 105, 62, 10, 100]
and other references in Chapter 5), they are not free from drawbacks, or they
are specialized for switching of some kind of protocols only. It remains unclear
what guarantees of dynamic protocol update are required in general, and how
to best provide them in a distributed system. There is also little existing work
on language support for DPU. Our goal was therefore to investigate language
and system support required for DPU in the general case.

Contribution

In our model of DPU [118], network protocols implementing some service can
be switched on-the-fly without interruption of the service. The protocol update
occurs under control of a switching algorithm that, depending on a service, may
synchronize all local updates of protocol stacks across distributed machines,
or simply apply updated code lazily, without any global synchronization. Most
of our work in this area is on the system side; it is therefore beyond the scope
of this book, which is on the foundations and language design. Therefore, we
have only described, in Chapter 5, our work on the formalization of basic DPU
properties. We have used our model of DPU to specify and prove properties
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of two general-purpose switching protocols. They define design space frame
for application-specific, efficient algorithms. For example, in [93, 91], we have
described efficient DPU algorithms that we designed and implemented for
group communication middleware.
Turning to the language design issues: what language features would be

useful to implement modular, communicating systems with dynamic protocol
update? The essential problem here is how to combine some form of dynamic
rebinding (of objects or modules) with synchronization constructs. To ad-
dress this issue, we have designed a concurrent, class-based object calculus of
dynamic rebinding [115], working towards future dynamic object languages.
Contribution of this work is largely preliminary. Our object calculus, described
in Chapter 6, has been used mainly to identify basic properties of dynamic
rebinding of objects to signatures (or object interfaces), and to show how the
main concepts described in this book (such as atomic tasks and concurrency
combinators) could be integrated with object-oriented features of program-
ming languages.



Chapter 2

Versioning for Atomicity

The goal of this chapter is to present concurrent algorithms that can be used to
implement atomicity in protocol stacks. In a protocol stack, some actions can
be executed concurrently, in order to: 1) achieve good response time (for in-
stance, when performing slow I/O operations), 2) enable simultaneous process-
ing of different types of messages, and 3) gain benefits of the multi-processor
architectures. However, in order to maintain certain consistency conditions,
concurrent actions must often be synchronized according to some synchro-
nization policy . Synchronization policies can be implemented using traditional
language facilities such as locks, semaphores, and monitors. However, the syn-
chronization code is rather subtle, error-prone, and does not compose well in
modular protocol stacks (see Section 1.2.2).

A synchronization policy that is very useful in concurrent programming is
atomicity . An atomic expression is executed in such a manner that all other
threads of execution observe either that the computation has completed, or
that it has not yet begun; no other thread observes an atomic expression to
have only partially completed. In this book, we only consider atomic expres-
sions that normally complete their execution (unless a process or machine
has crashed). We also do not allow for rollback in protocol stacks (see Sec-
tion 1.2.1 for the explanation why). We call such atomic expressions atomic
tasks. By analogy to database systems, we can say that atomic tasks are like
rollback-free atomic transactions, that only support isolation [9]. The isola-
tion property ensures that the effects of one task are not visible to other tasks
executing concurrently; from the perspective of a task, it appears that tasks
execute sequentially rather than in parallel. In this chapter, we give a more
precise definition of atomic tasks and isolation. In the next chapter, we use
the operational semantics to define these two notions formally.
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Unlike lexically-scoped atomic transactions whose scope is indicated using
the “commit” and “abort” keywords, atomic tasks have scope defined by the
task’s expression. For example, consider a protocol stack in which every mes-
sage received from the network is processed by a fresh atomic task; the task
comprises all service methods in the stack that must be executed in order to
deliver the message to the application on top of the stack. Thus, the scope of
such atomic tasks is dynamic, since different service methods may be called,
depending on the actual stack composition and message semantics. An atomic
task terminates when the task’s expression completes, and all threads spawned
by the task have terminated.
The most important difference between atomic tasks and atomic transac-

tions is, however, that the effects of task execution comprise both database
effects (i.e. modifications to the data store) as well as the Input/Output (I/O)
effects, such as an input (or an output) of a message. In order to easily support
I/O effects, we decided that atomic tasks are never aborted. Another feature
of atomic tasks is that they can be internally multithreaded.
In this chapter, we describe three concurrency control algorithms: the Basic

Versioning Algorithm (BVA), the Supremum Versioning Algorithm (SVA),
and the Route Versioning Algorithm (RVA). They can be used to manage
the execution of concurrent tasks in a protocol stack, so that the isolation
property holds. The SVA and RVA algorithms are the more efficient variants
of the BVA. They can support more parallelism by demanding some additional
properties of protocols to be known in advance, i.e. before spawning a task.
The SVA algorithm requires to specify for every task, the least upper bound
(or supremum) on the number of times the protocol stack’s services can be
called by the task. The RVA algorithm requires the pattern of service calls in
the protocol stack to be known, i.e. information about which services may be
called if some service has been called.
The algorithms have been first published in [119]. The presentation in this

chapter, however, differs from the description in the paper. In [119], we have
used an event model, in which protocol modules (or components) communicate
in the protocol stack using events. In this chapter, on the other hand, we use
a service model, which is closer to the semantics of the programming language
designed in this book.
The chapter is organized as follows. Section 2.1 defines basic terms using a

small example protocol stack. Section 2.2 explains the idea of task scheduling
using versioning. Section 2.3 describes three example versioning algorithms.
Section 2.4 briefly describes SAMOA—a protocol framework, which imple-
ments atomic tasks using the versioning algorithms described in this chapter.
Finally, Section 2.5 discusses related work.
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2.1 Model

We consider modular protocol stacks, in which protocol modules (or compo-
nents) communicate by calling service methods. Below we define our model,
and use it to illustrate the notion of the isolation property. In the next chapter,
we define isolation formally, using the operational semantics of our language.

2.1.1 Services and protocols

Protocol modules are objects, each one implementing a single service (an in-
terface of the object). Protocols are accessed by service methods, e.g. A.m
denotes a method m of a service (an interface) A. Executions of service meth-
ods are triggered by service calls, ranged over by α, β, γ. A service call is
simply a request (at runtime) to execute a service method. Any service calls
caused by the execution of a method triggered by a call α are causally depen-
dent on α; the causality relation is reflexive and transitive. A call α is pending
if a method requested by α has not commenced yet.

Service calls can be synchronous or asynchronous. Synchronous calls are
characterized by the client invoking a service method and then waiting for
a response to the request (i.e. a value returned by the method). With asyn-
chronous calls, the client invokes a service method but does not wait for the
response—it can continue with some other processing. Any value returned by
the method is ignored; if any response is required, a specified callback should
be made. To support concurrency in the protocol stack, service methods can
be executed by concurrent threads of execution. However, we require that a
service is a critical section, i.e. a protocol module bound to the service must
not be concurrently accessed by more than one thread of execution.

All methods of a service are grouped into a single protocol module (object).
Protocol modules are the smallest units of protocol composition. Execution of
a service method can directly modify only a local state of its own protocol
module. The state encompasses all of the in-memory and on-disk data items
and also I/O effects that affect the protocol’s operation, such as an input or an
output of a message. Protocol modules can be composed to give a composite
protocol . A local state of a composite protocol is the union of (disjoint) local
states of all protocol modules composed into the composite protocol.

Execution of a single method can generate zero, one or more service calls.
We consider two kinds of calls: internal and external. An internal call triggers
the execution of another (or the same) service method in the same protocol
stack. External calls are: 1) requests by one protocol stack to inject a message
to another protocol stack, 2) requests by an application to inject a message to a
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Figure 2.1: An example architecture of a modular system

protocol stack, and 3) requests to commence a new atomic task (we define the
notions of a task and an atomic task below). We require that all external calls
must be asynchronous. A sequence of external calls can be used to represent
the I/O effects of a protocol.

Execution of a protocol is modelled as a run, defined as a list of pairs
(α, A), where α is a service call and A is a service executed as the result of
the call (for simplicity, we omit method names). If the execution of A has not
commenced yet, we write request A. The list is ordered according to the time
when the execution of the service commenced; in case of pairs (α, request A),
where α is pending, the time of a call request is taken. A run is complete if it
does not have pending calls.

Example protocol stack

To illustrate the notions introduced so far, let us consider an example protocol
stack with four services A, B, C, and D, as illustrated in Figure 2.1. Our
example stack can, for example, receive network packets either from an ad-hoc
network (to be processed by A) or a fixed network (to be processed by B),
and deliver them to D via the execution of C.

We assume that two external calls α0 and β0 have occurred. In all possible
method executions triggered by these calls, the call α0 (correspondingly β0)
triggers the execution of A (correspondingly B); and C is executed twice, once
as the result of an internal call α1 (which causally depends on call α0), another
time as the result of an internal call β1 (which causally depends on call β0).
The calls α0 and β0 are concurrent, also the calls α1 and β1 are concurrent.
Similarly, D is also executed twice, due to two concurrent calls α2 and β2.
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Example complete executions (or runs) r1, r2 and r3 in the protocol stack are:

r1 = ((α0, A), (α1, C), (α2, D), (β0, B), (β1, C), (β2, D))

r2 = ((α0, A), (β0, B), (α1, C), (α2, D), (β1, C), (β2, D))

r3 = ((α0, A), (β0, B), (α1, C), (β1, C), (β2, D), (α2, D))

2.1.2 Tasks and atomic tasks

A task is a subsequence of a run, which begins from an external (asynchronous)
call, say α, and consists of all pairs containing α and all calls that are causally
dependent on α, but excluding any external calls β, γ, (...), that causally
dependent on α, and any calls that may causally depend on β, γ, (...). The
tasks spawned by external calls β, γ, (...) are caused by the task spawned by
α. From the definition of an external call, we have that all tasks are spawned
by asynchronous calls.
We require that all tasks must eventually complete. A task has completed,

if the executions of all methods triggered by the task’s service calls have com-
pleted, and no call is pending. In our example (see 2.1.1), we have two tasks:
kα = ((α0, A), (α1, C), (α2, D)) and kβ = ((β0, B), (β1, C), (β2, D)); they are
not causally related because the calls α0 and β0 are not causally related. (We
consider scope of a single protocol stack, not the whole distributed system, in
which α0 and β0 could be causally related.)
Consider a complete run with a finite set of external calls E = {α0, β0, ...}.

The protocol execution (or a run) is serial if for each two (distinct) external
calls α0 and β0 in E, either (each method of) the task spawned by α0 com-
mences after the task spawned by β0 has completed, or vice versa. Moreover,
in a serial run, a given task k always precedes in time any tasks caused by k,
i.e. they can commence only after k has completed. In our example protocol
stack, run r1 is serial since task kβ begins in this run after kα has completed;
but runs r2 and r3 are not serial.
Two protocol executions (or runs) are equivalent if, considering the same

sequence of external calls and the same initial state of the protocol, they pro-
duce the same state (or equivalent state, assuming some other notion of equiv-
alence instead of equality). Then, we say that a protocol execution satisfies
the isolation property , if the execution is equivalent to some serial execution
(or a run) of the protocol. Atomic tasks are the tasks of a protocol execution
(or a run) that satisfies the isolation property.
Consider runs r1, r2, and r3 (within which we have the sequence of external

calls α0, β0). Note that in runs r1 and r2, the task kα visits all protocol modules
that are shared with task kβ before kβ visits these protocol modules (recall
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that services are assumed to be critical sections). Thus, all memory and I/O
effects of task kβ that change the state of the protocol composed from C and
D, do not affect task kα executed concurrently (since kα cannot observe any of
such changes to the state). This is exactly what occurs in a serial run. Hence,
by definition runs r1 and r2 satisfy the isolation property.

However, run r3 does not satisfy this property, since it is not equivalent to
any serial run. To prove it, note, e.g., that task kα can see any modification of
D’s data done by call β2 of task kβ, and kβ can see any modification of C’s data
done by kα. Since it is not possible to have a serial run in which this would be
possible, we can conclude that run r3 does not satisfy the isolation property.
We can also prove this result in a different way. Note that any potential I/O
effect of task kβ caused by D in this run would always precede I/O effects
caused by D in task kα, while in the serial run r1, it is exactly opposite. Thus,
the sequences of I/O effects in r1 and in r3 are different. So, these runs are not
equivalent. Since r1 is the only possible serial run in which call α0 precedes
β0, which is required by r3, this ends the proof. �

When would atomicity be required in practice? Let us assume that our
example protocol stack implements group communication in a distributed sys-
tem. As the result of calls α1 and β1, two network messages, respectively m1

and m2, are passed to CD. Note that runs r1 and r2 would deliver these mes-
sages to the application on top of CD in the same order: first m1, then m2,
while r3 delivers the messages in the opposite order. Thus, if CD would be
a group communication service, such as the Atomic Broadcast [40, 95], that
must deliver messages at all sites in the same order, then we must somehow
forbid the case when on some sites there are runs r1 and r2, while on other
sites there is r3. An example solution is to use atomic tasks, which permit only
runs that satisfy isolation, such as runs r1 and r2.

2.2 Scheduling of Task Operations

We use the term isolation to mean that any memory and I/O effects of one
atomic task are not visible to other tasks executing concurrently; from the
perspective of a task, it appears that tasks execute sequentially rather than in
parallel. Thus, the simplest possible solution to implement atomic tasks would
be to block spawning of a new task until any other tasks complete. It follows
from the definition in Section 2.1 that the isolation property is satisfied since
the task’s execution is serial. However, our goal is to support concurrency in
the protocol stack. Roughly, a greater degree of concurrency leads to higher
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Figure 2.2: An example protocol stack, with critical operations e and f

performance on multicore CPUs. Essentially, we want the runtime system to
process many atomic tasks simultaneously while providing the illusion of iso-
lation; each new atomic task is therefore executed by a new thread. Moreover,
we would like a task to be able to spawn another threads that belong to it.
We then say that a task terminates if all its threads terminate.

Consider an example protocol stack in Figure 2.2, with two services A and
B, which are implemented by protocols P and Q. Services A and B execute
a critical operation, respectively e and f , where a critical operation is any
operation that has a memory or an I/O effect, such as modification of a local
state of a protocol module (object), or an input (or an output) of a message.
We require that each network message m1, m2, (...) received by our stack is
processed by a fresh atomic task.

Let us now explain the idea of using versioning for scheduling the execution
of tasks, so that it satisfies the isolation property. In Figure 2.3, we illustrate
two example atomic tasks: k1 and k2, processing messages, respectivelym1 and
m2. Figure 2.3(a) shows task scheduling using the BVA versioning algorithm
(defined below). Note that a critical operation e of task k2 is postponed until
task k1 has completed. This gives an almost serial execution of tasks. However,
some other critical operation g of another service (not given in Figure 2.2) can
be executed by task k2 in parallel with task k1; note that g is executed by a
separate thread that belongs to task k2. The isolation property is still satisfied
since the effects of executing g cannot be observed by task k1.

In order to postpone critical operations, the calls of services containing
these operations can be temporarily blocked. This mechanism has been used
in the implementation of atomic tasks in the SAMOA protocol framework
(described later in this chapter). Another approach will be presented in the
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Figure 2.3: Task scheduling: a) BVA, b) SVA, and c) RVA

next chapter, where we design a language of atomic tasks. Our language is
intended for general purpose concurrent programming, not only within the
service model. It has a construct for guarding critical operations that are
applied to an object, or applied to a communication channel of a given type.
This mechanism allows for more fine-grain concurrency of task scheduling, and
gives more flexibility since an arbitrary expression can be a critical section.

In order to schedule the execution of tasks, the versioning algorithms re-
quire some input data about a task to be known a priori—i.e. before the task
is spawned. In case of the service model with call blocking, the BVA algo-
rithm must know a priori for each new task, the names of all services whose
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methods may be called by the task. For instance, before spawning task k1,
the algorithm must know that k1 may call services A and B, where “to call a
service” means to call some method of this service. Similarly, before spawning
task k2, the algorithm must know that k2 may call services A, B, and some
other service (containing critical operation g).
Figure 2.3(b) shows task execution using the SVA algorithm. The algorithm

must know a priori, a least-upper-bound (or supremum) on the number of
times a given service may be called by an atomic task. For instance, service
A executing operation e, is called by tasks k1 and k2 only once, while service
B, executing operation f is called twice. This quantitative information allows
the algorithm to permit more parallelism than BVA. For example, consider
tasks k1 and k2. Note that the critical operation e of task k2 (that had been
postponed) is now executed soon after task k1 has completed executing A (see
Figure 2.3(b)). This is permitted since the SVA algorithm already knows that
the supremum on the number of times service A (containing operation e) can
be called by task k1 is equal 1, i.e. the operation e will not be executed again by
k1, and so k2 can call A and execute e. A similar situation occurs in the case of
service B executing operation f , except that the supremum for B is now equal
2; this means that k2 must be blocked on the call of B till k1 has completed its
second call of B, thus executing f for the second time. If supremum cannot be
reached for some service, e.g. because it has been over-calculated, or because
a branch of the program has been chosen that does not call this service, then
the SVA algorithm performs like BVA.
The SVA algorithm could be improved, if we could somehow explore the

spatial information about task execution. This is precisely what the RVA al-
gorithm does. Figure 2.3(c) shows an example execution of two tasks, k1 and
k2, under control of the RVA algorithm. For each task, the algorithm must
know a priori, a causal relation between service calls made by the task. In our
example, two such relations are possible for services A and B: either A calls B
twice, or A calls B and B calls itself. Let us assume that the latter holds. Now,
the key is behaviour of task k1. Task k1 has diverged, e.g. it has executed the
’else’ clause instead of ’then’, and, instead of calling itself and re-executing
operation f , it has called another service C (not given in Figure 2.2) that
executes some critical operation h. Task k1 has not completed yet, but from
the causality relation we know that C will never call B. Thus, after services
A and B have completed, the RVA algorithm knows that task k1 is not going
to repeat operation f (of service B). It thus allows another task, k2, to call
service B and execute f for the first time. Note that in case of the BVA and
SVA algorithms, the call of B by k2 in the last scenario would be postponed
till all services of k1 complete (and k1 would terminate).
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If we denote by t1, t2 and t3 the times of completing tasks k1 and k2 by
the algorithms, respectively RVA, SVA, and BVA, then we have t1 ≤ t2 ≤ t3
(see Figure 2.3). The SVA and RVA algorithms can be combined to obtain a
more efficient algorithm, which permits even more parallelism then either of
the two algorithms individually.

2.3 Versioning Algorithms for Atomic Tasks

In this section, we describe the BVA, SVA, and RVA concurrency control algo-
rithms for atomic tasks. The key idea behind these algorithms is versioning :
a service method called by a task is executed if the task holds a matching
version number of the service. Otherwise, the call is blocked, waiting for the
version upgrade. Thus, version numbers determine the order of executing ser-
vice methods by atomic tasks; this order agrees with the isolation property.
This simple mechanism protects protocol modules (or objects) from being ac-
cessed by atomic tasks that—in order to satisfy the isolation property—should
wait till other atomic tasks access these modules (objects). We assume that
they can be accessed by these tasks only through service calls.
We have used the versioning algorithms in the SAMOA protocol frame-

work, described in the next section; they implement atomicity in concurrent
protocol stacks. For simplicity, in the description of the algorithms, we assume
that services are bound to protocols at startup and cannot be rebound. In
SAMOA, however, this restriction does not hold—services can be dynamically
rebound to new protocols providing the same service.

2.3.1 Basic versioning

Below we describe the Basic Versioning Algorithm (BVA) that can be used to
implement a construct atomicM e. Execution of this construct spawns a new
atomic task, where M is a set containing names of all services whose methods
may be called by the task, and e is some expression that calls the first service
(or services) of the task. For example, task kα (see Section 2.1.2) could be
spawned with atomic {A, C, D} A.m v, where A, C and D are the names of
services, and an expression A.m v is the call of a method A.m, passing v as
the argument of the call.
Below are the rules of the BVA algorithm. For each service A in the pro-

tocol stack, there is a global version counter gvA (one per stack), initialised
to 0. Each individual service A maintains its local version counter lvA, also
initialised to 0. For brevity, we often omit the word “counter”, simply saying
“a version of a service” instead of “a version counter of a service”.
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Definition 1 (Basic Versioning Algorithm (BVA)). The algorithm is given
by the following set of rules or steps:

1. At the moment of spawning a new atomic task k by atomic M e, for
each service A ∈ M , increase the gvA version counter of A by one.

Create a private copy pvk of all service versions computed as above, i.e.,
pvk is a map (dictionary) containing bindings from all services A ∈ M
to copies of their upgraded versions gvA.

2. A method of a service A called by a task k is executed only when the task
holds a version for this service that matches the current (local) version
maintained by the service, i.e.

pv[A]k − 1 = lvA . (2.1)

Otherwise, the call is pending.

3. After a task k has completed its execution, i.e. all its threads terminated,
for each service A ∈ M in parallel, wait until (2.1) is true, then upgrade
the local version of A, so that we have lvA = pv[A]k; in the end, erase
map pvk.

We require Steps 1 and 2 to be critical sections (atomic).

We propose the following lemma:

Lemma 1 (Isolation Property by BVA). Provided that service methods called
by atomic tasks are executed only when allowed by the BVA versioning algo-
rithm, and assuming that the algorithm has correct input data, the concurrent
execution of the atomic tasks satisfies the isolation property.

In Chapter 3, we will define a similar versioning algorithm using an op-
erational semantics of our language, and give a mathematical proof of its
correctness. Below we only sketch an informal proof of the above lemma.
Proof (sketch) Consider a composite protocol with just two atomic tasks k1

and k2 that may call different methods of services declared in, correspondingly
M1 andM2. Initially, all services have their local and global versions equal zero.
The task spawned first (say k1) will atomically increase the global versions of
services in M1 by one, and build its private set of versions (here, each version
equal 1); see Rule 1. The task k2, spawned after k1, will also get its private set
of versions for all services declared in M2; however, versions of those services
that have been also declared in M1 will be equal 2 (again by Rule 1).
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Consider a service A inM1∩M2. Each method of this service can be freely
called by task k1 since the task’s private version of A decreased by one is
0, which is equal the current local version of the service, thus satisfying the
equation (2.1) in Rule 2. However, by Rule 2 none method ofA can be currently
called by k2 since k2 holds a private version of A equal 2 and 2 − 1 = 1 6= 0.
However, by Rule 3 the local version of A will equal 1, that is the private
version of A hold by k1, after k1 terminates. Then, k2 is allowed to call a
method of A (by Rule 2). Since at this moment k1 has already terminated,
any changes done by k2 to the state of A’s object cannot affect k1, which is
what we wanted.

Consider a service A in M1 ∩ M2 that has not been called yet by any
of the two tasks k1 and k2. If task k2, whose private version of A is newer
than the private version of A hold by k1, is about to terminate (according
to our assumptions, it does not need to call a method of A to be allowed to
terminate), it has to upgrade the local version of A. However, by the wait
condition in Rule 3, it will be allowed to do so only after task k1, which has
an older version of A, will terminate. This mechanism prevents task k2 from
invalidating any version match of k1, that entails k1 to call A.

Essentially, by Rule 1 and the wait condition in Rule 3, we ensure that the
order of upgrading, in Step 3, the local versions of services that are shared
by concurrent tasks, is the same as the order of increasing global versions by
these tasks in Step 1. This is precisely the necessary correctness condition for
isolation provided by version-based concurrency control. The rest of the proof
is by induction on tasks. �

We have also designed versioning algorithms that are variants (or optimiza-
tions) of the BVA algorithm. They permit to have more parallelism by upgrad-
ing local version counters as soon as possible. In the worst case, they behave
like the BVA algorithm. However, they demand some additional (orthogonal)
properties of protocols to be known before a task can be spawned. In the re-
mainder of this chapter, we describe two such variants: SVA and RVA, which
can be combined together.

2.3.2 Supremum versioning

Below we describe the Supremum Versioning Algorithm (SVA) that can be
used to implement a construct atomic Msupremum e. Execution of this con-
struct spawns an atomic task, where M and e are as in Section 2.3.1, and
supremum is a map (dictionary) from service names in M to the least-upper-
bound (supremum) on the number of times the service can be visited by the
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task, where “to visit a service” means to call any service method of the service.
We write supremum[A]k to denote task k’s supremum for service A.
A supremum value allows the SVA algorithm to decide if a given service A

that has been visited by a task k may be revisited by k, or not. If the latter,
then the service’s local version can be safely upgraded, permitting any other
tasks to visit A. After supremum has been reached, any other task holding a
matching private version, that wants to call any method of A, will be allowed
to call it, and proceed concurrently with k, thereby enabling more parallelism
than in the case of BVA, where k must firstly complete.
Giving the exact number of visits (which would be ideal) is not possible if

a program branches. Since this is the case in almost any program, the algo-
rithm only requires supremum. If a service is visited less times than declared
in supremum, nothing wrong happens, just that less parallelism may be per-
mitted compared with cases when supremum is more accurate. When it is not
possible to predict the supremum number of visits, e.g. in programs that use
recursion, a runtime error exception is thrown if supremum is exhausted; any
compensation code can be then executed.
Below are the rules of the SVA algorithm. The algorithm is similar to the

BVA algorithm; see Section 2.3.1 for the definition of gv and lv.

Definition 2 (Supremum Versioning Algorithm (SVA)). The algorithm is
given by the following set of rules or steps:

1. At the moment of spawning a new atomic task k by atomicM supremum
e, for each service A ∈ M , increase the gvA version counter of A by
supremum[A]k, where supremum[A]k is the least upper bound of times
the service A can be visited by task k.

Create a private copy pvk of all service versions computed as above, i.e.,
pvk is a map (dictionary) containing bindings from all services A ∈ M
to copies of their upgraded versions gvA.

2. A method of a service A called by a task k is executed only when the task
holds a version for this service that matches the current (local) version
maintained by the service, i.e.

pv[A]k − supremum[A]k ≤ lvA < pv[A]k . (2.2)

Otherwise, the call is pending.

3. Each time a service method A.m called by some task k has completed, i.e.
A.m has returned and any threads of A.m have terminated, the service’s
local counter lvA is incremented by one.
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4. After a task k has completed its execution, i.e. all its threads terminated,
check if any local versions lvA of services A ∈ M need to be upgraded,
i.e. there is lvA < pv[A]k; if so then for each such a service A in parallel,
wait until (2.2) is true, and then upgrade the local version of A, so that
we have lvA = pv[A]k; in the end, erase map pvk.

We propose the following lemma:

Lemma 2 (Isolation Property by SVA). Provided that service methods called
by atomic tasks are executed only when allowed by the SVA versioning algo-
rithm, and assuming that the algorithm has correct input data, the concurrent
execution of the atomic tasks satisfies the isolation property.

Below we sketch a proof of the above lemma.
Proof (sketch) The proof of Lemma 2 is similar to the previous proof. The

main difference is that task k2 is allowed to call a method of service A soon
after the local version lvA of the service (initially equal 0) is equal pv[A]k1

,
that is either after k1 has visited A the number of times declared in Rule 1
by supremum[A]k1

, or, by Rule 4, after k1 has terminated (in the case when
k1 visited A less times than declared). Note that if the least upper bound was
too small, and k1 would try to visit A more times than it has declared, then
by Rules 1 and 3, lvA will be equal or greater than pv[A]k1

, and so by Rule 2,
k1 is not allowed to call any method of A since lvA ≮ pv[A]k1

.
Rule 4, applied after k1’s termination ensures that any local version lvA

such that lvA > pv[A]k1
, i.e. upgraded by some other task(s) than k1 after k1’s

supremum had been reached, is never downgraded by Rule 4. Moreover, by
Rule 1 and the wait condition in Rule 4, we have that the order of upgrading,
in Step 4, the local versions of services that are shared by concurrent tasks,
is the same as the order of increasing global versions by these tasks in Step 1.
This is precisely the necessary correctness condition for isolation provided by
versioning. The rest of the proof is by induction on tasks. �

2.3.3 Route versioning

Below we describe the Route Versioning Algorithm (RVA) that can be used
to implement a construct atomic G e. Execution of this construct spawns an
atomic task, where G is a directed graph defining a routing pattern of the task,
and e is the code that calls the first service (or services) of the task.
Vertices of graph G are names of all services whose methods may be called

by the task; each such service must appear in the graph exactly once. One
vertex of G, named θ, is a “dummy” service that represents the expression e.



2.3. VERSIONING ALGORITHMS FOR ATOMIC TASKS 39

An arrow in graph G is a directed pair A → B, for some services A and B,
declaring that executing service A may result in calling service B. The arrows
of the form A 	, for some service A, are also possible, declaring recursive
calls of A. For instance, task kα (see Section 2.1.2) could be spawned with
atomic {θ → A → C → D} A.m v, where A, C and D are the names of
services, and an expression A.m v is the call of a service method A.m, passing
v as the argument of the call.
In SAMOA, a routing pattern G is built for each task dynamically at the

stack composition time, based on static declarations; for each service in the
stack, they specify which services are required (can be called) by the service.
If service A of some task would try to call service B but there is no arrow
from A to B in the graph G, then a runtime exception is thrown, and can be
handled by some compensation code.
To gain benefits of the RVA algorithm, service calls must be asynchronous,

i.e. after invoking a service method the client continues its execution; any value
returned by the method will be ignored.
Below are the rules of the RVA algorithm; see Section 2.3.1 for the definition

of gv and lv. We write A ∈ G to mean that A is a vertex in graph G.

Definition 3 (Route Versioning Algorithm (RVA)). The algorithm is given
by the following set of rules or steps:

1. At the moment of spawning a new atomic task k by atomic G e, for
each service A ∈ G, increase the gvA version counter of A by one, and
create a private copy pvk of all service versions computed as above, i.e.
pvk is a map (dictionary) containing bindings from all services A ∈ G to
copies of their upgraded versions gvA.

Create a private copy Gk of graph G, where each service (vertex) in
graph Gk is paired with status, which is equal 0 for “inactive” services,
and a number greater than 0 for “active” services. Initially, the service
θ has status equal 1, and all other services have status equal 0.

2. A call of any method of a service A, made by a task k, increases the
status of A in Gk by one.

The called method will commence when the following two conditions
hold (otherwise the call is pending):

(a) task k holds a version for service A that matches the current (local)
version maintained by A, i.e.

pv[A]k − 1 = lvA , (2.3)
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(b) there is in graph Gk, a directed arrow to A from the service that
has made this call.

3. Each time a service A ∈ Gk, called by a task k, has completed its exe-
cution, decrease the status of A in graph Gk by one.

If A’s status is 0, then remove from Gk all “inactive” services x (i.e. with
status = 0) that are not reachable from any “active” services (i.e. with
status > 0), and for each such service x in parallel, wait till (2.3) is true,
then upgrade a local version of x, so that lvx = pv[x]k.

We say that service A is not reachable from service B in graph Gk, if
there is no directed route from B to A in this graph.

4. After a task k has completed its execution, i.e. all its threads terminated,
erase map pvk.

We propose the following lemma:

Lemma 3 (Isolation Property by RVA). Provided that service methods called
by atomic tasks are executed only when allowed by the RVA versioning algo-
rithm, and assuming that the algorithm has correct input data, the concurrent
execution of the atomic tasks satisfies the isolation property.

Below we sketch a proof of the above lemma.

Proof (sketch) The proof of Lemma 3 is similar to the proof of Lemma 1.
The main difference is that task k2 is allowed to call a method of service A
soon after the local version lvA of the service is equal pv[A]k1

, that is after A
is removed from graph Gk1

by Rule 3.

Note that if the routing pattern Gk declared for k omitted some routes,
then by Rule 2(b), k is not allowed to call any methods whose services are not
reachable in Gk. However, there is no problem if the pattern provides routes
to some methods that are never called by k, since by Rule 3, these methods
will be eventually released (at the latest after k has completed).

The wait condition in Rule 3 ensures that local versions are never down-
graded. Moreover, by Rule 1 and Rule 3, we have that the order of upgrading,
in Step 3, the local versions of services that are shared by concurrent tasks,
is the same as the order of increasing global versions by these tasks in Step 1.
This is precisely the necessary correctness condition for isolation provided by
versioning. The rest of the proof is by induction on tasks. �
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2.4 The SAMOA Protocol Framework

Below we briefly describe SAMOA [119, 92, 94]—a novel protocol framework
in Java, that can be used for implementing protocols from communicating
components. To our knowledge SAMOA was the first protocol framework that
had built-in rollback-free, atomic tasks; the implementation of atomic tasks
uses the versioning algorithms. Below we compare support of atomicity in our
framework with two other similar programming tools: Cactus [121, 18], which
builds on the x-kernel [52, 123], and Appia [76, 1].

Consider the example protocol stack in Section 2.1.1. If we would imple-
ment it using Cactus, then all given traces of execution (r1, r2, and r3) are
possible when processing concurrent messages. To forbid some traces, e.g. in
order to provide atomicity, the programmer must write code synchronizing
the execution of protocol methods (or event handlers, using the Cactus event
model). In SAMOA, service methods triggered by an external call can be exe-
cuted atomically if they are part of an atomic task, spawned using just a single
construct. Then, only runs that satisfy the isolation property are permitted
(e.g. r1 and r2, but not r3). Appia also supports the isolation property, but it
only permits serial executions of protocols, such as r1. Other correct, concur-
rent runs, such as r2, cannot occur in Appia. Below we briefly describe other
features of the SAMOA protocol framework (see [92] for more details). More
information about Cactus and Appia can be found in [116, 117].

A protocol module in SAMOA, implementing some service, consists of
three functional parts: executers, listeners and interceptors. Executers handle
two kinds of requests: a request to process a new message, and a request to send
a message to the network. Listeners handle replies and notifications caused
by the requests (usually made on another site), where a notification can be
handled by listeners of many protocol modules, while a reply is handled by
exactly one listener (of a single protocol module). An interceptor is a unique
feature of the SAMOA framework; it allows to intercept requests, replies and
notifications. Interceptors can be used to implement switching algorithms for
dynamic protocol update (see Section 1.2.3), so that the execution of these
algorithms is transparent to the protocols composed into the stack.

Protocol modules in SAMOA communicate through objects called service
interfaces. Binding of service interfaces with protocol modules occurs according
to certain principles. For instance, binding an executer to a service interface
requires that a correct listener is bound to the service interface. This provides
some guarantees that requests are correctly linked with replies or notifications.
Executers, listeners and interceptors of a protocol module can be dynamically
bound or unbound to a service interface. This mechanism allows protocols to
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be dynamically loaded to the protocol stack and replaced on-the-fly. Other fea-
tures of the SAMOA protocol framework include message flow control, which
removes possible bottlenecks in the protocol stack, and timeouts, which facil-
itate protocol implementation.

To validate our protocol framework, it has been used to implement an
adaptive group communication middleware [93, 91], based on the modular
approach to group communication [70]. Group communication is an important
enabling technology for building fault-tolerant networked systems by server
replication; it is therefore a good example of a distributed system that must
run non-stop, with a high level of robustness. Some requests in the group
communication stack can be executed concurrently, e.g. for better response
time, or to avoid blocking of some actions. For this, the SAMOA atomic tasks
have been used. The isolation property of atomic tasks ensures that every
such request is processed by protocols in the stack, using a consistent set of
data. Contrary to traditional synchronization constructs, atomic tasks made
programming easier and less error-prone. Atomic tasks have also facilitated the
implementation of dynamic protocol replacement; in Section 5.4, we provide
some details on replacement of group communication protocols.

2.5 Related Work

The work in this chapter builds on research in the area of concurrency control
algorithms for atomic transactions.

Research on transaction management began appearing in the early to mid
1970s. Quite a large number of concurrency control algorithms have been pro-
posed for use in centralised and distributed database systems. Database sys-
tems use concurrency control to avoid interference between concurrent trans-
actions, which can lead to an inconsistent database. Isolation is used as the
definition of correctness for concurrency control algorithms in these systems.
The algorithms generally fall into one of three basic classes: locking algorithms,
timestamp algorithms, and optimistic (or certification) algorithms. A compre-
hensive study of example techniques with pointers to literature can be found
in [9]. Concurrency control problems had been also treated in the context of
operating systems beginning in the mid 1960s. Most textbooks on operating
systems survey this work, see e.g. [99, 103].

Our versioning algorithms have some resemblance with basic two-phase
locking. However, instead of acquiring all locks needed (in the 1st phase) and
releasing them (in the 2nd phase), tasks take and dynamically upgrade ver-
sion numbers, which optimizes unnecessary blocking. The conflicting opera-
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tions are ordered according to version numbers, which is similar to ordering
timestamps in timestamp algorithms [9, 108]. However, we associate versions
(“timestamps”) with services, not with transactions. Therefore all service calls
are always made in the right order for the isolation property (the call requests
with too high versions are simply delayed), unlike common timestamp algo-
rithms for database atomic transactions, where if an operation has arrived
too late (that is it arrives after the transaction scheduler has already output
some conflicting operation), the transaction must abort and be rolled back.
The “ultimate conservative” timestamp algorithms avoid aborting by schedul-
ing all operations in timestamp order, however, they produce serial executions
(except complex variants that use transaction classes) [9].
Methods of deadlock avoidance in allocating resources [99, 103] are also

relevant to our work. The banker’s algorithm (introduced by Dijkstra [25])
considers each request by a process as it occurs, and assigns the requested
resource to the process only if there is a guarantee that this will leave the
system in a safe state, that is no deadlock can occur. Otherwise the process
must wait until some other process releases enough resources. The resource-
allocation graph [49] algorithm makes allocation decisions using a directed
graph that dynamically records claims, requests and allocations of resources by
processes. The request can be granted only if the graph’s transformation does
not result in a cycle. Resources must be claimed a priori in these algorithms.
In our case, a task must also know a priori all its resources (methods or

protocols) before it can commence. However, the history of service calls by
different tasks is always acyclic since versions impose a total order on call
requests performed by different tasks. Since tasks are assumed to complete,
old versions will be eventually upgraded. Therefore our versioning algorithms
are deadlock-free. Moreover, the calls are assigned according to the order that
is necessary to satisfy the isolation property, unlike the resource allocation
algorithms, which do not deal with ordering of operations on resources.





Chapter 3

Atomic Tasks

In this chapter, we describe a language of atomic tasks. The main construct
of our language is atomic that spawns an atomic task. Tasks are analogous to
multithreaded transactions decomposed to ensure an isolation property only.
The isolation property of atomic tasks ensures that their concurrent execution
is equivalent to an execution in which the tasks would be executed sequentially.
Contrary to other similar language constructs, atomic tasks in our language
can perform arbitrary operations, including operations with the I/O effects.
This is achieved by tightly controlling the order of critical operations and guar-
anteeing that once started they cannot run into conflicts, i.e. rollback-recovery
that is problematic for irrevocable I/O effects is avoided (see Section 1.2.1).

No explicit rollback construct is currently available in our language of
atomic tasks. Since we intend our language for implementing protocol stacks,
this is not a drawback. Consider a concurrent protocol stack that spawns an
atomic task for communicating a message to atomic tasks on remote sites; the
message is delivered by the tasks to an application built on top of the protocol
stacks. Full-scale recovery of atomic tasks located on different sites would
require some form of distributed agreement between sites. The distributed
agreement algorithms, however, do not scale to large networks. Moreover, the
application on top of the stack would also need to be able to rollback its state;
requiring this for all applications is impractical.

Our language is defined formally as a small calculus of atomic tasks; the
calculus is equipped with an operational semantics built on the standard call-
by-value λ-calculus [87]; the semantics has been split into a dynamic semantics
of the host language constructs, and of the concurrency controller. The key
concept of our design is the use of a type system to support safe runtime
execution of atomic tasks. We present a first-order type system that can verify
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input data for an example versioning algorithm that is used to implement the
concurrency controller.

We have used the operational semantics to formalize and prove type sound-
ness and the runtime correctness of the versioning algorithm. In particular,
we show several results (theorems) about our type-directed approach to con-
currency control of rollback-free atomic tasks. The main result is that the
execution of any well-typed program in our language is guaranteed to satisfy
the isolation property. In the Appendix, we give a rigorous proof of isola-
tion preservation and progress (up to deadlocks between threads of the same
task); the proof makes data and I/O accesses explicit, and deals with multiple
threads within an atomic task. This was one of the first such proofs for atomic
tasks. The results described in this chapter have been published in [114]; the
proofs of type soundness appeared in [113].

The chapter is organized as follows. Section 3.1 motivates the design choices
in our calculus of atomic tasks. Section 3.2 explains the constructs using an
example program. Section 3.3 defines syntax, semantics, and typing of the
calculus. Section 3.4 states the main results, including type soundness and
dynamic correctness of the versioning algorithm, and Section 3.5 discusses
related work.

3.1 Design Choices

3.1.1 Fine-grain, rollback-free concurrency control

The main construct of our language is atomic x e, which can be used to spawn
an atomic task, where x will be described below, and e is the task’s expression.
For rollback-free execution of atomic tasks, the language could be implemented
using any of the versioning algorithms described in Chapter 2. In fact, we de-
fine an abstract machine of our language using a Versioning Algorithm (VA),
which is the BVA algorithm described in Chapter 2, slightly modified to work
with a fine-grain synchronization construct (described below). The VA algo-
rithm allows critical task operations to be scheduled according to the isolation
property. It is one of the simplest algorithms possible, and so it does not permit
much concurrency. However, it makes the definition of the abstract machine
relatively simple, and it is enough to formally explain our unique hybrid ap-
proach to the design of the concurrency controller for rollback-free atomicity.
The main feature of this approach is that it combines static (i.e. compile time)
type checking with runtime versioning.
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3.1.2 Typing for safe rollback-free atomicity

The first argument of the atomic x e construct specifies the input data re-
quired for the versioning algorithm to work correctly. Passing wrong data can
jeopardize the isolation property. Thus, to make the language safe, we have
proposed a type system that can statically verify if the data passed (dynami-
cally) to the versioning algorithm will be correct. To our knowledge it was the
first use of a type system for such an application. Our type system builds on
Flanagan and Abadi’s [31] type system for detection of race conditions. We
have used their solution to ensure that all accesses to shared data are pro-
tected by locks. By refining the type system, this guarantee could be easily
relaxed if needed. For instance, objects known to be immutable need not be
visible to the concurrency controller when accessed, and so they could be left
unprotected.

3.1.3 Isolation of operations with I/O effects

The main feature of our atomic tasks design is that it permits arbitrary sets
of task critical operations to be isolated; in particular, operations with the
I/O effects can also be part of the task’s expression e. For this, they must
be protected by versioning locks (or verlocks). Verlocks are similar to locks.
However, the standard locking principle is extended with a runtime blocking
for isolation preservation; blocking is guaranteed to be temporary up to the
progress property of versioning algorithms.

The programmer can use a construct sync (implementing verlocks) to mark
the task’s operations that should be serialized. Other critical operations (not
protected by verlocks) are not serialized. We have made this design choice
since we wanted to be able to sometimes relax isolation. In some programs,
strict task serialization can be too restrictive; e.g., some I/O actions should
not be blocked. Alternatively, we could remove the sync construct from the
front-end language (that is used by the programmers), and require that the
compiler would place verlock-based synchronization automatically (based on
the typing information). However, to be able to give a rigorous proof of isola-
tion preservation, which included the proof of runtime versioning, we had to
keep sync in the calculus. We assume that information on verlocks is provided
in atomic explicitly, and leave type inference as an open problem.

The isolation guarantee in our language stems from three sources: (a) com-
pile time enforcement that each shared data location (or an I/O operation)
is protected by a verlock and that threads acquire the corresponding verlock
before accessing the location (or performing the I/O operation), (b) compile
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Figure 3.1: Concurrent, multithreaded atomic tasks

time enforcement that requires that all verlocks to be acquired during a task,
are declared at the beginning of the task, and (c) a runtime locking strategy
that assigns versions to threads that allow them to acquire verlocks so that
isolation is preserved.

3.1.4 Task multithreading and nesting

An expression e of the task spawned with atomic x e, can be a concurrent
program, i.e. atomic tasks can be multithreaded. For example, Figure 3.1 illus-
trates two concurrent, multithreaded tasks k1 and k2. Execution of each task
is atomic with respect to other tasks that run on the same machine. How-
ever, the execution of concurrent threads inside each task can be arbitrarily
interleaved. Threads in our language are lightweight processes. Threads of a
single task can engage in two-way communication using shared data structures
or I/O channels. Any synchronization required by this communication can be
implemented using verlocks (or monitors, etc.).

When an atomic task k1 is spawned with the atomic construct that is
nested in some other atomic task (say k2), then as long as there are no conflicts
between critical operations of the two tasks, they can run in parallel. For
this, every new atomic task is executed by a fresh thread. If some conflicts
occur, then k2 will be blocked till k1 would release critical resources. Thus,
in the (ideal) serial execution of the tasks, k2 would commence after k1 has
completed (i.e. k1 cannot see any effects of k2). It follows from the definition
in Section 2.1.2, that the isolation property of atomic tasks is satisfied. Note
that this semantics is different from nested transactions [108] in databases. A
nested transaction occurs when a new transaction is started inside an existing
transaction. However, any changes made by the nested transaction are not
seen by the parent transaction until the nested transaction is committed.
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3.2 Example Program

Below is an example program, expressed using an object language (defined
in Chapter 6) with let-binders from ML [75]. The program implements two
concurrent tasks: k1 and k2. The first task (k1) is performing a bank transfer:
it withdraws an amount value from an account accA, and then it deposits the
same value to an account accB. The second task (k2) is computing the current
balance balance, which must be equal the total amount of assets deposited
by a client on accounts accA and accB. After the balance has been computed,
the task outputs it on a channel chan; the output operation has an irrevocable
effect of a message being sent out to the network.

let accA = new AccountA() in

let accB = new AccountB() in

newlock a : effect AccountA in

newlock b : effect AccountB in

atomic {a,b} (* task k1 *)

(

sync a accA.withdraw(amount);

sync b accB.deposit(amount)

);

atomic {a,b} (* task k2 *)

(

let s = sync a accA.get() in

let balance = s + sync b accB.get() in

chan.output(balance) (* irrevocable I/O effect *)

)

Note that the balance value computed by task k2 would be diminished by
amount, and so incorrect, if it would be computed just after the money had
been withdrawn by task k1 from one account but before they are deposited to
another account. Fortunately, the isolation property of concurrent tasks guar-
antees that such erroneous interference of concurrent operations is forbidden;
it ensures that any concurrent execution of atomic tasks is equivalent to an
execution in which the tasks would be serialized. Thus, atomic tasks help in
our program to maintain a consistent view of bank assets. Moreover, since the
implementation of atomic tasks does not depend on rollback-recovery, balance
is output to channel chan exactly once.
Execution of newlock x : m in e in the above program creates a new

versioning lock (verlock) x of typem that can be used in program e; the verlock
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type identifies data structures and I/O channels protected by the verlock. A
fresh verlock is usually created for every communication channel and every
data structure that can be shared by tasks. For instance, in our example
program, verlocks have been created for the a and b objects of class types
AccountA and AccountB.

Execution of atomic e e creates a new task for the evaluation of expression
e. After the creation, e commences execution, in parallel with the rest of the
body of the spawning program (each task is executed by a new thread). The
e expression should give verlocks that can be used by a task to mark critical
operations on data structures or I/O channels shared with other tasks. Tasks
can spawn internal threads, which are executed within the scope of the task.

The sync construct can be used to mark critical operations of a task;
the runtime system will guarantee that all operations marked in this way
(and executed by any thread of the task) will be executed in isolation with
respect to other concurrent tasks. Execution of sync e e′ is similar to Java’s
synchronized statement [37], i.e. the expression e is evaluated first, and should
yield a lock, which is then acquired when possible; the expression e′ is then
evaluated, giving a value v; and finally the lock is released and the value v is
returned as the result of the whole expression.

What is a locking strategy in sync x e? Or, when exactly the verlock x is
acquired when executing this expression? Verlock x of type m is acquired when
two conditions are satisfied: (1) the effectm caused by e does not conflict (with
respect to isolation) with any effects of other concurrent tasks, and (2) lock
x is free (i.e. the standard locking principle applies). The second condition
is required just to avoid races inside a task; it can be dropped if tasks are
single-threaded.

The type system verifies if verlocks that may be acquired by a task spawned
with atomic e e are known before the task commences, i.e. it checks if all such
verlocks have been declared in e. It thus eliminates errors due to omission of
such declarations. For instance, the above program does not typecheck if the
arguments a or b of atomic would be removed. Static verification (at compile
time) ensures a safe execution of the concurrency controller at runtime.

Below we define our language formally, which has several advantages. Ex-
plaining the meaning of a programing language constructs using a natural lan-
guage is very ambiguous. Therefore, we will present an operational semantics
that is mathematically precise. The semantics has been split into a dynamic
semantics of the host language constructs, and of the concurrency controller;
we have used the semantics to formally prove correct the VA algorithm. We
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Variables x, y ∈ Var

Type Var-s m, o ∈ TypVar

Allocations a, b ∈ 2TypVar

Permissions p ∈ 2TypVar

Types s, t ::= Unit | t →a,p t | Refm t | m

Values v, w ∈ Val ::= () | λa,px : t. e

Expressions e ∈ Exp ::= x | v | e e | refm e | !e

| e := e | newlock x :m in e | sync e e

| fork e | atomic e e

We work up to alpha-conversion of expressions throughout, with x binding in
e in expressions λx : t. e.

Figure 3.2: The calculus of atomic tasks: Syntax

have also shown several results (theorems) about our unique type-directed ap-
proach to concurrency control of rollback-free atomic tasks. The main result is
that well-typed programs satisfy the isolation property. In the Appendix, we
give a rigorous proof of isolation preservation and progress for our language
(up to deadlocks between threads of the same task); the proof makes data and
I/O accesses explicit and deals with multiple threads within an atomic block.
This is one of the first such proofs for atomic tasks.

3.3 The Calculus of Atomic Tasks

3.3.1 Syntax

In this section we define the calculus of atomic tasks (or the iso-calculus, in
short) as the call-by-value λ-calculus, extended with reference cells, atomic
tasks, and versioning locks. The abstract syntax is in Figure 3.2. The main
syntactic categories are values and expressions. We write x as shorthand for a
possibly empty sequence of variables x1, ..., xn (and similarly for t, e, etc.).

Types

Types include the base type Unit of unit expressions, which abstracts away
from concrete ground types for basic constants (integers, Booleans, etc.), the
type t →a,p t of functions, the type Refm t of reference cells containing a value
of type t, and finally a singleton lock type m. A singleton lock type is the
type of a single lock. The types of references and functions are decorated by
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correspondingly, m and a, p, where m is a singleton lock type of a verlock
used to protect the reference cell against simultaneous accesses by concurrent
threads, and a and p describe an allocation and permission. Allocations and
permissions are sets of singleton lock types, representing respectively, the set
of all verlocks that may be demanded during evaluation of a function, and the
set of verlocks that must be held before a function call.

Values and expressions

A value is either an empty value () of type Unit, or function abstraction
λa,px : t. e (decorated with allocation a and permission p). Values are first-
class programming objects, they can be passed as arguments to functions
and returned as results and stored in reference cells. Basic expressions e are
mostly standard and include variables, values, function applications, reference
creation refm e (decorated with a singleton lock type m), and the usual im-
perative operations on references, i.e. dereference !e and assignment e := e. We
also assume existence of let-binders, and use syntactic sugar e1; e2 (sequential
execution) for let x = e1 in e2 (for some x, where x is fresh).

Threads and atomic tasks

The language allows multithreaded programs by including the expression
fork e, which spawns a new thread for the evaluation of expression e. This
evaluation is performed only for its effect; the result of e is never used. Execu-
tion of atomic e e creates a new atomic task for the evaluation of expression e;
a new thread is implicitly created for the task’s execution. Tasks can use fork
to spawn their own threads. The declaration e should give verlocks that can
be used by a task to control access to shared data. All program threads will
be interleaved while providing the illusion that tasks are executed in isolation.

Verlocks

The execution of newlock x : m in e creates a new unique name x of a ver-
sioning lock (or verlock). It also introduces the type variable m which denotes
the singleton lock type of the newly created verlock. Both x and m may be
referred to in the expression e, i.e. x and m are bound in e. The expression
sync e e′ is similar to Java’s synchronized statement [37], i.e. the expression
e is evaluated first, and should yield a verlock, which is then acquired when
possible; the expression e′ is then evaluated; and finally the verlock is released.
Verlocks combine a simple lock (mutex) for protection against simultaneous
data accesses by concurrent threads, with an algorithm that schedules lock
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State Space

S ∈ State = LockStore × RefStore × ThreadSeq

π ∈ LockStore = LockLoc → {0, 1}

σ ∈ RefStore = RefLoc → Val

l ∈ LockLoc ⊂ Var

r ∈ RefLoc ⊂ Var

pv ∈ VerMap ⊂ LockLoc → Nat

gv ∈ VerMap ⊂ LockLoc → Nat

lv ∈ VerMap ⊂ LockLoc → Nat

T ∈ ThreadSeq ::= f | T, T

f ∈ Expext ::= x | v | f e | v f

| refm f | !f | f := e | r := f

| newlock x :m in e | sync f e | insync l f

| fork e | atomic fe e | atomic lf e | task pv T

Evaluation Contexts

E = [ ] | E e | v E

| refm E | !E | E := e | r := E

| sync E e | insync l E

| atomic lEe e | task pv E | E , T | T, E

Figure 3.3: The iso-calculus: Reduction semantics – Part I

acquisitions by (threads of) atomic tasks based on access versions; the details
of the algorithm will be given in Section 3.3.3.

3.3.2 Operational semantics

We specify the operational semantics using the rules defined in Figure 3.3, 3.4,
and 3.5. A state S consists of three elements: a lock store π and a reference
store σ, which are sometimes referred to collectively as a store π, σ, and a
collection of expressions T , which are organized as a sequence T0, ..., Tn. Each
expression Ti in the sequence represents a thread.

The lock store π is a finite map (or dictionary) from lock locations to
their states; a lock location has two states, unlocked (0) and locked (1), and is
initially unlocked. The reference store σ is a finite map from reference locations
to values stored in the references. Lock locations l and reference locations r
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Structural Congruence

T, T ′ ≡ T ′, T

T, () ≡ T

〈π, σ | T 〉 −→ 〈π′, σ′ | T ′〉

〈π, σ | E [ T ]〉 −→ 〈π′, σ′ | E [ T ′ ]〉

T −→ T ′

〈π, σ | T 〉 −→ 〈π, σ | T ′〉

Transition Rules

eval ⊆ Exp × Val

eval(e, v0) ⇔ 〈∅, ∅ | e〉 −→∗ 〈π, σ | v0, (),· · · , ()〉

λx. e v −→ e{v/x} (R-App)

r /∈ dom(σ)

〈π, σ | refm v 〉 −→ 〈π, (σ, r 7→ v) | r〉
(R-Ref)

〈π, σ | !r〉 −→ 〈π, σ | v〉 if σ(r) = v (R-Deref)

〈π, σ | r := v〉 −→ 〈π, σ[r 7→ v] | ()〉 (R-Assign)

E [ fork e ] −→ E [ () ], e (R-Fork)

vi, v
′
j −→ vi if i < j (R-Thread)

π(l) = 1

〈π, σ | insync l v〉 −→ 〈π[l 7→ 0], σ | v〉
(R-InSync)

Figure 3.4: The iso-calculus: Reduction semantics – Part II
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are simply special kinds of variables that can be bound only by the respective
stores (see Figure 3.3).
The expressions f are written in the calculus presented in Section 3.3.1,

extended with a new construct task pv T , where pv is a map of private version
counters, initialized to 0. The construct is not part of the language to be used
by programmers; it will be used later to explain semantics.
We define a small-step evaluation relation 〈π, σ | e〉 −→ 〈π′, σ′ | e′〉, read

“expression e reduces to expression e′ in one step, with stores π, σ being trans-
formed to π′, σ′”. We also use −→∗ for a sequence of small-step reductions.
By concurrent evaluation, or concurrent run, we mean a sequence of small-

step reductions in which the reduction steps can be taken by different threads
with possible interleaving.
Reductions are defined using evaluation context E for expressions e and f .

The evaluation context ensures that the left-outermost reduction is the only
applicable reduction for each individual thread in the entire program. Context
application is denoted by [], as in E [ e ]. Structural congruence rules allow us
to simplify reduction rules by removing the context whenever possible.
The evaluation of a program e starts in an initial state with empty stores

(∅, ∅) and with a single thread that evaluates the program’s expression e.
Evaluation then takes place according to the transition rules in Figure 3.4
and 3.5. The evaluation terminates once all threads have been reduced to
values, in which case the value v0 of the initial, first thread T0 is returned as
the program’s result (typing will ensure that other values are empty values).
Subscripts in values reduced from threads denote the sequence number of the
thread, i.e. vi is reduced from i’s thread, denoted Ti (i = 0, 1..).
The execution of threads can be arbitrarily interleaved. Since different in-

terleavings may produce different results, the evaluator eval(e, v0) is therefore
a relation, not a partial function.
Below we describe reduction rules in Figure 3.4. These rules are common

for all versioning concurrency control algorithms, while rules in Figure 3.5,
that will be described later, define our example versioning algorithm. The
first four evaluation rules are the standard rules of a call-by-value λ-calculus,
extended with references.
We write {v/x}e to denote the capture-free substitution of v for x in the

expression e. The notation (σ, r 7→ v) means “the store that maps r to v and
maps all other locations to the same thing as σ”.
Rules (R-Ref), (R-Deref), and (R-Assign) correspondingly, create a new ref-

erence cell with a store location r initially containing v, read the current store
value, and assign a new value to the store located by r. For instance, let us
look at the rule (R-Assign). We use the notation σ[r 7→ v] to denote update of
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map σ at r to v. Note that the term resulting from this evaluation step is just
(); the interesting result is the updated store.

An expression f accesses a reference location r if there exists some evalu-
ation context E such that f = E [ !r ] or f = E [ r := v ]. (Note that both assign
and dereference operations are non-commutative.)

Evaluation of expression fork e in (R-Fork) creates a new thread which eval-
uates e. The result of evaluating expression e is discarded by rule (R-Thread).

A program completes, or terminates, if all its threads reduce to a value. By
(R-Thread), values of more recent threads are ignored, so that eventually only
the value of the first thread T0 will be returned by a program.

3.3.3 The Versioning Algorithm (VA)

The abstract machine of our language implements a runtime locking strategy
for atomic tasks. The strategy essentially assigns “tickets” to task threads
that allow them to acquire verlocks. The tickets are monotonically increasing
version counters, one per verlock. On task entry, the task’s thread obtains
incremented ticket values (or “versions”) for all the verlocks that it wants to
acquire during the task. The thread can then acquire a verlock only when
the corresponding verlock service count has reached its ticket count. Since
tickets for all verlocks are obtained atomically, this guarantees that tasks with
conflicts (shared verlocks) will acquire these shared verlocks in global order of
task starts. By using the locking strategy, the concurrent execution of atomic
tasks can satisfy the isolation property.

Below we describe the Versioning Algorithm (VA) that implements the
above strategy. In order to keep the abstract machine simple, we have chosen
one of the simplest versioning algorithms possible. It is very similar to the
BVA algorithm, described in Chapter 2. Alternatively, we could adapt, e.g.
the SVA or RVA algorithm, also described in that chapter. They permit more
concurrency than the BVA but they are more complex.

Before we present the VA algorithm, we need to define some data structures
that are required by the algorithm. Firstly, the program state is extended with
a map gv of global version counters gv(l) for each lock l in π (initialized to
0). A version is a natural number playing a role of access capability. Secondly,
each lock l maintains a local version counter lv(l), which is also initialized to
0; a map lv of local version counters is part of the state, too. We write gvl and
lvl as shorthand for gv(l) and lv(l). For clarity we usually omit the counters
in the rules when possible. The VA algorithm maintains an invariant that a
local version of each lock is equal or less than a global version of the lock, and
it is equal or greater than zero.
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Transition Rules (of the Versioning Algorithm)

gv ∈ VerMap ⊂ LockLoc → Nat

lv ∈ VerMap ⊂ LockLoc → Nat

eval(e, v0) ⇔ 〈∅, ∅, ∅, ∅ | e〉 −→∗ 〈π, σ, gv, lv | v0, (),· · · , ()〉

π(l) ∈ {0, 1}

gv(l) ≥ lv(l) ≥ 0 for all l ∈ dom(π)

〈π, σ, gv, lv | e〉 −→ 〈π′, σ′, gv′, lv′ | e′〉
(Invar)

VA0 :

l /∈ dom(π)

gv′ = (gv, l 7→ 0) lv′ = (lv, l 7→ 0)

〈π, σ, gv, lv | newlock x :m in e〉 −→

〈(π, l 7→ 0), σ, gv′, lv′ | e{l/x}{ol/m}〉

(R-Lock)

VA1 :

l = l1, ..., ln

gv′ = gv[li 7→ gv(li) + 1] i = 1..n

pv = (l1 7→ gv′(l1), ..., ln 7→ gv′(ln))

〈π, σ, gv, lv | E [ atomic l e ]〉 −→

〈π, σ, gv′, lv | E [ () ], task pv e〉

(R-Isol)

task pv E [ fork e ] −→ task pv (E [ () ], e) (R-Fork’)

VA2 :
π(l) = 0 pv(l) − 1 = lv(l)

〈π, σ, gv, lv | task pv E [ sync l e ]〉 −→

〈π[l 7→ 1], σ, gv, lv | task pv E [ insync l e ]〉

(R-Sync)

VA3 :

pv(l) − 1 = lv(l)

lv′ = lv[l 7→ pv(l)] for all l ∈ dom(pv)

π, σ, 〈gv, lv | task pv v〉 −→ π, σ, 〈gv, lv′ | ()〉
(R-Task)

Figure 3.5: The iso-calculus: Reduction semantics – Part III
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Definition 4 (Versioning Algorithm (VA)). The algorithm is given by the
following set of rules or steps:

VA0 .̇ Upon lock creation, initialize global and local counters of the new lock
to zero.

VA1 .̇ At the moment of spawning a new task k using atomic l e, for each lock
li where i = 1, .., |l|, that may be requested by this task, increase counter
gvli by one. Create a fresh (read-only) map pvk that contains bindings
from the locks li to their upgraded versions gvli .

VA2 .̇ A task k can acquire a lock l only when, the lock is free and the task holds
a (private) version of this lock that—when downgraded by one—matches
the current (local) version maintained by the lock, i.e.

pvk(l) − 1 = lvl . (3.1)

VA3 .̇ After a task k has completed its execution, i.e. all threads of the task have
terminated, for each lock li, where i = 1, .., |l|, wait until condition (3.1)
is true, then upgrade a local version of each lock li, so that lvli = pvk(li).

We require steps VA1 and VA2 to be critical sections (atomic).

The steps of the VA algorithm essentially define task creation and de-
struction, and verlock acquisition and release. Thus, we can define the algo-
rithm precisely using the operational semantics of our language. The reduction
rules corresponding to the above steps VA0–3 are given in Figure 3.5; these
are, respectively, (R-Lock), (R-Isol), (R-Sync), and (R-Task). Also, the invariant
maintained by the algorithm is defined using a separate rule (Invar). Below we
explain some of these reduction rules in more detail.

Task creation and destruction

Evaluation of a term atomic l e creates a new thread for evaluation of expres-
sion task pv e; see (R-Isol). The term task pv e is an atomic task evaluating
e, where pv is a private versions map of (ver)locks l declared in atomic. The
map pv associates lock locations with globally unique versions, maintained by
global version counters gv. The map pv is created for a given set of (ver)locks
dynamically in one atomic step, and remains constant for the task’s lifetime.
Program evaluation maintains an invariant that a private version of each lock
in a private versions map of every task is globally unique.



3.3. THE CALCULUS OF ATOMIC TASKS 59

Tasks can spawn their own threads using fork; see (R-Fork’). Tasks and
threads are used only for their side-effects, which are in our case modifications
to the store; an output to the store can be regarded as an operation with either
a memory or I/O effect.

An atomic task task pv e has completed (or terminated) its execution if
expression e yields a value; see (R-Task). Then the task upgrades local counters
of its verlocks and reduces to an empty value. (The two variants of the VA
algorithm that we have described in Chapter 2, permit more concurrency by
making these upgrades during task execution, and so releasing shared resources
earlier.) To ensure that the order of upgrades by all tasks is correct, the task
completion is guarded by the condition that pv(l) − 1 must be equal lv(l) for
all l in dom(pv).

A state S is task-free if it does not have a context E [ task pv T ]. Any
task-free state is called a result state. The result states subsume data stored
in all reference cells.

Serialized and isolated task evaluation

Two tasks are executed serially if one task commences after another one has
completed. By serial evaluation, or serial run, we mean evaluation, in which
all tasks are executed serially. (Note that a serial run is also concurrent since
serialized tasks may be themselves multithreaded.)

Isolation has been proposed as the correctness condition of concurrency
control algorithms for atomic transactions in database systems [9]. It means,
intuitively, that if the effects of one transaction are visible to some other trans-
action executing concurrently, then the opposite is not true, where an effect is
usually defined as any change to the content of shared data structures (which
are modelled in our language using reference cells); from the perspective of
a transaction, it appears that atomic transactions execute sequentially rather
than in parallel.

In our language, we have extended the above definition of an effect, and
assume that both assignment and dereference has an effect, respectively an
output and an input effect. (In database systems, usually only a write opera-
tion, i.e. assignment, has an effect.) Therefore, our definition of isolation will
be more conservative than in [9]. It can be captured precisely using the notion
of task noninterference, defined as follows.

Tasks in a concurrent run do not interfere (or satisfy the noninterference
property) if there exists some ideal serial run Rs of all the tasks such that given
any reference, the order of accessing the reference by tasks in the concurrent
run is the same as in Rs. By the isolated evaluation of an expression (contain-
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ing some tasks) we mean any evaluation of this expression that satisfies the
isolation property, defined as follows.

Definition 5 (Isolation Property). Evaluation of an expression e satisfies the
isolation property if all tasks of e do not interfere. A given program satisfies
the isolation property if all its terminating evaluations satisfy this property.

Verlock acquisition and release

The expression newlock x : m in e (see rule (R-Lock)) dynamically creates
a new verlock’s lock location l (with the initial state 0), extending global
versions gv, local versions lv, and a lock store π accordingly, and replaces the
occurrences of x in e with l. It also replaces occurrences of m in e with a type
variable ol that denotes the corresponding singleton lock type.
A lock store π that binds a verlock’s lock location l also implicitly binds

the corresponding type variable ol with kind Lock; the only value of ol is l.
Below we sometimes confuse a verlock and the verlock’s lock location, where
it is clear from the context what we mean.
A lock location l is free if π(l) = 0, otherwise it is not free.
The semantics of sync e e′ executed by a task is defined by rule (R-Sync).

The expression e is evaluated first, and should yield a verlock l, which is then
acquired (π(l) = 1) if free and if the task holds a version number pv for l that
matches a local version maintained by l (i.e. pv(l)−1 = lv(l)). The expression e′

is then evaluated as part of an expression insync l e′. The verlock is released
(π(l) = 0) by (R-InSync) when the expression e′ reduces to a value v (then
insync l v is replaced by v).
The second premise of rule (R-Sync) (pv(l) − 1 = lv(l)) guarantees that a

task can acquire a verlock only at a time when it is safe, i.e. when accessing
data protected by the verlock does not invalidate isolation. Otherwise, the
verlock’s lock is not taken even if it is free, resulting in the task’s thread being
blocked (any other threads are not blocked).
Each verlock’s lock requested by a task will be eventually acquired (eval-

uation progress) if only tasks are themselves deadlock-free and terminate. We
discuss the deadlock issue in Section 3.4.3, after explaining typing.

Correctness assumptions

The VA algorithm guarantees noninterference, provided the following two con-
ditions hold. Firstly, programs do not have race conditions, i.e. no data can
be accessed without first acquiring a verlock. Secondly, all verlocks that may
(not necessarily have to) be used by a task are known at a time when the task
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is spawned, so that the (R-Isol) rule can create the private version for each
such verlock type, stored in the task’s map pv. To maximize parallelism, we
require only such verlocks to be declared. In Section 3.3.4 we define typing
rules intended for checking statically if these two conditions hold in programs
expressed using our language. Then, we show in Section 3.4 that our type
system is sound, making the language safe by construction.

3.3.4 Typing

The type system is formulated in Figure 3.6 as a deductive proof system,
defined using conclusions (or judgments) and the static inference rules for
reasoning about the judgments. The typing judgment for expressions has the
form Γ; a; p ⊢ e : t, read “expression e has type t in environment Γ with
allocation a and permission p”, where an environment Γ is a finite mapping
from free variables to types. An expression e is a well-typed program if it is
closed and it has a type t in the empty type environment, written ⊢ e : t.
Our intend is that, if the judgment E; a; p ⊢ e : t holds, then any terminat-

ing execution of expression e is race-free, satisfies the isolation property, and
yields values of type t, provided:

(i) the current thread holds at least the verlocks described by permission p
(Condition 1),

(ii) if expression e is part of a task, then the task has declared all verlocks
described by allocation a (Condition 2), and

(iii) the free variables of e are given bindings consistent with Γ.

We will show in Section 3.4 that the type system is sound. Based on this
result, we state dynamic correctness of our example concurrency control algo-
rithm, which together with type soundness gives the expected result of isola-
tion preservation.
Our type system is an extension of Flanagan and Abadi’s type system for

detecting race conditions [31]. It provides rules for proving that the above two
conditions are always true for well-typed programs. Condition 1 is verified
using an approach described in [31]. The set of typing rules in Figure 3.6 has
been obtained by extending this approach with allocations needed to verify
Condition 2, and adding a new rule for typing the atomic construct. Most of
the typing rules are fairly straightforward. For simplicity, we present a first-
order type system and omit subtyping of allocations. The subtyping rules
would be similar to the subtyping rules with permissions in [31], where also
extensions with polymorphism and existential types have been described.
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Judgments

Γ ⊢ ⋄ Γ is a well-formed typing environment

Γ ⊢ t t is a well-formed type in Γ

Γ ⊢ a, p a, p is a well-formed resource allocation and permission in Γ

Γ; a; p ⊢ e : t e is a well-typed expression of type t in Γ with allocation a and

permission p

Typing Rules

∅ ⊢ ⋄
(Env-∅)

Γ ⊢ t x /∈ dom(Γ)

Γ, x : t ⊢ ⋄
(Env-x)

Γ ⊢ ⋄ m /∈ dom(Γ)

Γ, m :: Lock ⊢ ⋄
(Env-m)

Γ ⊢ ⋄

Γ ⊢ Unit
(Type-Unit)

Γ ⊢ t Γ ⊢ t′

Γ ⊢ a, p

Γ ⊢ t →a,p t′
(Type-Fun)

Γ ⊢ t Γ ⊢ m

Γ ⊢ Refm t
(Type-Ref)

m :: Lock ∈ Γ

Γ ⊢ m
(Type-Lock)

Γ ⊢ ⋄ Γ ⊢ m

for all m ∈ a ∪ p

Γ ⊢ a, p
(Alloc)

Γ ⊢ ⋄

Γ; a; p ⊢ () : Unit
(T-Unit)

x : t ∈ Γ

Γ; a; p ⊢ x : t
(T-Var)

Γ, x : s; a; p ⊢ e : t

Γ; a′; p′ ⊢ λa,px : s. e : s →a,p t
(T-Fun)

Γ; a; p ⊢ e : s →a′,p′

t

Γ; a; p ⊢ e′ : s a′ ⊆ a p′ ⊆ p

Γ; a; p ⊢ e e′ : t
(T-App)

Γ ⊢ m Γ; a; p ⊢ e : t

Γ; a; p ⊢ refm e : Refm t
(T-Ref)

Γ; a; p ⊢ e : Refm t m ∈ p

Γ; a; p ⊢!e : t
(T-Deref)

Γ; a; p ⊢ e : Refm t

Γ; a; p ⊢ e′ : t m ∈ p

Γ; a; p ⊢ e := e′ : Unit
(T-Assign)

Γ, m :: Lock, x : m; a; p ⊢ e : t

Γ ⊢ a, p Γ ⊢ t

Γ; a; p ⊢ newlock x :m in e : t
(T-Lock)

Γ; a; p ⊢ e : m m ∈ a

Γ; a; p ∪ {m} ⊢ e′ : t

Γ; a; p ⊢ sync e e′ : t
(T-Sync)

Γ; a; ∅ ⊢ e : Unit

Γ; a; p ⊢ fork e : Unit
(T-Fork)

Γ; a; p ⊢ ei : mi for all i = 1..|e|

Γ; {m1} ∪ ... ∪ {m|e|}; ∅ ⊢ e0 : t

Γ; a; p ⊢ atomic e e0 : Unit
(T-Isol)

Figure 3.6: The first-order type system for the iso-calculus
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To verify Conditions 1 and 2, a verlock l is represented at the type level
with a singleton lock type m that contains l. The singleton type allows typing
rules to assert that a thread holds verlock l by referring to that type rather
than to the verlock l. During typechecking, each expression is evaluated in
the context of allocations a and permissions p. Including a singleton lock type
in the allocation a, respectively permission p, amounts to assuming that the
corresponding verlock’s version, respectively the corresponding verlock, are
held during the evaluation of e.

For instance, consider typing dereference and assignment operations on
references, as part of typechecking some expression e′′. As in [31], the cor-
responding rules (T-Deref) and (T-Assign) check if a singleton lock type m
decorating the reference type is among lock types mentioned in the current
permission p. The permission p can be extended with m only while typecheck-
ing a synchronization expression sync e e′′, where e has type m (see typing of
e in (T-Sync)).

To verify if a task e0 executing sync e e′ has declared verlock e of some type
m, we introduce an allocation a and require that m is mentioned in a. Note
that m can be added to allocation a only while typechecking the construct
atomic that has spawned task e0. The rule (T-Isol) creates the allocation a
from singleton types of all verlocks declared by the task; the allocation is then
used for typechecking the body of the task.

An allocation a and permission p decorate a function type and function
definition, representing respectively, allocation a—the set of all verlocks that
may be requested while evaluating the function and any thread spawned by
it, and permission p—the set of verlocks that must be held before a function
call. Note that allocations are preserved by thread spawning since we allow
tasks to be multithreaded, while permissions are nulled since spawned threads
do not inherit locks from their parent thread.

Rules (T-Fork) and (T-Isol) require the type of the whole expression to be
Unit; this is correct since threads are evaluated only for their side-effects.

3.4 Type System

The fundamental property of the type system and abstract machine of our
language is that evaluation of well-typed, terminating programs satisfies the
isolation property. The first component of the proof of this property is a type
preservation result, stating that typing is preserved during evaluation. The
second one is a progress result, stating that evaluation of an expression never
enters into a state for which there is no evaluation rule defined. To prove both
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Judgments

⊢ S : t S is a well-typed state of type t

Rules

Σ(l) = {0, 1} Σ(ol) = Lock

Σ | Γ; a; p ⊢ l : ol
(T-LockLoc)

Γ ⊢ m Σ(r) = t

Σ | Γ; a; p ⊢ r : Refm t
(T-RefLoc)

dom(π) = {l1, ..., lj} dom(σ) = {r1, ..., rk}

Σ = l1 : {0, 1}, ..., lj : {0, 1}, r1 : s1, ..., rk : sk,

ol1 :: Lock, ..., olj :: Lock

|T | > 0 Σ | Γ; ai; pi ⊢ Ti : ti for all i < |T |

⊢ 〈π, σ | T 〉 : t0
(T-State)

⊢ S : t0 ⊢ S′ : t0
⊢ S + S′ : t0

(T-Choice)

Σ | Γ; a; p ⊢ fi : ti

Σ | Γ; a′; p′ ⊢ f ′
j : tj i < j

Σ | Γ; a; p ⊢ fi, f ′
j : ti

(T-Thread)

a = {ol1 , ..., oln} Σ | Γ; a; p ⊢ li : oli

Σ | Γ; a; p ⊢ pv(li) : Nat for all i = 1..n

Σ | Γ; a; p ⊢ T : t

Σ | Γ; a; p ⊢ task pv T : Unit
(T-Task)

Σ | Γ; a; p ⊢ l : m

Σ | Γ; a; p ⊢ f : t m ∈ a m ∈ p

Σ | Γ; a; p ⊢ insync l f : t
(T-InSync)

Nat = 0, 1, 2, .. (includes zero)

Figure 3.7: Additional judgments and rules for typing states
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results, we extended typing judgments from expressions Exp to expressions
Expext, and then to states as shown in Figure 3.7. The judgment ⊢ S : t
says that “S is a well-typed state yielding values of type t”. We assume a
single, definite type for every location in the store π, σ. These types have been
collected as a store typing Σ—a finite function mapping locations to types,
and type variables to kinds.
Type preservation and progress yield that our type system is sound. It

guarantees that if a program is well-typed then:

(i) each operation on references requires to first obtain a verlock, and

(ii) if obtaining a verlock is part of some task spawned using the atomic
construct, then the task has a private version of this verlock (which is
possible only if the name of it is the argument of the construct).

The first property is called absence of race conditions and is guaranteed by
Abadi and Flanagan’s type system for avoiding race conditions that we have
extended. The second property is called absence of non-declared verlocks and is
guaranteed by our extension of their type system. Based on the two properties
of the type system, we have proven that evaluation of well-typed, terminating
programs satisfies the isolation property; the proof is in the Appendix (see
also the technical report [113]).
Below we state formally the absence of race conditions and the absence of

non-declared verlocks properties. Finally, we give our main result of isolation
preservation in Section 3.4.3.

3.4.1 Absence of races

After removing allocations a and the rule (T-Isol) for typing the construct
atomic in Figure 3.6, and replacing the semantics of verlocks by simple locks,
we obtain Flanagan and Abadi’s first-order type system [31]. The fundamental
property of this type system is that well-typed programs do not have race con-
ditions. Below are three Lemmas and one Theorem as found in [31], extended
with store typing Σ and allocations that appear in our language; this small
extension does not change any original proofs. We quote these lemmas and
the theorem since they will be useful in our proof of type soundness.
The semantics can be used to formalize the notion of a race condition,

as follows. A state has a race condition if its thread sequence contains two
expressions that access the same reference location. A program e has a race
condition if its evaluation may yield a state with a race condition, i.e. if there
exists a state S such that 〈∅, ∅ | e〉 −→∗ S and S has a race condition.
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Independently of the type system, locks provide mutual exclusion, in that
two threads can never be in a critical section on the same lock. An expression
f is in a critical section on a lock location l if f = E [ insync l f ′ ] for some
evaluation context E and expression f ′. The judgment ⊢cs S says that at most
one thread is in a critical section on each lock in S. According to Lemma 4,
the property ⊢cs S is maintained during evaluation.

Lemma 4 (Mutual Exclusion [31]).
If ⊢cs S and S −→ S′, then ⊢cs S′.

Lemma 5 says that a well-typed thread accesses a reference cell only when
it holds the protecting lock.

Lemma 5 (Lock-Based Protection [31]).
Suppose that Σ | Γ; a; p ⊢ f : t, and f accesses reference location r. Then
Σ | Γ; a; p ⊢ r : Refm t′ for some lock type m and type t′. Furthermore, there
exists lock location l such that Σ | Γ; a; p ⊢ l : m and f is in a critical section
on l.

The lemma below implies that states that are well-typed and well-formed
with respect to critical sections do not have race conditions.

Lemma 6 (Race-Conditions-Free States [31]). Suppose ⊢ S : t and ⊢cs S.
Then S does not have a race condition.

Finally, we can conclude that well-typed programs do not have race con-
ditions.

Theorem 1 (Absence of Race Conditions [31]).
If ⊢ e : t then e does not have a race condition.

3.4.2 Absence of non-declared verlocks

An expression f is part of a task task pv T if T = E [ f ] for some evaluation
context E . A task task pv T has a version of a lock l if pv(l) is defined. An
expression f has a version of a lock l if there exists some task which has a
version of l, and f is part of this task. An expression f requests a lock location
l if f = E [ sync l e ] for some evaluation context E and expression e. A task
task pv T is in a critical section on a lock location l, if some thread of T is in
a critical section on the lock location l.
Now, for the complete language with atomic and task, the judgment ⊢cs S

says in addition to mutual exclusion property stated in Section 3.4.1, that each
task being in a critical section on some lock in state S has a version of this
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Judgments

M ⊢cs f f has exactly one critical section for each lock inM

M ⊢cs task pv T task T has a version pv(l) for each lock l inM

⊢cs S S is well-formed with respect to critical sections and tasks

⊢tf S S is well-formed and task-free

Rules for Critical Sections of [31]

f = x | v | newlock x :m in e | fork e

∅ ⊢cs f
(CS-Empty)

M ⊢cs f

f ′ = f e | v f | refm f | !f

| f := e | r := f | sync f e

M ⊢cs f ′
(CS-Exp)

M ⊢cs f

M⊎ {l} ⊢cs insync l f
(CS-InSync)

∀i < |T | Mi ⊢cs Ti

M = M0 ⊎ . . . ⊎M|T |−1

∀l ∈ M π(l) = 1

⊢cs 〈π, σ | T 〉
(CS-State)

Figure 3.8: Judgments and rules for reasoning about critical sections
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∀i = 1..|f | Mi ⊢cs fi

M = M1 ⊎ . . . ⊎M|f |

f ′ = atomic f e

M ⊢cs f ′
(CS-Isol)

∀i < |T | Mi ⊢cs Ti

M = M0 ⊎ . . . ⊎M|T |−1

∀l ∈ M pv(l) is defined and pv(l) > 0

M ⊢cs task pv T
(CS-Task)

⊢cs 〈π, σ | T 〉

∀i < |T | Ti 6= task pv T ′

⊢tf 〈π, σ | T 〉
(TF-State)

Figure 3.9: Additional rules for critical sections and task free states

lock (see Figures 3.8 and 3.9). According to Lemma 7, the property ⊢cs S is
maintained during evaluation.

Lemma 7 (Version-Completeness Preservation). If ⊢cs S and S −→ S′, then
⊢cs S′.

Lemma 8 says that a well-typed thread obtains a verlock only when it
holds a version of this verlock.

Lemma 8 (Version-Based Protection).
Suppose that Σ | Γ; a; p ⊢ f : t, and f requests a lock location l. Then
Σ | Γ; a; p ⊢ l : m for some lock type m. Furthermore, there exists a task
task pv T which f is part of, such that Σ | Γ; a; p ⊢ task pv T : Unit and
version pv(l) is defined.

The above property implies that in our language all lock requests are part
of some task. This feature has simplified the type system and reasoning about
the isolation property. A full-size language could make a difference between
accessing a lock as part of some task, or outside tasks.

We conclude that all verlocks used by each task in well-typed programs
are known a priori.

Theorem 2 (Verlock-Usage Predictability). All verlocks that may be re-
quested by a task of a well-typed program are known before the task begins.
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The above result implies that the VA algorithm will be able to create upon
a task’s creation, a private version of each verlock that may be used by the
task.

3.4.3 Isolation preservation

We have defined the isolated evaluation for complete tasks (see Section 3.3.3).
This is however not a problem since in practice we are interested only in result
states of this evaluation. Below we therefore formulate an isolation preservation
result for traces (i.e. sequences of evaluated states) that begin and finish in a
task-free state. The judgment for such states has the form ⊢tf S, read “state
S is well-formed and task-free”, which means that either no task has been
spawned yet, or if there were any, then they have already completed.

Below we state that each trace of a well-typed program has the “isolation
up to” property, provided that the corresponding evaluation finishes in a result
state.

Lemma 9 (Isolation Property Up To). Suppose Σ | ∅; ∅; ∅ ⊢ S : t and ⊢tf S.
If S −→∗ S′ and ⊢tf S′, then the run S −→∗ S′ satisfies the isolation property
up to S′.

Based on the above lemma, we can prove that well-typed, terminating
programs satisfy the isolation property. A program terminates if all its runs
terminate; a run terminates if it reduces to a value.

Theorem 3 (Isolation Property). If ⊢ e : t, then all terminating runs e −→∗

v0, where v0 is some value of type t, satisfy the isolation property.

Proof of Theorem 3 is based on dynamic correctness of the VA algorithm,
formulated using the following theorem.

Theorem 4 (Noninterference). If a program has properties (i) and (ii) (see
Section 3.4, 2nd paragraph) then any evaluation of the program up to any
result state, using the VA algorithm, satisfies the noninterference property.

Deadlocks

We stated our main result for terminating programs. Note however that if a
program deadlocks or never terminates, all its runs reaching some result state
have the “isolation up to” property (up to this state). Thus, the deadlock issue
is orthogonal to the goals of our work, and can be solved using the existing
approaches.
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The only deadlocks possible in our language stem from either two threads
of the same task trying to acquire two locks l1 and l2 in parallel but in a
different order, or when a thread tries to acquire a lock again before releasing
it. This means however that other tasks that want to acquire these locks
will be also blocked. Deadlock can be avoided by imposing a strict partial
order on verlocks within each task, and respecting this order when acquiring
verlocks; our language and type system can be extended with this principle
by embodying the solution described in [31].

3.4.4 Proving type soundness

Reduction of a program may either continue forever, or may reach a final
state, where no further evaluation is possible. Such a final state represents
either an answer or a type error. Since programs expressed in our language
are not guaranteed to be deadlock-free, we also admit a deadlocked state to be
an (acceptable) answer. Thus, proving type soundness means that well-typed
programs yield only well-typed answers.

Our proof of type soundness rests upon the notion of type preservation
(also known as subject reduction). The type preservation property states that
reductions preserve the type of expressions. Below are excerpts from the proof;
see the Appendix for the complete proof.

Type safety

The statement of the main type preservation lemma must take stores and store
typings into account. For this we need to relate stores with assumptions about
the types of the values in the stores. Below we define what it means for a store
π, σ to be well typed. (For clarity, we omit permissions p from the context.)

Definition 6. A store π, σ is said to be well typed with respect to a store
typing Σ and a typing context Γ, written Σ | Γ; a ⊢ π, σ, if dom(π, σ) = dom(Σ)
and Σ | Γ; a ⊢ µ(l) : Σ(l) for every store µ ∈ {π, σ} and every l ∈ dom(µ).

Intuitively, a store π, σ is consistent with a store typing Σ if every value in
the store has the type predicted by the store typing.

Type preservation for our language states that the reductions defined in
Figures 3.3, 3.4 and 3.5 preserve type:

Theorem 5 (Type Preservation). If Σ | Γ; a ⊢ T : t and Σ | Γ; a ⊢ π, σ and
〈π, σ | T 〉 −→ 〈(π, σ)′ | T ′〉, then for some Σ′ ⊇ Σ, Σ′ | Γ; a ⊢ T ′ : t and
Σ′ | Γ; a ⊢ (π, σ)′.



3.4. TYPE SYSTEM 71

Evaluation progress

Subject reduction ensures that if we start with a typable expression, then
we cannot reach an untypable expression through any sequence of reductions.
This by itself, however, does not yield type soundness.
We also had to show that evaluation of a typable expression cannot get

stuck, i.e. either the expression is a value or there is some reduction defined.
However, we do allow reduction to be suspended indefinitely since our language
is not deadlock-free. This is acceptable since we define and guarantee isolation,
respectively isolation-up-to, only for programs that either terminate, or reach
some result state (see Theorem 3 and Lemma 9).
We state progress only for closed expressions, i.e. with no free variables.

For open terms, the progress theorem fails. This is however not a problem
since complete programs—which are the expressions we actually care about
evaluating—are always closed.
Independently of the type system and store typing, we should define which

state we regard as well-formed. Intuitively, a state is well-formed if the content
of the store is consistent with the expression executed by the thread sequence.
In case of store π, if there is some evaluation context E [ insync l e ] in the
thread sequence for any lock location l, then π(l) should contain 1, marking
that the lock has been acquired. As for the store σ, containing the content of
each reference cell, we may only require that it is well typed.

Definition 7. Suppose π, σ is a well-typed store, and f is a well-typed se-
quence of expressions, where each expression is evaluated by a thread. Then,
a state π, σ | f is well-formed, denoted ⊢wf π, σ | f , if for each expression fi

(i < |f |) such that fi = E [ insync l e ] for some l, there is π(l) = 1.

Of course, a well-typed, closed expression with empty store is well-formed.
According to Lemma 10, the property ⊢wf π, σ | f is maintained during

evaluation.

Lemma 10 (Well-Formedness Preservation). If ⊢wf π, σ | f and π, σ | f −→

(π, σ)′ | f
′
then ⊢wf (π, σ)′ | f

′
.

A state π, σ | T is deadlocked if there exist only evaluation contexts E , such
that T = E [ sync l e ] for some verlocks l, such that π(l) = 1 for each l (i.e.
the verlocks are not free) and there is no other evaluation context possible.
Now, we can state the progress theorem.

Theorem 6 (Progress). Suppose T is a closed, well-typed term (that is,
Σ | ∅; ∅; ∅ ⊢ T : t for some t and Σ). Then either T is a value or else, for
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any store π, σ such that Σ | ∅; ∅; ∅ ⊢ π, σ and ⊢wf π, σ | T , there is some term
T ′ and store (π, σ)′ with π, σ | T −→ (π, σ)′ | T ′, or else T is deadlocked on
some lock(s).

3.5 Related Work

There have been many proposals of concurrent languages with novel synchro-
nization primitives, e.g. Concurrent Haskell [83], Concurrent ML [81], Poly-
phonic C# [6] and Pict [86]. They often enable to express complex synchroniza-
tion code more easily than when using standard constructs, such as monitors
and locks. Mobile agent languages based on concurrent process calculi, such as
the join-calculus/JoCaml language [34, 30] and Nomadic Pict [97, 120, 111] of-
fer, in addition, powerful means for synchronized, continuous communication
between objects, which can freely move between machines and dynamically
bind to local resources. This work is however orthogonal to the content of this
book, in which we are primarily focused on high-level language support that
can provide automatic concurrency control in modular protocol stacks.
The work in this chapter builds on research in three areas: atomic trans-

actions, language support for atomicity, and formalization of isolation. Below
we discuss example work in these areas.

3.5.1 Atomic transactions

Different forms of atomic transactions decomposed to satisfy individual trans-
actional features, referred to by an acronym ACID (Atomicity, Consistency,
Isolation, and Durability), have appeared in distributed operating systems (e.g.
Camelot [29]), and in transactional platforms (e.g. Sun Enterprise JavaBeans
(EJB) and Microsoft Transaction Server (MTS)). The main difference between
the above systems and our work is that we design programming abstractions
for atomicity of local code blocks that may have both data and I/O effects
on a single machine; the design considerations and solutions were therefore
different.
There have been a number of proposals of extending traditional program-

ming languages with support of atomicity; we give some examples in the next
section. A very flexible approach to composability of the ACID features can
be found in Venari/ML [41, 109]. It is an extension of the ML programming
language with atomic transactions. Higher-order functions in ML allow the
programmer to easily compose transactional features. Transactions in Ve-
nari/ML can be multithreaded, similarly to our atomic tasks. Contrary to
atomic transactions, however, our tasks never rollback their execution. We
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can therefore guarantee that any I/O operations are performed exactly once
(unless, of course, a site with tasks crashes).

Alternative approaches to rollback in atomic transactions, such as compen-
sations [16], i.e. implicit or programmable procedures that can undo the effects
of a transaction that fails to complete, do not apply to network protocols. In
general, the I/O operations performed by protocol tasks cannot be easily (or
routinely) undone or compensated. In the protocol design, we usually assume
that an output of a network message either succeeds and the message is sent,
or the output fails (e.g. due to a socket error); in the latter case, the message
is not sent. (Of course, a separate issue is if the message will be actually deliv-
ered.) The protocol designer should not be concerned with another case, when
the message has been sent, but the operation needs some compensation due
to conflicts on task operations.

3.5.2 Atomic code blocks

While our construct atomic can allow us to declare multithreaded sections
of code to be executed in isolation, several researchers have proposed pro-
gramming language features for atomicity of sequential actions executed by a
thread. Below is the previous work closest to our own.

Flanagan and Qadeer [32] proposed a type system for specifying and ver-
ifying the atomicity of methods in multithreaded Java programs, where the
notion of “atomicity” is similar to linearizability [46] for concurrent objects,
and the notion of isolation in this book. Their approach allows program meth-
ods to be annotated with the keyword atomic. If the program type checks,
then any interaction between an atomic method executed by a thread and
steps of other threads is guaranteed to be benign, in the sense that these in-
teractions do not change the program’s overall behaviour. The type system is
a synthesis of Lipton’s theory of left and right movers (for proving properties
of parallel programs) and type systems for race detection.

Our decision to allow tasks to be multithreaded means, however, that in
our language it may not be possible to verify the isolation property statically
(at compile time only), since the language allows task threads to be created
and terminated dynamically at will. This, together with the requirements of
rollback-freedom and language safety, motivates our hybrid, type-directed ap-
proach to concurrency control.

Moreover, applications that we consider may demand different levels of
performance, isolation and real-time constraints; these varying demands will
lead to a multiplicity of runtime concurrency controllers, based on a variety of
scheduling algorithms (e.g. real-time algorithms [38]). Our intend is to allow
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the programmer to choose between different dynamic locking strategies, based
on the available static information. Our declarative approach therefore differs
from the above type-based approach to verify atomicity.

Harris and Fraser [44] have been investigating an extension of Java with
(sequential only) atomic code blocks. Their proposal implements Hoare’s con-
ditional critical regions (CCRs) [48]. The programmer can guard a conditional
region by an arbitrary boolean condition, with calling threads blocking until
the guard is satisfied. It is also possible to explicitly terminate an execution
of an atomic block and rollback, if some condition is not satisfied. The imple-
mentation is based on mapping CCRs onto a Software Transactional Memory
(STM) [98], which groups together series of memory accesses and makes them
appear atomic.

The main difference between their approach and ours is the lack of a need
for rollback in the normal case of atomic execution. Unlike our pessimistic
concurrency control, their implementation of atomicity depends on rollback
and recovery. This restricts the availability of I/O operations within an atomic
block. For instance, the STM-based implementation of atomic blocks in Haskell
[45] forbids all operations that may have irrevocable I/O effects, which limits
the scope of possible applications.

A plausible option could be based on buffering input operations (for pos-
sible recovery) and flushing all output operations on transaction commit (to
prevent their duplication due to rollback). However, it does not seem to sup-
port an arbitrary pattern of I/O communication at real time.

3.5.3 Transaction models

Turning to the semantics of transactions, Chrysanthis and Ramamritham [22]
have specified the broad spectrum of transactional models. More recently,
Black et al. [13] have defined an equation theory of operators, where an op-
erator corresponds to an individual ACID property. The operators can be
composed, giving different semantics to transactions. The above models are
however presented abstractly, without being integrated with any language or
calculus.

Vitek et al. [106] and Jagannathan and Vitek [55] have proposed a calculi-
based model of standard ACID transactions. They have formalized the opti-
mistic and two-phase locking concurrency control strategies. Similarly to our
approach, their formalization of the isolation property refers to the order (or
scheduling) of concurrent actions. However, the soundness result rests upon an
abstract notion of permutable actions, while our soundness result and proofs
make explicit data accesses and task noninterference. This degree of detail
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allowed us to formally encode an example, version-based concurrency control
algorithm. Moreover, the semantics of tasks and ACID transactions differs, as
we have explained before.
Berger and Honda [8] have used a variant of π-calculus [74] to formalize

the operational semantics of the standard two-phase commitment protocol for
distributed transactions. This work however does not address local concurrency
control (on a machine) and the isolation property.





Chapter 4

Declarative Synchronization

Developing multithreaded systems is considerably more difficult than imple-
menting sequential programs due to several reasons: (1) Traditional concur-
rency constructs, such as monitors and conditional variables, are used to ex-
press synchronization constraints at the very low level of individual accesses
to shared objects (thread safety). (2) Embedding the implementation of a syn-
chronization policy in the main code compromises both a good understanding
of the application logic, i.e. we are not sure from the first look what the appli-
cation code does, and also an understanding of the policy expressed. (3) The
notions of semantic roles such as producers and consumers, which are essential
for the understanding of a given policy, tend to disappear beyond an accumu-
lation of lines of code, just as the logical essence of a sequential program gets
lost when expressed in, say, an assembly language. (4) Synchronization con-
structs are usually entangled with instructions of the main program, which
means that the correctness of concurrent behaviour is bound to the correct-
ness of the entire application; this feature complicates maintenance and code
reuse—some of the most advocated reasons for using components.

Declarative synchronization assumes a clear separation of an object’s func-
tional behaviour and any synchronization constraints imposed on it. Such an
approach enables the software developers to modify and customize synchro-
nization policies constraining the execution of concurrency components, with-
out changing the main code of these components. Thus, declarative synchro-
nization supports code reuse, and makes programming easier and less error-
prone. Moreover, adding a new component or replacing components in the
concurrent system, which may require to revise synchronization policy, is not
subjected to an inspection of the whole code of the system but only of declared
synchronization constraints. Thus, declarative synchronization also supports



78 CHAPTER 4. DECLARATIVE SYNCHRONIZATION

unanticipated software evolution (see also Section 1.2.2). In this chapter, we
describe two orthogonal approaches to declarative synchronization.
Firstly, we describe the calculus of concurrency combinators, allowing a

program and its synchronization policy to be encoded separately. Synchro-
nization policies include: true parallelism, evaluation order, and isolation. They
are expressed abstractly using the concurrency combinators, i.e. compositional
policy operators taking as arguments services and constraining the execution
of the services at runtime. Separation of the synchronization and functional
code gives, however, a way of expressing synchronization schemes that may
not be satisfied by any program execution. A given program can only be exe-
cuted for some range of synchronization schemes—the synchronization policies
must be matched accordingly. Our calculus is therefore equipped with a type
system, which is able to verify if the declared synchronization policy matches
the program. Typable programs are guaranteed to satisfy the declared syn-
chronization policy and make progress. A variant of the calculus presented in
this chapter has been published in [112].
Then, we briefly describe a model of the Role-based Synchronization (RBS),

which assumes assigning semantic roles to concurrent threads, and using a
declarative language for expressing constraints between the roles. The design
of the RBS model has been guided by two main requirements: (1) to keep
the semantics of synchronization control attached to the roles involved in the
specification of a synchronization problem, rather than to the fragments of the
component or object code; and (2) to allow expressing concurrent strategies
independently from the code of the components (or objects), with some pos-
sibility to switch between different execution strategies on-the-fly. The RBS
model has been introduced in [102]; the paper also describes an implementa-
tion of an example RBS synchronization package.
While some work on such separation of concerns exists (see [51, 35, 90,

89, 73] among others) and example language constructs have been proposed
(see [88, 89, 72, 73]), to our best knowledge, the two approaches described
in this chapter are distinct from similar languages (we characterize example
differences in Section 4.6). We were also interested to address novel design
problems like: When is it safe to spawn a new thread or call a method, so
that the synchronization policy is not invalidated? Or, conversely, how can
we build programs that are synchronization safe by construction? How should
synchronization itself be implemented? What are new language features re-
quired? The work described in this chapter has provided new insights into this
research area.
The chapter is organized as follows. Section 4.1 gives a small example.

Section 4.2 introduces the calculus of concurrency combinators, describing
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its syntax and operational semantics. Section 4.3 shows an example program
reduction. Section 4.4 describes the type system and main results. Section 4.5
describes the role-based synchronization model and the constraint language,
and Section 4.6 contains related work.

4.1 Example Program

We begin with a small example. Below is a program, expressed using the
call-by-value λ-calculus, extended with let-binders and references (defined in
Chapter 3) from ML [75], and services. Services are expressions Label # e,
where Label is a service name and e is the service expression (an implemen-
tation of the service). Execution of Label # e evaluates e to some value, and
returns this value as the result of the whole expression. For simplicity, we omit
types throughout the examples.

(* Declaration of data structures and functions *)

let r = ref 0

let a = λx. Update # (r := x; ())
let b = λy. Read # !r

(* The main expression *)

fork (a 1);

b () (* due to non-determinism, this call returns 0 or 1 *)

The above program creates a reference r, initialized to zero. Then, it defines
two functions a and b. In the λ-calculus, functions are defined using let-
expressions, by assigning a function abstraction to a name. Execution of the
former function overwrites reference r with a value passed as the argument of
the call, and returns a null value. Execution of the latter function returns the
current content of reference r. (Recall that !r is the dereference operation,
while r := x is the assignment operation.)
The bodies of functions a and b are attached to service names, respectively

Update and Read; these names will be later used to define combinators. This
approach to define services is rudimentary. In Chapter 6, we extend our calcu-
lus to an object-oriented language, in which object signatures (service names)
can be dynamically bound/unbound to objects (service implementations).
In the main expression, the program spawns a new thread (using fork) that

calls function a, in parallel with the main thread calling function b. Note that
the threads (functions) share a reference cell r. Below we will refer to functions
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a and b via the corresponding service names. Thus, we could also say that in
the main expression the Update and Read services are called in parallel. The
object language in Chapter 6 will actually allow methods (functions) to be
called via signature names.
The result returned by the program is the current content of the reference.

Note that the execution of the program is non-deterministic: it may return
either 0 or 1, depending on thread interleaving. If the reference had been
updated by service Update before it was read by service Read, the program
returns 1, otherwise the initial value 0 will be returned.

Synchronization policy

What if we want the most recent content of the reference to be returned by
the program, but we still require that the services Update and Read are called
by separate threads? For this, the main expression of the program could be
extended with some synchronization code that synchronizes threads, so that
the thread of service Read is blocked till service Update has completed. The
synchronization code could be implemented using standard synchronization
constructs. However, this approach does not support code reuse—a feature
that may be demanded by modular systems (see Section 1.2.2). After the low-
level synchronization constructs would have been entangled with the code of
the above program, it could not be readily reused in another application. Let
us propose a different solution.
Below we use the language of concurrency combinators to declare an

example synchronization policy for our program; the policy declaration is sep-
arate from the main code of the program, which supports code reuse.

(* Declaration of combinators, data structures, and functions *)

Update foll Read (* concurrency combinator *)

let r = ref 0

let a = λx. Update # (r := x; ())
let b = λy. Read # !r

(* The main expression *)

fork (a 1);

b () (* returns 1 in every run *)

Note that the code of the program has remained unchanged, except for adding
declaration of a concurrency combinator Update foll Read, which should be
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read: “Update followed by Read”. The combinator requires service expressions
to be executed by two atomic tasks. However, the concurrent execution of these
tasks must be equivalent to an ideal serial execution, in which the second task
(executing service Read) commences after the first task has completed. Recall
from Chapter 3 that the effects of dereference and assignment operations on
references, executed as part of atomic tasks, are regarded to be the I/O effects
of these tasks. Thus, the above program always returns the updated content
of the reference, which we wanted.

Combinators satisfiability

The language of concurrency combinators introduces a new problem, however.
Below our program has been modified, so that the declared synchronization
policy cannot be satisfied by any execution of the program.

(* Declaration of combinators, data structures, and functions *)

Update foll Read (* concurrency combinator *)

let r = ref 0

let a = λx. Update # (r := x; ())
let b = λy. Read # !r

(* The main expression *)

let z = b () in

a 1; (* doesn’t type check! *)

z

The synchronization policy is the same as before: Update foll Read. How-
ever, the two functions (services) are now called by the same thread, and in the
order: Read is called first, then Update, which makes impossible to satisfy the
synchronization policy declared. In other words, the executable code does not
match the concurrency combinators declared, which means that the program
is incorrect.

To verify such cases automatically, we have equipped our language of con-
currency combinators with a type system able to verify satisfiability of combi-
nators. Execution of a well-typed program is guaranteed to satisfy all combi-
nators declared in the program. In other words, well-typed programs correctly
implement the intended synchronization policy, declared using the combina-
tors.
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Typing for verification

The type system can be also used to verify if certain conditions hold in pro-
grams. Below we have modified our program, so that services Update and Read
are called by the same thread. Nevertheless, combinator Update foll Read
is satisfied, since the service call order in the program agrees with the order
declared in the combinator.

(* Declaration of combinators, data structures, and functions *)

Update foll Read

Update ‖ Read

let r = ref 0

let a = λx. Update # (r := x; ())
let b = λy. Read # !r

(* The main expression *)

b (a 1) (* doesn’t type check! *)

However, the program does not type check either. This is because we have also
added a second combinator, Update ‖ Read, which requires that the services
Update and Read must be executed by separate threads (e.g. to support multi-
processor architectures). But this requirement is not satisfied in our program,
since the service expressions are executed by the same thread of control. In
order for the program to type check, we must therefore modify it, and, e.g.
use another thread for the call of either function (as it was in the first variant
of our program).

4.2 The Calculus of Concurrency Combinators

4.2.1 Syntax

The syntax of the calculus of concurrency combinators (or the CK-calculus, in
short) is in Figure 4.1. The main syntactic categories are concurrency combi-
nators and expressions. Below we describe all syntactic categories.

Services and composite services

Services are expressions of the form A # e, where A is the service name, and
e is the service expression (an example implementation of service A). Service
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Variables x, y ∈ Var

Service names A, B, C ∈ Mvar

Packages p ∈ 2Mvar × 2Mvar

Combinators a, b, c ::= A | a ‖ b | a ⊲ b | a isol b | a foll b

Types t ::= Unit | t →p t

Values v, w ∈ Val ::= () | λpx : t. e

Declarations K ::= a | A = a | K K

Expressions e ∈ Exp ::= x | v | e e | let x = e in e | fork e | A # e

Programs P ::= (SP, e)

We work up to alpha-conversion of expressions throughout, with x binding in e in

expressions λpx : t. e and letx = e′ in e.

Figure 4.1: The calculus of concurrency combinators: Syntax

names are ranged over by A, B, C. Execution of expression A # e evaluates
e and returns the result of this evaluation. In a program, there can be many
expressions of the form A # e (for a given service name A and any expression
e), possibly evaluated by separate threads; all these expressions define jointly
a single service A. We assume that the execution of service expressions is
deadlock-free.

A composite service consists of services whose names have been somehow
related by the concurrency combinators declared in the program; we call these
services subservices. Below we confuse services and composite services unless
stated otherwise. A service completes if the service expression returns a value.
Execution of a composite service completes if all its subservices complete.

Concurrency combinators

Combinators are higher-order functions that contain no free variables. Con-
currency combinators, denoted a, b, c, are combinators that can be used to
specify synchronization policies. Formal parameters of these combinators are
service names. We consider four basic concurrency combinators: A ‖ B, A ⊲ B,
A isol B, and A foll B, where A and B are service names. They can be
defined as follows:

1. The parallel combinator A ‖ B requires services A and B to be executed
by concurrent threads (e.g. to support multi-core processor architec-
tures);
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2. The causal-order combinator A ⊲ B requires that service A commences
execution before service B; however, if the services are not causally re-
lated then no constraints are specified, where the precise meaning of
causality will be defined by the type system in Section 4.4;

3. The isolation combinator A isol B requires that the concurrent execu-
tion of services A and B must satisfy the isolation property; however,
if the services are executed by the same thread, then no constraints are
specified;

4. The followed-by combinator A foll B is similar to A isol B, but it
requires that the concurrent (isolated) execution of services A and B that
are causally related must be equivalent to an idealised, serial execution,
in which service B commences execution after service A has completed;
however, if services A and B are not causally related then A foll B is
equivalent to A isol B; finally, if the services are executed by the same
thread, then we only require service A to commence execution before B.

In our small calculus, service names can only be used to refer to service ex-
pressions in the definition of concurrency combinators. However, in case of the
object-oriented language in Chapter 6, service names are object signatures that
can be dynamically bound/unbound to objects (service implementations). The
names of object signatures can then be used to call object methods or access
object fields, without specifying the actual name of the object. Thus, the con-
currency combinators for such a language could be used to define constraints
between method calls or field accesses, made with the use of object signatures.

Combinator declarations

Combinator declarations K are collections of concurrency combinators. Com-
binators can be named, e.g. A = a both declares combinator a and binds it to
a fresh name A, which can be later applied in the definition of other combi-
nators. In the concrete syntax of the language, parentheses could be used for
grouping combinators.

Complex combinators A0 op0 ... opn−1 An are equivalent to a conjunction
of n binary combinators Ai opi Ai+1, where opi (i = 0..n − 1) is one of the
combinator names (‖, ⊲, atomic, or foll). For instance, the complex com-
binator A ⊲ B isol C is equivalent to two binary combinators A ⊲ B and
B isol C, which ensure that service B can commence execution only after
A has commenced its execution, and the execution of B is isolated from any
concurrent execution of service C.



4.2. THE CALCULUS OF CONCURRENCY COMBINATORS 85

Types

Types include the base type Unit of unit expressions, and the type t →p t of
functions. It would be routine to add other types or subtyping on types to the
calculus definition. To verify combinator satisfiability in function abstractions,
the type of functions is decorated with a service package p = (pc, pa), where pc

is a set of all service names which can be bound by a thread calling a function
until the function returns, and pa is the same as pc but it also includes service
names which can be bound by any threads spawned as the result of executing
the function’s expression. We assume that the information on services bound
by functions can be provided explicitly, and leave type inference as an open
problem.

Values

A value is either an empty value () of type Unit, or function abstraction
λpx : t. e (decorated with service package p). All values in the CK-calculus
are first-class programming objects, i.e. they can be passed as arguments to
functions and returned as results and stored in data structures.

Expressions

Basic expressions are mostly standard, including variables, values, function
applications, and let-binders (we sometimes omit in in the let construct).
The CK language allows multithreaded programs by including the expression
fork e, which spawns a new thread for the evaluation of expression e. This
evaluation is performed only for its effect; the result of e is never used. We use
syntactic sugar e1; e2 for let x = e1 in e2 (for some x, where x is fresh).

We also assume the existence of standard ML-like references, but they
are omitted here for simplicity. The operational semantics of references can be
found in Chapter 3 (see Section 3.3.2). Recall that !r is a dereference operation,
and := is an assignment operation.

Programs

Synchronization policy is a set of all concurrency combinators of the form
A = B1 op1 ... opn−1 Bn and binary combinators A op B, extracted from
combinator declaration K, where opi (i = 1..n−1) are combinator names (i.e.
‖, ⊲, isol or foll). For example, assuming that the following combinators
have been declared: C = A foll B and C ⊲ D, we have a synchronization
policy SP = {C = A foll B, A foll B, C ⊲ D}.
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A program is a pair (SP, e) of a synchronization policy SP and the pro-
gram’s expression e, where policy SP must be consistent, as defined below. We
assume a fixed policy for each program.

4.2.2 Consistency of synchronization policy

To check consistency of synchronization policy, we must first identify con-
straints. A set of constraints CS can be constructed recursively from the
synchronization policy SP, as follows. For each combinator binding C =
A1 op ... op′ An in SP, replace every binary combinator c in SP of the form
X op Y , where X = C or Y = C, by n constraints ci, such that ci is exactly
the same as c but the name C (on a selected position in c) is replaced by Ai

(i = 1..n). For example, if SP1 = {C = A foll B, A foll B, C ⊲ D}, then
CS1 = {A foll B, A ⊲ D, B ⊲ D}.
Synchronization policy SP is consistent if two conditions are met: (1) for

any A op B in CS (A 6= B), where op is an asymmetric operation (foll or ⊲)
and CS is a set of constraints constructed from SP, there is no B op′ A in CS,
such that op′ is also an asymmetric operation (op′ = op or op′ 6= op), and (2)
there is no A op A in CS, where op is an asymmetric operation.

For example, consider a policy SP2 = {C = A ‖ B, A ‖ B, C ⊲ A}. Then,
we have CS2 = {A ‖ B, A ⊲ A, B ⊲ A}. Thus, policy SP2 is not consistent since
A ⊲ A is in CS2, which is incorrect because ⊲ is an asymmetric operation (the
second condition does not hold). Similarly, policy SP3 = {C = A ‖ B, A ‖
B, C ⊲ C} is also not consistent (both conditions do not hold). However,
policy SP4 = {C = A ‖ B, A ‖ B, C isol C} is consistent since isol is not
asymmetric. Also, policy SP1 is consistent.

4.2.3 Operational semantics

We specify the operational semantics using the rules defined in Figure 4.2 and
4.3. A state S is a collection of expressions, which are organized as a sequence
T0, ..., Tn, where each Ti in the sequence represents a thread. We use T, T ′ (with
comma) to denote an unconstrained execution of threads T and T ′, and T ; T ′

(with semicolon) to denote that T ′ can commence only after T has reduced to
a value, and (T ) for grouping threads. We write T ◦T ′ to mean either T, T ′ or
T ; T ′.

The expressions f are written in the calculus presented in Section 4.2.1,
extended with a new construct A{ τ }, which denotes a sequence of threads τ
that is part of service A. The construct is not part of the language to be used
by programmers; it is just to explain semantics.
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State Space

S ∈ State = ThreadSeq

T, τ ∈ ThreadSeq ::= f | T, T ′ | T ; T ′ | (T )

f ∈ Expext ::= x | v | f e | v f | let x = f in e | let x = v in f |

fork e | A # e | A{ τ }

Evaluation and Service Contexts

E = [ ] | E e | v E | let x = E in e | A{ E } | E , T | T, E | E ; T | v; E | (E)

C = [ ] | A op C op′ A′ op ∈ {‖, ⊲, atomic, foll}

AE T { τ } = E [ A{ τ } ];T for some T

Structural Congruence Rules for Combinators

a ‖ b ≡ b ‖ a (C-Prl)

a isol b ≡ b isol a (C-Isol)

Structural Congruence Rules for Threads

T, T ′ ≡ T ′, T (C-Sym)

T ◦ () ≡ T op ∈ { , (comma), ; (semicolon)} (C-Nil)

();T ≡ T (C-Seq)

T −→ T ′

E [ T ] −→ E [ T ′ ]
(C-Expr)

Figure 4.2: The CK-calculus: Reduction semantics – Part I
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We define a small-step evaluation relation e −→ e′ read “expression e re-
duces to expression e′ in one step”. We also use −→∗ for a sequence of small-
step reductions, and a “meta” relation ։ (defined below) for many reduction
steps with the isolation guarantee. Reductions are defined using evaluation
context E for expressions and threads, and context C for synchronization pol-
icy rules. Context application is denoted by [], as in E [ e ]. We write A op
as shorthand for a possibly empty sequence A op ... A′ op′ (and similarly for
op A).

We also use an abbreviation AE T { τ } for E [ A{ τ } ];T—i.e., “a context E
of service A, followed by a (possibly empty) thread or a group of threads T
that are blocked until A will complete”. To lighten notation, we usually omit
T in semantic rules, and write AE{ τ }.
Structural congruence rules are defined in Figure 4.2. They can be used to

rewrite synchronization policy rules and thread expressions whenever needed.

The evaluation of a program (SP, e) starts in an initial state with a single
thread that evaluates the program’s expression e. Evaluation then takes place
according to the transition rules in Figure 4.3. The rules specify the behaviour
of the constructs of our calculus. The evaluation terminates once all threads
have been reduced to values, in which case the value v of the initial, first thread
T0 is returned as the program’s result. (A typing rule for fork will ensure that
other values are empty values.) The execution of unconstrained threads can
be arbitrarily interleaved. Since different interleavings may produce different
results, the evaluator eval(e, v) is therefore a relation, not a partial function.
Below we describe the evaluation rules.

Basic evaluation rules

Nondeterministic choice (R-Choice) between states S and S′, denoted S + S′,
can lead to either S being evaluated and S′ discarded, or opposite.

The next two evaluation rules are the standard rules of a call-by-value
λ-calculus [87]. Function application λx. e v in rule (R-App) reduces to the
function’s body e in which a formal argument x is replaced with the actual
argument v. The (R-Let) rule reduces let x = v in e to the expression in
which variable x is replaced by value v in e. We write e{v/x} to denote the
capture-free substitution of v for x in the expression e.

Service A # e in rule (R-Mark) marks the service expression e with the
service name A; it reduces to the expression A{ e }. The marking information
will allow concurrency control rules (described below) to identify expressions
that are part of a given service, and apply to them all relevant synchronization
rules while evaluating these expressions.
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Evaluator

eval ⊆ Exp × Val

eval(e, v) ⇔ e −→∗ T0 ◦ ... ◦ Tn and T0 = v, Tj 6=0 = ()

Transition Rules

S + S′ −→ S or S + S′ −→ S′ (R-Choice)

λx. e v −→ e{v/x} (R-App)

let x = v in e −→ e{v/x} (R-Let)

A # e −→ A{ e } (R-Mark)

A{ v } −→ v (R-Compl)

E [ fork e ] −→ E [ () ], e (R-Fork)

A{ τ }; T, A{ τ ′ }; T ′ −→ A{ τ, τ ′ }; (T, T ′) (R-Join)

A = C[ B op C′[ C ] ] ∈ SP A /∈ E ′′

E ′′[ BE{ τ } ◦ CE′{ τ ′ } ] −→ E ′′[ A{BE{ τ } ◦ CE′{ τ ′ } } ]
(R-Fold)

A, B are the innermost services of redex

A = B1 op ... op′ Bn ∈ SP B 6= Bi i = 1..n

A{T ◦ BE{ τ }, T ′ } −→ A{T, T ′ } ◦ BE{ τ }
(R-Unfold)

A foll B ∈ SP

E ′′[ AE{ τ }; BE′{ τ ′ } ] −→∗ S

E ′′[ AE{ τ }, BE′{ τ ′ } ] ։ S
(R-Foll)

A isol B ∈ SP

E ′′[ AE{ τ }; BE′{ τ ′ } ] −→∗ S

E ′′[ BE′{ τ ′ }; AE{ τ } ] −→∗ S′

E ′′[ AE{ τ }, BE′{ τ ′ } ] ։ S + S′
(R-Isol)

Figure 4.3: The CK-calculus: Reduction semantics – Part II
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The mark A{ e } will be erased when expression e evaluates to a value v,
as defined by rule (R-Compl). Then, we say that service A has completed.

Evaluation of expression fork e creates a new thread which evaluates e, as
defined by rule (R-Fork). A value returned by expression e will be discarded. If
expression fork e is part of some service A, and we would like expression e to
be part of this service after the new thread has been spawned, then e should
be an expression A # e′ for some e′.

The evaluation rules at the bottom half of Figure 4.3, beginning from (R-
Join), define the semantics of concurrency control. Programs evaluated using
these rules must be first type checked if the evaluation rules can be actually
applied for a given synchronization policy. In Section 4.4, we present a type
system that can verify it.

Folding and unfolding

The first rule, (R-Join), groups two concurrent expressions of the same service.
The rule (R-Fold) encloses two concurrent services being part of a composite
service A (as specified by the synchronization policy) with the name A. The
rule (R-Unfold) removes service B (together with any threads blocked on B)
outside the scope of a composite service A whose B is not part of, according
to policy SP (otherwise applying the (R-Unfold) rule is forbidden). The abbre-
viations AE{ τ } and AE ′{ τ ′ } allow contexts E and E ′ to be multithreaded, if
needed by the reduced expressions.

Concurrency control

To explain remaining rules, we need to introduce a few definitions.

By concurrent evaluation, we mean a sequence of small-step reductions in
which the reduction steps can be taken by threads with possible interleav-
ing. Two services (possibly multithreaded) are executed serially if one service
commences after another one has completed.

A result of evaluating a service A is any state S, such that S 6= E [ A{ .. } ]
for any context E . Note that states subsume the content of reference cells,
represented with stores. An effect is any change to the content of stores. (For
clarity, we have omitted the reference stores in the evaluation rules in Fig-
ure 4.3, but see Chapter 3 for a full exposition.)

We define isolation to mean that the effects of one service are not visible
to other services executing concurrently—from the perspective of a service, it
appears that services execute serially rather than in parallel.
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The operational semantics of combinators A isol B and A foll B is
captured using rules, respectively (R-Isol) and (R-Foll). The rules define the
“isolated evaluation” relation ։, which specifies that the actual term con-
taining services A and B (in the conclusion of each rule) should be evaluated
by the small-step reduction (−→) using all evaluation rules but (R-Isol) and
(R-Foll). However, the order of applying the rules must be now constrained,
so that any result S or S′ of concurrent evaluation of the term, could be also
obtained by evaluating a less concurrent term, given in the premises of rules
(R-Isol) and (R-Foll), in which services A and B are executed serially.

The evaluation rules (R-Isol) and (R-Foll) are similar, except that the rule
(R-Foll) restricts the ideal, serial execution to the execution in which B com-
mences after A has completed, while the rule (R-Isol) does not specify the or-
der in the ideal, serial execution; we omit details of the rules application. An
implementation of “isolated evaluation” could use the versioning algorithms
described in Chapters 2 and 3.

4.3 Example Reduction

Below is the evaluation of the program described in Section 4.1, according
to the reduction rules of our calculus, and assuming a fixed synchronization
policy SP = {Update foll Read}. We extend states S to a pair 〈σ | T 〉,
where σ is the reference store, i.e. a finite map from reference locations to
values stored in the references (see Section 3.3.2 for details). For brevity, we
have used a concrete variable name r as the reference location; we have also
omitted typing annotations.

< σ | let r = ref 0
let a = λx. Update # (r := x; ())
let b = λy. Read # !r
fork (a 1);

b () >

(R-Ref)
−→ < (σ,r 7→ 0) |

let a = λx. Update # (r := x; ())
let b = λy. Read # !r
fork (a 1);

b () >

Syntactic sugar
−→ < σ’ |
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let a = λx. Update # (r := x; ())
let b = λy. Read # !r
let z = fork (a 1) in

b () >

(R-Let) (* Applied two times *)
−→ < σ’ |

let z = fork (λx. Update # (r := x; ()) 1) in
λy. Read # !r () >

(R-Fork)
−→ < σ’ |

let z = () in

λy. Read # !r (),
λx. Update # (r := x; ()) 1 >

(R-Let)
−→ < σ’ |

λy. Read # !r (),
λx. Update # (r := x; ()) 1 >

(R-App) (* Applied two times *)
−→ < σ’ |

Read # !r,

Update # (r := 1; ()) >

(R-Mark) (* Applied two times *)
−→ < σ’ |

Read { !r },
Update { r := 1; () } >

(R-Foll)
։ < σ’ |

Update { r := 1; () };
Read { !r } > where SP={Update foll Read}

(R-Assign)
։ < σ’[r 7→ 1] |

Update { (); () };
Read { !r } >

Syntactic sugar
։ < σ’’ |

Update { let x = () in () };
Read { !r } >
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(R-Let)
։ < σ’’ | Update { () }; Read { !r } >

(R-Compl)
։ < σ’’ | (); Read { !r } > where σ’’(r)=1

(R-Deref)
։ < σ’’ | (); Read { 1 } >

(R-Compl)
։ < σ’’ | (); 1 >

(C-Seq)
։ < σ’’ | 1 >

4.4 Type System

In this section, we present a type system, which is able to verify if synchro-
nization policy declared using the concurrency combinators can be actually
satisfied. Programs that cannot satisfy a given rule simply would not compile.
The type system is not complete, i.e. some programs may not type check even
if they correctly implement the synchronization policy.

4.4.1 Satisfiability of concurrency combinators

The semantics can be used to formalize the notion of combinator satisfiability ,
as follows. A thread T binds a service name A if there exists some evaluation
context E such that T = E [ A{ f } ] for some expression f .

A state S does not satisfy combinator A ‖ B if its thread sequence contains
a thread that binds both service names A and B. A state S does not satisfy
combinator A ⊲ B and also combinator A foll B, if its thread sequence
contains either a term E [ B{ f } ] such that f = E ′[ A # e ] (possibly f =
E ′[ fork E ′′[ A # e ] ]), or a single- or multithreaded term E [ B{ τ } ];T and
T = E ′[ A{ τ ′ } ], for some contexts E , E ′, E ′′, expressions f , e, and thread
sequences τ , τ ′. In all other cases, the above combinators are satisfied.

Finally, combinator A isol B can be satisfied at runtime by all execu-
tion states. This is because any single-threaded evaluation of services A and
B satisfies the combinator A isol B by definition. Otherwise, if A and B
are evaluated by different threads, then rule (R-Isol) is applied to scheduling
threads accordingly.
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An execution run S −→∗ S′ does not satisfy a combinator a if it may
yield a state that does not satisfy a, i.e. if there exists a state S′′ in the run
(including S and S′) such that S′′ does not satisfy a. Otherwise, we say that
the run S −→∗ S′ satisfies combinator a.

4.4.2 Typing for combinator satisfiability

We define the type system using one judgment for expressions. The judgment
and the static typing rules for reasoning about the judgment are given in
Figures 4.4 and 4.5. The typing judgment has the form Γ; κ; p ⊢ e : t, read
“expression e has type t in environment Γ, and is bound to service names κ
of service package p”, where an environment Γ is a finite mapping from free
variables to types.

A package p = (pc, pa) is defined by all service names which may be bound
while evaluating expression e, either by the current thread only (pc) or by all
threads evaluating e (pa); if e is single-threaded then pc = pa.

Our intend is that, given a policy SP if the judgment Γ; κ; p ⊢ e : t holds,
then expression e can satisfy all concurrency combinators in SP, and yields
values of type t, provided the current thread has bound services described in
κ, it may bind at most services described in p, and the free variables of e are
given bindings consistent with the typing environment Γ.

The core parts of typing rules for expressions are fairly straightforward and
typical for the λ-calculus with threads evaluated only for their side-effects. The
only unusual rule is (T-Mark); it type checks services of the form A # e, and
requires the type of the whole expression to be e’s type; it will be explained
below.

The main feature of this type system is checking if expressions satisfy con-
currency combinators. For this, we check if expressions do not invalidate any
constraints CS imposed by the policy rules; see the definition of a constraints
set CS in Section 4.2.2. The constraints are then used to define two kinds of
relation between services: (A, B) Prl and (A, B) Seq . The relation (A, B) Prl
(see Figure 4.5) declares services A and B to be parallel services, while re-
lation (A, B) Seq declares services A and B to be causally related, or more
precisely, it declares that service B causally depends on service A. The type
system verifies if the relations declared are not contradicted by the program,
as follows.

During typechecking, expressions are evaluated for a given constraint set
CS, in the context of a package p and a set pair κ = (κc, κa) of bound service
names, where κc are service names that have been bound by the current thread
explicitly, using #, and κa are service names that are the same as in κc but
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Judgments

Γ; κ; p ⊢ e : t e is a well-typed expression of type t in Γ, bound to service names

in κ = (κc, κa) of service package p = (pc, pa)

Expression Typing

x : t ∈ Γ

Γ; κ; p ⊢ x : t
(T-Var)

Γ, x : t; ∅; p ⊢ e : t′

Γ; ∅; ∅ ⊢ λpx : t. e : t →p t′
(T-Abs)

Γ; κ; p ⊢ () : Unit
(T-Unit)

Γ; κ ∪ {A}; p ⊢ e : t

A ∈ pc A ∈ pa

∄B ∈ κc (A, B) Prl

∄B ∈ κa (A, B) Seq

Γ; κ; p ⊢ A # e : t
(T-Mark)

Γ; κ; p ⊢ e : t

(Γ, x : t); κ ∪ κ′; p ⊢ e′ : t′

Γ; κ ∪ κ′; p ⊢ let x = e in e′ : t′
(T-Let)

Γ; (∅, κa); (p′c, pa) ⊢ e : t

p = (pc, pa) p′r ⊆ pa

Γ; κ; p ⊢ fork e : Unit
(T-Fork)

Γ; κ; p ⊢ e : t′ →p′

t p′ ⊆ p

Γ; κ ∪ κ′; p ⊢ e′ : t′

∀A ∈ pc ∄B ∈ κc ∪ κ′
c (A, B) Prl

∀A ∈ pa ∄B ∈ κa ∪ κ′
a (A, B) Seq

Γ; κ ∪ κ′ ∪ p′; p ⊢ e e′ : t
(T-App)

x ∪ p = (xr ∪ p, xs ∪ p)

x ⊆ x′ ≡ xr ⊆ x′
r and xs ⊆ x′

s where x = κ or x = p

Figure 4.4: The CK-calculus: Typing expressions – Part I
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Auxiliary Definitions

A ‖ B ∈ CS or B ‖ A ∈ CS

(A, B) Prl
(T-Prl)

A ⊲ B ∈ CS

or A foll B ∈ CS

(A, B) Seq
(T-Seq)

Figure 4.5: The CK-calculus: Typing expressions – Part II

also include names inherited by the current thread at spawning time, from a
set κa of the parent thread.
A package p = (pc, pa) decorates a function type and definition, represent-

ing all services that may be bound while evaluating the function by the current
thread T only (pc), and by T and also any other threads that are spawned
as the effect of evaluating the function’s body (pa). For example, functions a
and b in Section 4.1 have types, respectively Int →{Update,Update} Unit and
Unit→{Read,Read} Int.

The rule (T-Fork) requires the type of the whole expression to be Unit; this
is correct since threads are evaluated only for their side effects. Note that the
fork-ed expression is evaluated with κc nulled since verification of the A ‖ B
combinator requires that any spawned threads do not inherit service bindings
from their parent thread (as we only check if A and B are not single-threaded).

Typing of service abstractions A # e is defined by the rule (T-Mark). Essen-
tially, the rule checks two kinds of constraints: (1) if there is no service B in
the set κc of services that could have been executed by the thread executing
A so far, such that B had been declared to be parallel with A, and (2) if there
is no service B in the set κa of services on which service A causally depends,
such that B had been declared to causally depend on service A. If at least one
such service B exists, then the program is not typable since the synchroniza-
tion policy SP cannot be satisfied by any execution of the program. This is
because either services A and B would not be executed by different threads
as required by the parallelism relation (A, B) Prl , i.e. violating the true paral-
lelism combinator ‖, or services A and B would begin execution in the opposite
order then required by the causality relation (A, B) Seq , i.e. violating either
combinator ⊲ or foll.

To support modular design of services, service abstractions A # e are ty-
pable only if they are inside a function abstraction; for this, we require in the
(T-Mark) rule that A is in the package p.

The (T-App) rule defines typing of the function application. Essentially, the
rule checks if for any service A in the package implemented by a function, there
is no service B bound by a thread calling the function, which could contradict
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Judgments

⊢ S : t S is a well-typed state of type t

Rules

|T | > 0 Γ; ∅; ∅ ⊢ Ti : ti

for all i < |T |

⊢ T : t0
(T-State)

⊢ S : t0 ⊢ S′ : t0
⊢ S + S′ : t0

(T-Choice)

Γ; κ; p ⊢ fi : ti

Γ; κ′; p′ ⊢ f ′
j : tj i < j

Γ; κ′; p′ ⊢ fi ◦ f ′
j : ti

(T-Thread)

Γ; κ; p ⊢ c : t

Γ; κ; p ⊢ A{ c } : t
(T-InService)

Figure 4.6: Additional judgments and rules for typing states

any relations (A, B) Prl and (A, B) Seq that might have been declared by the
synchronization policy; compare with typing of the A # e construct. If no such
service B exists, then the function application is correctly typed.
The type system can be extended with reachability analysis of conditional

branches and dead code elimination. Without this analysis, some defined poli-
cies may be rejected, even if all program executions would satisfy them.

4.4.3 Well-typed programs satisfy combinators

The fundamental property of the type system is that well-typed programs
satisfy the declared synchronization policy, expressed using concurrency com-
binators. The first component of the proof of this property is a type preser-
vation result stating that typing is preserved during evaluation. To prove this
result, we extend typing judgments from expressions in Exp to states in State

as shown in Figure 4.6. The judgment ⊢ S : t says that S is a well-typed state
yielding values of type t.

Lemma 11 (Type Preservation). If Γ; κ; p ⊢ S : t and S −→ S′, then Γ; κ; p ⊢
S′ : t.

Lemma 12 states that a program typable for some synchronization policy
SP is reducible to states that satisfy all combinators in SP.

Lemma 12 (Combinator Preservation). Suppose Γ; ∅; ∅ ⊢ S : t for some
synchronization policy SP. If S −→∗ S′, then run S −→∗ S′ satisfies all
combinators in SP up to state S′.

Type preservation and combinator preservation “up to a state” ensure that
if we start with a typable expression for some policy SP, then we cannot reach
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an untypable expression through any sequence of reductions, and the reduced
expression satisfies combinators in SP. This by itself, however, does not yield
type soundness. Lemma 13 states that evaluation of a typable expression can-
not get stuck, i.e. either the expression is a value or there is some reduction
defined.

Lemma 13 (Progress). Suppose S is a closed, well-typed state (that is, ⊢ S : t
for some t and policy SP). Then either S is a value or else, there is some state
S′ with S −→ S′.

We conclude that for a given policy SP, well-typed programs satisfy com-
binators in SP. An expression e is a well-typed program if it is closed and it
has a type t in the empty type environment, written ⊢ e : t.

Theorem 7 (Combinator Satisfiability). Given a policy SP, if ⊢ e : t, then
all runs e −→∗ v0, where v0 is some value, satisfy combinators in SP.

4.5 Role-based Synchronization (RBS)

In this section, we describe the Role-based Synchronization (RBS)—another
approach to declarative synchronization. The key idea is to abstract away from
the concrete code of programs, and to express synchronization constraints at
the level of program specification.
By looking at the classical synchronization problems, such as Producer-

Consumer, Readers-Writers [23], and Dining Philosophers [26], we can identify
two essential semantic categories which are used to describe these problems:
roles and constraints imposed on the roles. Below we characterize these two
categories.

4.5.1 Semantic roles

In synchronization problems, concurrent threads are often used to perform
certain semantic roles, such as producers, consumers, readers, writers, and
philosophers (in the dining philosophers problem). The definition of the se-
mantic roles is part of the definition of a synchronization problem. Below we
use the term role, meaning one or possibly many concurrent threads, logically
representing the corresponding semantic role.
Roles can execute various actions, e.g. a consumer outputs a value to the

buffer, a writer writes a value to a file, and a philosopher eats rice (or thinks).
Roles can be in different states during program execution. Some actions are
allowed only in certain states. Thus, in order to execute a given action, a role
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must first enter a state that allows the action to be executed, unless the role
is already in such a state.

Many synchronization problems are concerned with accessing shared re-
sources (or shared objects) in an exclusive manner. For example, a buffer is
shared by producers and consumers, a file is shared by writers and readers,
and forks are shared by philosophers. We can therefore identify two states:
a state In of being able to call methods of a shared object (or execute some
actions), and a state Wait of waiting to be able to do so. (The former state
is denoted In, for being in a position to execute actions.) For instance, a pro-
ducer is waiting if the buffer is full, a writer is waiting when another writer is
writing, and a philosopher is waiting if at least one fork is missing. Otherwise,
these roles are in the position to execute actions defined, correspondingly, on
the buffer, the file, or the forks (and a rice bowl). Other states can be defined
for more refined synchronization problems.

4.5.2 Synchronization constraints

Synchronization constraints 1 define conditions on when roles are allowed to
enter states and execute actions allowed by the states. For example, a con-
sumer can enter state In and input a value from the buffer if and only if: (1)
neither other producer nor consumer is currently accessing the buffer, and (2)
there is actually some value in the buffer. Many concurrent readers can read
a file in parallel if there is no writer writing to the file at the same time. A
philosopher can eat rice only if two forks are available. Note that the synchro-
nization constraints specify a synchronization problem. If an implementation
obeys all the constraints defined, then it provides a correct solution to the
synchronization problem. Failure to satisfy any constraint in accessing shared
objects by roles may cause incorrect program behaviour.

Below we define synchronization policy and synchronization guards—two
parts that jointly define constraints on entering a state by a role.

Synchronization policy

Synchronization policy 2 defines constraint on roles and their states. Essen-
tially, it specifies when a role is permitted or forbidden to enter a given state
in terms of selected roles and their states. Thus, we can have two kinds of

1The notion of constraints in the RBS model should not be confused with the constraints
in the concurrency combinators language.
2The notion of synchronization policy in the RBS model should not be confused with the

synchronization policy in the concurrency combinators language.
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synchronization policies: permission and denial (or refusal). Intuitively, a per-
mission policy describes what must happen in order to permit a role to enter
a state, while a denial policy describes what forbids a role to enter a state.
The synchronization policy is satisfied if the constraint holds, and it is violated
otherwise. Below we will only specify permission policies.

Synchronization policy that often appears in concurrent programming is
“mutual exclusion”, which states that some roles cannot be simultaneously in
the critical section, i.e. they cannot simultaneously access a shared object (i.e.
to call an object method, access a data field, etc.). For example, a producer
and a consumer cannot access a shared buffer at the same time, two writers
are not allowed to simultaneously write to the same file, and two philosophers
cannot share the same fork. More precisely, they are not allowed to be both
in the same state In at any time.

Synchronization guards

Satisfying synchronization policy is the necessary but often not sufficient con-
dition to solve a given synchronization problem. For instance, a consumer
cannot input a value if there is no value in the buffer. Thus, we also need a
synchronization guard, which specifies logical conditions on the state of ob-
jects requested by a role; the conditions must be satisfied in order to allow the
role to call the object’s methods. The RBS constraint language allows several
different synchronization constraints to be defined for a role to enter a state.
Synchronization guards will be also used to specify logical conditions on which
synchronization constraint should be chosen for synchronization.

4.5.3 The RBS constraint language

Figure 4.7 shows the RBS constraint language for declaring synchronization
constraints. We use abbreviation [x] to denote a list of elements x = x1; ... ; xn,
where [] is the empty list. Below we describe the language constructs.

Shared objects, denoted o, are declared as lists of pairs (a, [S ]), where each
pair specifies that in order to be able to call a method a of object o, a role
must be in one of the states given in list [S ]. The empty list [] is used if the
corresponding method can be called in any state.

Constraint declaration enter(r, S) declares synchronization constraints on
entering a state S by a role r; the declaration is a choice of pairs (P, G ),
written (P, G ) ∨ ... ∨ (P, G ), where P is the synchronization policy (of the
permission kind) regulating the switching of role r to state S , and G is a
synchronization guard, specifying any logical conditions on when a role is
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Constraint Language

Objects o ∈ Objects

Actions (methods) a ∈ Actions

States S ∈ States = {In, Wait, ...}

Families F ∈ Families

Thread roles r ∈ Roles

Declarations D ∈ Declarations

Constraints K ∈ Constraints

Synchronization policies P ∈ Policies

Synchronization guards G ∈ Guards

Logical conditions c ∈ {o.a : Unit→ Boolean}

Policy types t ∈ Types

Policy rules U ∈ Rules

o ::= [(a, [S ]); ... ; (a, [S ])]

F ::= ([r], [S ], [D])

D ::= enter(r, S) = K ∨ ... ∨ K

K ::= (P , G )

P ::= (t, [U; ... ; U])

G ::= c ∧ ... ∧ c

t ::= All-Required | All-Excluded | Some-Required | ...

U ::= ([r], S)

Example Policy Types

∀r′ ∈ ri. r′ in Si for all i = 1..n

(All-Required, [([r1], S1); ... ; ([rn], Sn)]) satisfied
(P-All-Required)

∀r′ ∈ ri. r′ not in Si for all i = 1..n

(All-Excluded, [([r1], S1); ... ; ([rn], Sn)]) satisfied
(P-All-Excluded)

∃r′ ∈ ri. r′ in Si for all i = 1..n

(Some-Required, [([r1], S1); ... ; ([rn], Sn)]) satisfied
(P-Some-Required)

∃r′ ∈ ri. r′ not in Si for all i = 1..n

(Some-Excluded, [([r1], S1); ... ; ([rn], Sn)]) satisfied
(P-Some-Excluded)

Figure 4.7: The role-based constraint language
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allowed to enter S , e.g. shared objects may need to meet certain criteria. The
operational semantics of a constraint enter(r, S) = (P, G ) is that role r can
enter state S only if policy P is satisfied and guard G evaluates to true.

Below we explain in turn the declarations of the synchronization policy
and of the synchronization guard.

Synchronization policy P is defined as a policy type t, paired with a list
L of policy rules, where a policy rule U is a pair ([r], S) of a list of roles and
a state. The precise definition of when synchronization policy P is satisfied
depends on the policy type t.

Consider a constraint enter(r, S) defined as (P, G ), with the synchro-
nization policy P = (t, L). In Figure 4.7, we have defined four example policy
types t: All-Required, All-Excluded, Some-Required and Some-Excluded.
The rules given specify when policy of a given type is satisfied.

1. (All-Required, L) is satisfied only if for each tuple ([ri], Si) in L, all
roles ri are in state Si; the empty list of roles means all roles.

2. (All-Excluded, L) is satisfied only if for each tuple ([ri], Si) in L, all
roles ri are not in state Si; the empty list of roles means all roles.

3. (Some-Required, L) is satisfied only if for each tuple ([ri], Si) in L, at
least one role in ri is in state Si; the empty list of roles means any role.

4. (Some-Excluded, L) is satisfied only if for each tuple ([ri], Si) in L, at
least one role in ri is not in state Si; the empty list of roles means any
role.

In Figure 4.8, we illustrate the above definitions using an example policy
rule ([r1, r2], S), where a state S is a big circle, and roles r1 and r2 are small
circles; the cases of policy violation are crossed with lines. Roles in states
required by the policy type are depicted with a filled circle, other roles are
depicted with an unfilled circle. Satisfying policy All-Required implies that
policy Some-Required is also satisfied, while satisfying policy All-Excluded
implies that policy Some-Excluded is satisfied. Moreover, satisfying policy
All-Required means that policies All-Excluded and Some-Excluded are vi-
olated, and vice versa. Finally, satisfying policy All-Excluded means that
policies All-Required and Some-Required are violated, and vice versa.

A synchronization guard G in a constraint enter(r, S) = (P, G ) is the
conjunction of logical conditions c ∧ ... ∧ c, where a logical condition c is a
boolean function with no arguments; the function returns true if it would
make sense to access the shared object by role r in state S at that moment,
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roles in other states

policy is violated 

S

S

a)  t = All−Required

b)  t = All−Excluded

c)  t = Some−Required

d)  t = Some−Excluded

S

S

S
S

S
S

S

S

roles in states required by the policy

state S

Figure 4.8: Examples of a policy (t, ([r1, r2], S)) satisfaction and violation

and false otherwise. What “makes sense” depends on the specification of the
synchronization problem. Each function c in the guard is part of the program’s
code and can use any variables and data structures of the program. Thus, the
state of the program can be used to express synchronization constraints.

To support dynamic change of synchronization policy, we allow a choice of
synchronization constraints (P1, G1) ∨ ... ∨ (Pn, Gn). Only a constraint whose
guard Gi (i = 1..n) has returned true is chosen for synchronization. If sev-
eral guards have returned true, then the order of applying the corresponding
policies is unspecified—it depends on the RBS synchronization package. The
implementation of the RBS package should guarantee that transition between
different synchronization policies is atomic.

Finally, we can define a role family , denoted F , to be a triple of a list of
roles, a list of states, and a list of constraint declarations.
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4.5.4 Example thread family

Consider a variant of the Producer-Consumer synchronization problem, spec-
ified as follows. Below we define a thread family Producer-Consumer, which
declares two concurrent roles: producers and consumers. The roles are globally
unique, and we assume that they share an object Buffer.

Producer-Consumer = ([Producer; Consumer], [In; Wait]

[enter(Producer, In); enter(Consumer, In)])

Buffer = [(output, [In]); (input, [In]); (is empty, []);

(is full, [])]

An object Buffer has four public methods output, input, is empty, and
is full; the former two methods can be called only by roles being in state
In, while the latter method can be called by roles being in any state.
A producer can output some values to the buffer, and, in parallel, a con-

sumer can input these values. Producers and consumers must have an exclusive
access to the shared buffer; they must wait if the buffer is already accessed.
Moreover, we require the priority of producers over consumers, i.e. a consumer
is delayed not only if some producer outputs a value to the buffer, but also if
some producer is waiting, even if the buffer would be free. We assume some
notion of fairness, i.e. the delayed consumers and producers are eventually
awakened when they are permitted to access the buffer.
Below we specify constraints for consumers and producers using a policy

type Excluded and a synchronization guard with a single logical condition:

enter(Consumer, In) = (Excluded, [([], In), ([Producer], Wait)],

not buffer.is empty())

enter(Producer, In) = (Excluded, [([], In)],

not buffer.is full())

The synchronization constraint imposed on consumers for accessing the buffer
Buffer is such that a consumer is forbidden to enter a state In, allowing the
buffer to be accessed, if there is already a producer or consumer accessing the
buffer or there are some producers waiting to access it. Moreover, a consumer
can enter this state only when the buffer is not empty.
The constraint on producers for accessing the buffer Buffer is such that

a producer is forbidden to enter state In, allowing the buffer to be accessed,
if there is some consumer or producer accessing the buffer; moreover, it can
enter state In only when the buffer is not full.
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If synchronization policy would require a quantitative information about
roles, we could add another field in a policy rule. This field would contain
the minimal number of roles in a given state that makes the rule satisfiable
(the default value is 1). For instance, replacing a policy rule ([Producer],
Wait) by a policy rule (2, [Producer], Wait) in the first constraint above,
would mean that the consumer will be excluded only if there are at least two
producers waiting. For clarity, we have omitted the quantitative information
in the definition of the constraint language; however, the implementation of
an example synchronization package in [102] supports this option.

Below we extend the above definition of the Producer-Consumer synchro-
nization problem, and define two sets of synchronization constraints: the first
one allows many consumers to access the buffer in parallel (not exclusively),
and equals priorities of consumers and producers, while the second set of con-
straints is as before. The choice between the two sets of synchronization con-
straints is controlled in the synchronization guard by a boolean condition
equal priority().

enter(Consumer, In) = (Excluded, [([Producer], In),

equal priority() ∧ not buffer.is empty())

enter(Producer, In) = (Excluded, [([], In)],

equal priority() ∧ not buffer.is full())

enter(Consumer, In) = (Excluded, [([], In),

([Producer], Wait)],

not equal priority() ∧ not buffer.is empty())

enter(Producer, In) = (Excluded, [([], In)],

not equal priority() ∧ not buffer.is full())

Since the sets of constraints are switched at runtime, depending on the value
returned by a boolean function equal priority(), the constraint declaration
above demonstrates dynamic switching of synchronization policy—notably,
the dynamic policy update does not require any modification to the code of
the main program (implemented in the host language).

The simplicity and expressiveness of this formalism suggests that it can
be indeed useful to encode synchronization constraints at the level of thread
roles, instead of individual actions executed by the threads. The advantage is
that the constraints can be expressed declaratively, as a set of policy rules. The
rules are intuitively easier to understand than the low-level synchronization
code, thus aiding design and proofs of correctness.
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4.5.5 Implementation

To illustrate the role-based synchronization, an experimental implementation
of the Readers-Writers (RW) synchronization package (design pattern) has
been described in [102], where we also discussed an example application of
RBS—theWeb Access server with dynamic switching of access policy. The RW
synchronization package has been implemented in the OCaml programming
language [80]—an object-oriented variant of ML. OCaml has abstract types
and pattern matching over types, which allowed us to have the concrete syntax
of the constraint language almost exactly as in Section 4.5.3.

The key aspects of the RBS package implementation are as follows. Essen-
tially, each call of an object method is preceded and followed by a call to a
synchronizer object. The synchronizer is the core part of the synchronization
package—it implements an evaluation engine parameterized over constraint
declarations, expressed using abstract types in OCaml. The invocation of ob-
ject methods by concurrent threads (roles) is guaranteed to satisfy any syn-
chronization constraints imposed on the call, i.e. the call is suspended (and the
thread blocked) if any constraint cannot be satisfied, and will be automatically
resumed after actions made by other threads will allow the constraints to be
satisfied.

4.6 Related Work

There have been a lot of work on separation of concerns in the broad area
of software engineering (see [51, 63, 35, 90, 72, 73] among others). Below we
discuss the related work in the area of separation of concurrency aspects and
aspect-oriented programming; the issues of atomicity have been described in
Chapters 2 and 3.

4.6.1 Separation of concurrency aspects

For a long time, the object-oriented community has been pointing out, under
the term inheritance anomaly [67], that the concurrency control code inter-
woven with the code of classes can represent a serious obstacle to class inheri-
tance. Milicia and Sassone [72, 73] addressed the inheritance anomaly problem,
and proposed an extension of the Java programming language with a linear
temporal logic for expressing synchronization constraints on object method
calls. The language support of declarative synchronization, described in this
chapter, is similar to their approach. However, our design has been motivated
by the ease of programming and code reuse; we can also express complex syn-
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chronization policies such as atomicity. Our main focus was, however, to design
a type system for combinator satisfiability.

Ramirez et al. [88, 89] have proposed a simple constraint logic language
for expressing temporal constraints between “marked points” in concurrent
programs. The approach has been demonstrated using Java, extended with
the syntax for marking. Similarly to the work of Milicia and Sassone, the
proposed language has however limited expressiveness. Contrary to the RBS
constraint declarations that can freely access data and call boolean functions
of a program, their constraints are not allowed to refer to program variables
and data structures. Also, composite synchronization policies (on groups of
threads) are not easily expressible.

The previous work, which set up goals similar to our own is also by Ren
and Agha [90] on separation of an object’s functional behaviour and the tim-
ing constraints imposed on it. They proposed an actor-based language for
specifying and enforcing at runtime, real-time relations between events in a
distributed system. Their work builds on the earlier work of Frølund and Agha
[35] who developed language support for specifying multi-object coordination,
expressed in the form of constraints, restricting invocations of a group of ob-
jects.

We are not aware of much work on formalizing combinator-like operations.
Achermann and Nierstrasz [3] describe Piccola, which allows software com-
ponents to be composed (although not isolated) using connectors, with rules
governing their composition.

4.6.2 Aspect-oriented programming

An experimental implementation of the RBS synchronization package in
OCaml resembles the weaving technique in the aspect-oriented programming.

The Aspect-Oriented Programming (AOP) approach is based on separately
specifying the various concerns (or aspects) of a program and some description
of their relationship, and then relying on the AOP tools to weave [54] or
compose them together into a coherent program. For instance, error handling
or security checks can be separated from a program’s functional core. Hürsch
and Lopes [51] identified various other concerns, including synchronization.

Lopes [63] developed a programming language D, which allowed thread
synchronization to be expressed as a separate concern. Several AOP tools
have been developed for popular programming languages. For example, As-
pectJ [56] allows aspect modules to be encoded using Java, and weaved at
the intermediate level of the Java bytecode. The aspect code, written by the
AspectJ programmer, is executed before and after the execution of point-



108 CHAPTER 4. DECLARATIVE SYNCHRONIZATION

cuts, where a pointcut usually corresponds to a method invocation. The code
weaving technique could be used for encoding synchronization aspects, too.
However, the pure AOP approach does not yet provide the expressiveness of
a declarative synchronization language.
There are also differences in the implementation of the AOP approach

and the RBS synchronization model. For example, translation of an AspectJ
program with aspects into Java bytecode is done using a precompilation tool,
while the RBS package implementation in OCaml, described in [102], uses
entirely features of the host language. Thus, no external precompilation tool
is required.



Chapter 5

Dynamic Protocol Update

In this chapter, we study Dynamic Protocol Update (DPU), i.e. dynamic re-
placement of protocol modules across distributed machines. The DPU mecha-
nism allows software modules or network components to be replaced on-the-fly
without service interruption. The benefit is a decrease of software upgrade and
maintenance costs in distributed systems that must run non-stop. Such type
of dynamic software update introduces, however, a problem. To avoid inter-
ference between concurrent versions of the updated protocol, replacement of
protocol modules must be (eventually) consistently performed on all machines,
so that all services are provided correctly during and after the global update.
This involves delicate synchronization (or coordination) of distributed updates
which, if not handled appropriately, could easily prove so disruptive as to, at
best, shut the system down, and, at worst, introduce malicious behaviour.
Synchronizing updates on many sites, so that the whole system is updated
in a consistent manner, and doing this while the system continuously pro-
vides service is a serious challenge (see Section 1.2.3). Moreover, the impact
of any global synchronization should be minimized, so that system efficiency
and scalability are not degraded.

Most of the existing work on programming language support for dynamic
software update is concerned with local software upgrades or bug-fixes, as-
suming that the updated programs are essentially single-threaded and exe-
cuted on a single machine, or, otherwise, giving no or weak guarantees that
the system does not crash during or after update. There are quite a num-
ber of research papers that describe relevant implementations and techniques
(see, e.g. [4, 15, 47, 66, 107, 28, 12, 101]). Most notably, Erlang [4]—a func-
tional programming language designed by Ericsson to support distributed,
fault-tolerant, soft-real-time, non-stop applications, offers support of code hot
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swapping. The code written in Erlang can be changed without stopping a
system. A more recent work in the area of dynamic software update, concen-
trates on language support for safe code updating, i.e. with guarantees that
the execution of compiled programs “cannot go wrong” when update occurs.
Different approaches use static type systems that can guarantee type-safe run-
time execution of updated programs (see, e.g. [66, 107, 47, 28, 12, 101]).
Some programming languages, such as Java, implement the mechanism

of dynamic class loading [61] and linking [27], which can be used to plug-in
whole software components at runtime; this mechanism simplifies the imple-
mentation of dynamically updateable systems. For example, there have been
a lot of component and middleware systems developed using Java and other
languages (see, e.g. [14, 57, 42, 100, 59] among others). These systems allow
whole objects or components to be dynamically replaced, albeit often with no
safety guarantees—the programmers must not forget to implement any miss-
ing synchronization of distributed updates, or exception handling methods to
catch runtime errors. Also, the support of synchronization (or coordination)
of distributed updates is not always satisfactory—e.g., few systems switch
protocols in a fully distributed, decentralized way, i.e. without a central coor-
dinator. Exceptions are, e.g., the Ensemble (Maestro) [105] toolkit for group
communication, in which whole protocol stacks can be replaced at runtime in
a coordinated manner [62], and the Cactus [21] protocol framework, that can
be used to build adaptive systems, in which network components are switched
dynamically using barrier synchronization.
The protocol frameworks, such as Maestro and Cactus, can be used to build

dynamically updateable systems that are tolerant to crashes of individual ma-
chines. However, the support of DPU in these frameworks lacks simplicity and
generality. We have therefore designed SAMOA [119, 92, 94]—a novel proto-
col framework, described briefly in Section 2.4, which currently provides the
most flexible approach to dynamic protocol update. Individual protocols im-
plemented in Java, using the SAMOA toolkit, can be seamlessly replaced on
all sites by new protocols implementing the same service. Any synchronization
required for the dynamic update is provided by the SAMOA switching algo-
rithms; the algorithms must be designed independently for each updateable
service, but otherwise they are transparent to the protocols being updated.
The language features of Java, such as generics (polymorphic types), help to
write type-correct code of updated components, with no uncaught errors. In
Section 5.5, we briefly compare our approach with other similar toolkits.
In this chapter, we try to find answers to questions like what are the

core properties of dynamic protocol update, and what is the range of proto-
col switching algorithms preserving these properties? For example, one of the
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critical safety properties of many network services that must be preserved by
protocol switching algorithms is message order . Let us consider group commu-
nication middleware [95, 70] for replicating servers to make them tolerant to
server crashes. Each server replica in the distributed group of servers is guar-
anteed to receive all messages in exactly the same order. Thus, any dynamic
update of the middleware protocols must not change this semantics. On the
other hand, some other network services may not require the message order
property. Thus, we need a range of switching algorithms, each one used for
updating of a different kind of service.

In order to understand what design choices can be considered, and what
impact they have on the complexity and scalability of switching algorithms,
we have defined a model of DPU. Then, we have used the model to present two
synchronization-extreme switching strategies: a fully-synchronized algorithm
that preserves message order but seems impractical for the Internet-wide up-
date, and a synchronization-free, lazy algorithm that is scalable but does not
guarantee the message order property. A preliminary description of the results
described in this chapter appeared in [118].

The main results in a nutshell are as follows. Firstly, the lazy DPU strat-
egy does not require any distributed infrastructure, which means that update
with weak semantics is no more difficult than a local update. Secondly, the
fully-synchronized and lazy strategies define the design space for more special-
ized switching algorithms that can use only as much synchrony as required in
a given case. For illustration, in the end of the chapter, we summarize work
on switching algorithms in SAMOA, designed and implemented for replacing
distributed agreement protocols in the group communication stack (a com-
plete description of this work appeared in [93, 91]). The switching algorithms
preserve message order of agreement protocols but are more efficient than the
fully-synchronized strategy.

The chapter is organized as follows. Section 5.1 defines our model. Sec-
tion 5.2 describes properties of dynamic protocol update. Section 5.3 presents
two example switching algorithms. Section 5.4 sketches the implementation
work on dynamic update of distributed agreement protocols using the SAMOA
toolkit, and Section 5.5 describes related work.

5.1 Model

Our model of DPU abstracts away from any concrete implementation of dy-
namic protocol update. We only make sure that the network communication is
directly implementable above the Internet protocols. For this, we assume that
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Symbols

Service names A, B ∈ Mvar

Protocol names P, Q ∈ Mvar

Required services R ∈ 2Mvar

Messages m

Protocol modules a, b, c

Module types t ::= (A,R) where A /∈ R

Module bindings w ::= l | ↑

Terms

Protocol stacks S = {a w, ..., b w′}

Module a in stack S S.a

Protocol in φ encoded by a Θ(a : t) = {S.a′ w | S ∈ φ, a′ : t}

Distributed systems φ = {S1, ...,Sn} or φ = {Θ(a), ...,Θ(b)}

Messages sent to modules LS = (mS.a, ...)

Messages delivered by modules LD = (mS.a, ...)

Global message history L = (LS , LD)

Global states φ, L

A call of service A in S S.A(m)

Delivery of m using S.a S.a ⇑ m

Figure 5.1: A model of DPU: Symbols and terms

protocols in our model use asynchronous, unordered, point-to-point messages;
this is a realistic assumption about wide-area networks and common middle-
ware services, where communication delays are not predictable. However, the
model abstracts away from any unnecessary details of this communication. For
instance, message addressing and message routing are the details of protocols
themselves that we do not need to model here.

Below we define basic notions in our model of dynamic protocol update.
All symbols and terms are in Figure 5.1.

5.1.1 Basic terms

Services provided by protocols are identified in our model using service names
A, B. In Chapter 6, we define an object language in which service names are
object signatures. In a service call, we specify a message that will be passed
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to the module implementing the service; messages are denoted by m.

Protocol modules (or modules in short), denoted by a, b, are software com-
ponents encoding protocols, where each protocol provides some service. Mod-
ules are typed using pairs (A,R), where A is the name of a service (interface)
implemented by the module, and R are the names of all services that are
required by the module to handle a call of A (A /∈ R). For instance, mod-
ules implementing protocols Q and P in Figure 5.4 have types, respectively
(B, {A}) and (A, {}).
Protocol stacks (or stacks in short), denoted S, are protocol modules com-

posed together and located on a network site. In our model, we represent
stacks by sets of modules, where each module is accompanied by the module’s
binding w, as in S = {a w, ..., b w′}. Two kinds of module binding (l and ↑)
will be explained in Section 5.1.5. We write S.a w to denote a module a in
stack S with binding w. We often omit bindings or stack names if we mean
any binding or any stack, or the stack is known from the context.

Protocols are sets of modules of the same type, i.e. each module of a given
protocol must implement the same service (say A), and require the same ser-
vices to handle the calls of A. We write P = Θ(a) to denote a protocol P
consisting of modules of the same type as a; the modules in Θ(a) are ac-
companied by their bindings (see Figure 5.1). We normally assume that each
module of a given protocol is in a different stack.

5.1.2 Distributed systems

A distributed system, denoted φ, can be defined in our model either vertically,
as a set of stacks {S1, ...,Sn}, or horizontally, as a set of protocols {P, ..., Q}.
We say that each protocol in a protocol stack defines a level of abstraction
(thus we say that φ is defined “horizontally” in terms of its protocols). For
simplicity, we assume that any two stacks in the distributed system are exactly
the same, unless the system is being updated. We also assume that there is at
most one module of a given type in each protocol stack.

In the model we abstract away from physical machines—intuitively, stacks
are located on machines (sites) that are interconnected via network. For clarity,
we assume a system model with no failures, where messages are not lost nor
duplicated, and stacks are basically reliable. In our implementation of DPU,
however, protocol stacks may crash while the distributed system is being up-
dated, with a guarantee that all non-crashed stacks get eventually updated.

Global states of a distributed system φ are tuples φ, L, where L = (LS , LD)
is a pair of the (initially empty) lists of sent and delivered messages. We write
set(Li) to denote a set of all elements in list Li.
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Communication
a : (A,R)

mS.a /∈ set(LS)

mS.a /∈ set(LD)

mS.a ∈ set(L′
S)

a w ∈ S w ∈ {l, ↑} S ∈ φ′

L′′′ = (L′′
S , mS.a :: L′′

D)

φ, (LS , LD)
A(m)
−→ φ, (L′

S , LD) −→∗ φ′, (L′′
S , L′′

D)
S.a⇑m
−→ φ′, L′′′

(Comm)

Free modules
L = (LS , LD) LS |a = LD|a

φ, L ⊢ a Free
(Freedom)

where a global message history of φ, cut to a of type t:

LS |a = {mS.a′

| mS.a′

∈ set(LS), S ∈ φ, a′ : t}

LD|a = {mS.a′

| mS.a′

∈ set(LD), S ∈ φ, a′ : t}

Figure 5.2: A model of DPU: Communication and free modules

We model an execution (or evaluation) step of a distributed system φ using
a state transition relation −→, which transforms state φ, L to another state
(φ, L)′, as a result of a single action e, denoted

e
−→; we sometimes omit the

label e. The notation (φ, L)′ means φ′, L or φ, L′ or φ′, L′, depending on the
context. We also use −→∗ to denote a possibly empty sequence of small step
transitions.

5.1.3 Message passing

Protocol modules in different stacks communicate by means of asynchronous
messages. We use two kinds of actions to express this communication: a service
call and a message delivery.
Service call S.A(m) denotes a call of a service A in a stack S to deliver a

fresh message m in another stack (or stacks if A is a multicast). As the result
of this call a list of messages (mS′.a′

, ...) is appended to a global history LS

of sent messages, where each element in the appended list denotes message m
decorated with a module that should deliver m.
For instance, we write mS′.a′

to denote that message m is going to be
delivered in a stack S′ by a module a′; we require that all modules to deliver
message m must have the same type (A,R) for some R.
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Message delivery S.a ⇑ m denotes delivery of a message m in a stack S
using a module a. The intended semantics is that message m is passed by a
to another module in S, that receives the message. We assume that the name
of this module has been encoded in the message itself; we do not model this,
however, as we only need to know who delivers a message. In the protocol
frameworks, a message has a prefix, which is a list of headers, each header
describing a protocol that should receive the message, e.g. a message [a, m]
should be received by Θ(a). As the result of message delivery S.a ⇑ m, an
element mS.a is added (using a Lisp-like constructor “::”) to a global list LD

of delivered messages; list LD has the same structure as LS .

The (Comm) rule in Figure 5.2 specifies communication in our model: deliv-
ery S.a ⇑ m of a message m by module S.a is always preceded by a call A(m),
where service A is implemented by the protocol Θ(a). There can be a number
of evaluation steps in-between since the communication is asynchronous and
protocols’ (or an update’s) actions can be interleaved. As the result of this
communication, the sets of sent and delivered messages, respectively LS and
LD, are modified accordingly (see Figure 5.2), where L′

S = mS.a :: LS for a
point-to-point communication, and L′

S = ms1 :: ... :: msn :: LS for a multicast
to n stacks (si = S.a for some i).

To deliver a message a protocol module in a stack usually depends on
services at the lower level of abstraction; at the lowest level of abstraction the
message is communicated to a destination stack. For example, a module a of
type (A,R), executed as the result of some call of service A, may call several
services that a depends on—these services are in the set R of services required
by a to handle a call of A. If R = ∅ then the message is delivered to a module
of the same type in another stack, where the message is passed upward the
stack to the message recipient.

The details of message routing in a protocol stack and between stacks are
omitted in our model, since they are not essential here. Example approaches
can be found in [116, 117], where we describe the semantics of protocol com-
position and communication in the Cactus and Appia protocol frameworks.

5.1.4 Protocol rounds

An execution round of a protocol (or a round in short) is a sequence of reduc-
tion steps from a service call S.A(m) for some stack S and a fresh message
m, until delivery of m for the last time. We normally assume that all rounds
terminate. More precisely, a round begun with a fresh message m terminates
(or completes) in a state φ, (LS , LD), if LS |m = LD|m, where Li|m (i = S, D)
is a list constructed from list Li by removing from it all messages other than



116 CHAPTER 5. DYNAMIC PROTOCOL UPDATE

a w ∈ S w 6= w′

a w′ /∈ S
(Binding-1)

a : (A,R) b : (A,R′) a 6= b

a l ∈ S b w ∈ S

w = ↑
(Binding-2)

Figure 5.3: A model of DPU: Module bindings

m. There can be many rounds executed concurrently. A distributed system φ
does not get stuck if all its rounds eventually complete.

A module a of a distributed system φ is free in a state φ, L, denoted
φ, L ⊢ a Free, if in this state there are no uncompleted (non-terminated)
rounds of any protocol that could deliver a message using either module a
or other module (in any stack) that has the same type as a—i.e., there are
no uncompleted (non-terminated) rounds of protocol Θ(a). We can formally
define this property (called freedom) using global histories Li|a of messages
that were sent (i = S) and delivered (i = D) by all modules of type of a; see
rule (Freedom) in Figure 5.2.

5.1.5 Dynamic bindings

Modules can be added to, and removed from a protocol stack at runtime. For
this, it should be possible to bind and unbind modules dynamically.

Consider a module a of type (A,R) for some service A and R. We write
a l to denote that module a is bound, i.e. any calls of A in a stack can use a,
and a can be also used to deliver messages in the stack. We write a ↑ to denote
module a which is passive, i.e. any calls of A in a stack containing a cannot
be made, unless there is another module b in the stack that also implements
service A, and b is bound. A passive module can however deliver messages.
Therefore, any round of a protocol P = Θ(a) can complete using any passive
modules in P , if only any services required by P to complete the round in a
given stack have bound modules in this stack.

Each module in a stack is either bound or passive. We also assume that
for a given service A, there can be in each stack at most one bound module
at a time that is implementing A. Both conditions have been defined formally
in Figure 5.3.



5.2. DYNAMIC PROTOCOL UPDATE (DPU) 117

5.2 Dynamic Protocol Update (DPU)

Dynamic Protocol Update (DPU) is any change of a distributed system φ,
which means addition, removal or replacement of a protocol P in φ providing
some service A. We require that the protocol update must complete, i.e. any
addition, removal, or replacement of modules in P must eventually occur in
all relevant stacks; after the addition or replacement operation has completed,
any calls of service A will use the new protocol to deliver messages. In this
section, we describe some fundamental properties of dynamic protocol update.

For example, Figure 5.4 shows a stack, in which a protocol P has been
replaced by a new protocol N , both protocols providing the same service A.
If N would require some nonexistent services, the implementations of these
services should be added to every stack dynamically. The stack also contains
another protocol (Q) that is above the protocol providing A. To communicate
messages mi (i = 1, ..) to another stack, Q has made several calls of service A.
Note that these calls are not interrupted by the fact that the implementation
of A has changed in the middle, and all messages are delivered by Q in the
destination stack. To guarantee this behaviour, some switching algorithms are
required, that can coordinate (or synchronize) atomic update operations (such
as a single module addition, removal, or replacement) with the concurrent
execution of the updated distributed system. It is important to emphasize that
the implementation of these algorithms is separate from the implementation
of the protocols, i.e. they are part of the protocol framework’s runtime system.

In practice, the design of switching algorithms is not trivial, e.g. they
should deal with broadcast protocols, concurrent service calls, concurrent ex-
ecution rounds of protocols, and concurrent updates, where all these actions
may be initiated at different stacks. To make various design choices more clear,
we define below the fundamental properties of switching algorithms for pro-
tocol replacement (or hot-swapping); the problems of protocol addition and
removal are analogous, and they are not described here.

5.2.1 Replaceability

Static requirements about what can be replaced by what are twofold. Firstly,
we can replace a module a by another module b in a stack S only if both
modules implement the same service A. This requirement is backed up by the
practice. If b would provide some service that is different from A, then the
system updated with b could get stuck, since any calls of A made by other
protocols that require A, could not be effectuated anymore. Secondly, we must
also require that all services required by b are implemented in stack S; if this
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Figure 5.4: Replacement of P by N while Q communicates messages
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a : (A,R) a ∈ S

b : (A,R′) R′ = {C | ∃c ∈ S, c : (C,R′′)}

S{b/a}
(Replaceable)

φ = {S1, ...,Sn} φ′ = {UL(S1, b/a), ...,UL(Sn, b/a)}

UG : (φ, b/a) → φ′
(Global-Update)

S{b/a} w ∈ {l, ↑}

UL : (S, b/a) → (S \ {a w}) ∪ {a ↑} ∪ {b l}
(Local-Update)

Figure 5.5: The DPU specifications

would not be the case, then the implementations of these services must be
added to S before b.

Both requirements are specified by the (Replaceable) rule in Figure 5.5,
which defines a replaceability property S{b/a}, read “a is replaceable by b in
stack S”. Let us consider a stack S that has a module a of type (A, {C}).
Then, module a can be replaced in S by any module b whose type is (A,R),
where R = {C} or R 6= {C}, if only S contains modules implementing all
services in R; we then write S{b/a}. However, a cannot be replaced by any
module of type (B,R) for any B such that B 6= A.

Thus, verification of the replaceability property can be done statically (or
when a protocol stack is built) by checking module types. If we had some
notion of service subtyping, we could refine the (Replaceable) rule accordingly,
and cover a larger class of modules that are replaceable one for another. Below
we define what are the switching algorithms in our model.

5.2.2 Global update

A global update function UG(φ, b/a), defined by the (Global-Update) rule in
Figure 5.5, updates all stacks of a distributed system φ, yielding an updated
system φ′ in which all occurrences of a module a in these stacks are replaced
by a module b. To update a stack locally, UG calls a local update function UL

(explained below). Switching algorithms are any coordination (or synchroniza-
tion) algorithms implemented by the global update function UG(φ, b/a).

For practical reasons, whenever possible a global update of a distributed
system should proceed concurrently with the execution of the system. Blocking
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the whole system during update is unrealistic for large systems, and also not ac-

ceptable for non-stop systems. Thus, the transition relation φ, L
UG(φ,b/a)

−→∗ φ′, L′

transforming a system from a state before update to the state after the update
has completed, consists of many evaluation steps, which may be interleaved
(under control of the UG algorithm) with other actions of the system being
updated. We also allow several global updates to occur concurrently.

5.2.3 Local update

A local update function UL (see the (Local-Update) rule in Figure 5.5) takes
as arguments a stack S, a module a in S, and a new module b to replace a
in S, where the S{b/a} relation must hold, and yields a modified stack S,
in which b is bound and a is passive. This has an effect of replacing a by b
in stack S in one atomic action. After a call of UL returns, any calls of the
service implemented by a and b will use its new implementation b instead of
a. However, any pending rounds of protocols that need a can still complete
since a is passive, which means that it can be used for delivering messages. In
this abstract definition we do not specify when a can be safely removed from
S (if ever); this depends on the switching algorithm.

The definition of global update does not specify when the function UL is
called. Updating some protocols at “wrong” moments may invalidate safety
properties of these protocols. In Section 5.2.5, we identify two disjoint safety
properties of dynamic protocol update: Message-Order and No-Message-Lost,
that cover a broad range of distributed systems. Then, we describe in Sec-
tion 5.3 two implementations of UG: the first one satisfies the former property,
while the second one satisfies the latter one. However, before this we have yet
to specify what do we mean by correctness of dynamic protocol update.

5.2.4 Correctness of dynamic protocol update

The replaceability property defined in Section 5.2.1 is necessary but not suffi-
cient for correct dynamic protocol update. Below we give additional properties.

Consider global update UG of a distributed system φ, which is dynamic
replacement of a protocol providing some service A for another protocol that
also provides A. We assume that both protocols are correct—i.e. they match
the semantics of service A. Then, we can say (informally) that the global
update UG is transparent if it does not change the semantics of service A.
In our model, the only observable effects of protocol execution that can be
compared with the intended semantics of corresponding services are message
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Judgements

A ⊢h L L is a correct global message history of service A

A ⊢tgu UG UG is a transparent global update of service A

Message history

L = (nil, nil)

A ⊢h L
(Null-History)

A ⊢h (L′
S , L′

D)

A ⊢h (L′′
S , L′′

D)

L = (L′
S@L′′

S , L′
D@L′′

D)

A ⊢h L
(Merged-History)

Global update transparency

φ, L
UG(φ,b/a)

−→∗ φ′, L′

a : (A,R) b : (A,R′)

A ⊢h L A ⊢h L′

A ⊢tgu UG
(Transparency)

Figure 5.6: Judgments, histories and transparency of DPU

outputs and message deliveries; both kinds of actions modify the system’s
state. Thus, we can define transparency more precisely as follows.

A global update UG of a service A in a distributed system φ is transparent,
if given any correct global message history L of service A, UG transforms a
system’s state φ, L into a state φ′, L′, where global message history L′ of
A is also correct. In other words, the global message history of the updated
service remains correct, despite of any dynamic replacement of the protocols
implementing this service. Recall that a global message history L is a pair
(LS , LD) of all messages that have been sent (LS) and delivered (LD) in φ,
where each message is decorated with relevant names of modules and stacks.
The meaning of message history correctness depends on the service semantics;
we will discuss examples in Section 5.2.5.

We can define formally the transparency property using two judgments
and the rules for reasoning about the judgments, as given in Figure 5.6. The
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judgment for message histories has the form A ⊢h L, read “L is a correct
global message history of service A”. The judgment for global update UG has
the form A ⊢tgu UG, read “UG is a transparent global update of service A”.

The rules (Null-History) and (Merged-History) are core rules for reasoning
about message histories. They state that a message history constructed by
appending two, possibly empty histories that are themselves correct is also
correct. The Lisp-like append operation Li@L′

i returns a new list whose ele-
ments are the elements from the Li and L′

i lists, in the order in which they
appear in the corresponding lists.

Note that the transparency property (see the (Transparency) rule in Fig-
ure 5.6) essentially means that when no failures occurred, the service being
updated remains operational during and after the update—i.e., any calls of
this service made by other protocols are guaranteed to succeed, and the rounds
caused by these calls are guaranteed to terminate. (Otherwise, the global mes-
sage history would be incorrect.) In our model however we neglect any delays
that may be caused by global update; good switching algorithms should min-
imize these delays.

In order to define transparency of global update, we have assumed that
both an old protocol to be replaced as well as the new protocol replacing it,
must correctly provide the same service. If the old protocol would be incor-
rect, then the global message history L just before the update commenced
may not be correct either. Thus, any bug-fix update, i.e. replacement of an
erroneous protocol by a correct one, is not transparent according to our defi-
nition. This agrees with the informal meaning of transparency, since the effect
of such global update could be observed (e.g. errors are not repeated). On the
other hand, replacement of a correct protocol by an incorrect one appears to
be transparent till some errors manifest themselves. We do not define global
update transparency in such a case.

Finally, we can say that a global update UG of a service A in a distributed
system φ is correct if it is transparent. This definition could be changed to
accommodate more specific cases for which the above definition does not apply,
e.g. replacement of an erroneous protocol for a correct one is not transparent.

5.2.5 Properties of dynamic protocol update

Our definition of global update transparency and correctness only requires that
the global message history must match the semantics of the service being up-
dated. Note that global update of services whose semantics permits messages
to be lost, could in principle loose some messages, e.g. the User Datagram
Protocol (UDP)—one of the core Internet protocols—does not provide the re-
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φ, L
UG(φ,b/a)

−→∗ φ′, (L′
S , L′

D)

φ, L −→∗ φ, (L′′
S , L′′

D)

set(L′
S) = set(L′′

S)

set(L′
D) = set(L′′

D)
(No-Message-Lost)

φ, L
UG(φ,b/a)

−→∗ φ′, L′

φ, L −→∗S.b⇑m
−→ −→∗ φ′′, L′′

L′′ = (L′′
S , L′′

D)

L′′
S |a = L′′

D|a
(Message-Order)

Figure 5.7: Properties of switching algorithms

liability and ordering that the Transmission Control Protocol (TCP) does, and
so some messages could be lost during its update. Most applications however
require that protocols should not loose messages. Some applications may also
require that the protocols preserve certain order of message delivery.
We can therefore identify at least two classes of services in terms of message

history properties: (i) services that do not loose nor duplicate messages, and
(ii) services that guarantee certain order of message delivery. Correspondingly,
we can define two properties of dynamic protocol update: No-Message-Lost
and Message-Order, which are defined as follows.

Property 1 (No-Message-Lost). A global update UG of a distributed system
φ has the No-Message-Lost property if: (i) UG eventually terminates, and (ii)
if φ does not get stuck, then the updated φ will deliver exactly the same set
of messages as the non-updated φ would.

Switching algorithms that only satisfy the No-Message-Lost property can-
not be used to update services ordering messages. Below is another property.

Property 2 (Message-Order). A global update UG of a distributed system
φ, replacing one protocol for another one has the Message-Order property if:
(i) UG eventually terminates, and (ii) after a module of the new protocol has
been used to deliver a message in some stack, the old protocol will never be
used to deliver any message in any stack.

The above two properties have been concisely expressed using the (No-
Message-Lost) and (Message-Order) rules in Figure 5.7, where global message
histories LS |a and LD|a, cut to a module a, were defined in Figure 5.2.



124 CHAPTER 5. DYNAMIC PROTOCOL UPDATE

Consider dynamic update of some service that delivers messages in a cer-
tain order. The Message-Order property guarantees that a protocol of this
service to be replaced by another protocol, can be used to deliver messages
only until the new protocol will be used somewhere for the first time. Thus,
up to this global time all messages sent by the old protocol are guaranteed to
be delivered. Moreover, after this time no message can be sent using the old
protocol. (Otherwise, condition L′′

S |a = L′′
D|a in the (Message-Order) rule would

not be true.) If both protocols are correct, i.e. their global message histories
are correct and messages are delivered by these protocols with the prescribed
order, then by (Merged-History) we have that the global history of the updated
system is also correct.
Note that the No-Message-Lost property does not guarantee message order

since it only guarantees that messages delivered during the global update are
not lost, nor duplicated.

5.3 Switching Algorithms

Consider global update UG of a distributed system φ, which means replacement
of a protocol Θ(a) in φ by a new protocol Θ(b). Below we describe two example
switching algorithms that could be used to implement UG.
We have defined the algorithms using a set of transition rules, each rule

describing an atomic, single or double evaluation step of the algorithm. Atomic
steps of the algorithms can be freely interleaved with the steps of other pro-
tocols in the system. The rules are expressed using the syntax in Figure 5.1,
extended with polyadic messages (a polyadic message is a sequence of names
or values). For readability, we give in each rule only part of the state, i.e. a
local protocol stack in which a given action occurs, instead of a whole dis-
tributed system φ. In the description of the algorithms, we also use the notion
of module bindings. Recall that bound modules (e.g. a l) can be used both for
service calls and message deliveries, while passive modules (e.g. a ↑) can only
deliver messages in the stack.
Updating φ with a protocol Θ(b) may also involve adding some new proto-

cols to each stack, so that all services required by Θ(b) are eventually provided.
We omit an algorithm for adding new modules to the system; it could be sim-
ilar to the second switching algorithm in this section.

5.3.1 Synchronized protocol update

The Synchronized Dynamic Protocol Update (S-DPU) algorithm updates a
distributed system by replacing an old protocol in a distributed system φ by
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a, a′ : (ABcast,R) a ∈ S a′ ∈ S ′ S,S ′ ∈ φ

φ, L ⊢ a Free L = (LS , LD)

LD|S.a = LD|S ′.a′
(ABcast)

Figure 5.8: The message delivery property of atomic broadcast

a new one. Firstly, it “passivates” bindings of the old and new modules in
each stack, i.e. it sets up the bindings to ↑ so that the modules are passive.
Then, the old module is removed and the new module is bound in every stack;
this operation takes place locally only after it can be guaranteed that the old
module will not be needed anymore to complete any protocol rounds.
To support concurrent global updates and termination of the global up-

date under stack crashes, our switching algorithm communicates control mes-
sages using a totally ordered broadcast protocol [40], providing a service named
Atomic Broadcast (ABcast). We assume abcast to be some implementation of
ABcast (see, e.g. a survey paper [24] for many examples of such protocols).
Execution of ABcast(m), where m is a fresh message, broadcasts m to all

stacks with guarantees that the round of the Θ(abcast) protocol will terminate,
and if some stack delivers message m before another message m′, that was
also broadcast using Θ(abcast), then every stack delivers m before m′. This
property has been specified in our model using the (ABcast) rule in Figure 5.8,
where the Free property is defined in Figure 5.2. The rule says that if we
take any two protocol modules a and a′ of type (ABcast,R) for some R,
that are in stacks, respectively S and S ′, then for any state φ, (LS , LD) of
a distributed system φ, such that either module is free in this state, we have
that the histories LD|S.a and LD|S ′.a′ of messages delivered by these modules
up to this state are exactly the same.
Below are steps of the S-DPU algorithm (see Figure 5.9 for a precise defi-

nition). We assume that initially, i.e. when a message history is (nil, nil), all
stacks in φ are identical.

Definition 8 (Synchronized Dynamic Protocol Update (S-DPU)).

S1 .̇ Broadcast a fresh message (S1, a, b) to all stacks, where a module a to
be replaced by a module b is bound in a stack S, and can be replaced in
S by b.

S2 .̇ Upon receipt of (S1, a, b), passivate module a in the local stack S and
extend S with passive module b. Then, broadcast a fresh message (S2,
a, b).
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S1 :
S{b/a} a l ∈ S

S, L
ABcast(S1,a,b)

−→ S, L

S2 :

S.abcast ⇑ [S1, a, b] abcast : (ABcast, ..)

S ′ = (S \ {a l}) ∪ {a ↑} ∪ {b ↑}

S, L −→ S ′, L
ABcast(S2,a,b)

−→ S ′, L

S3 :

S.abcast ⇑ [S2, a, b] from all S ′ ∈ φ

S, L ⊢ a Idle

S, L
ABcast(S3,a,b,Finish)

−→ S, L

S4 :
S.abcast ⇑ [S3, a, b,Finish] from all S ′ ∈ φ

S, L −→ (S \ {a ↑} \ {b ↑}) ∪ {b l}, L

L = (LS , LD) LS |S.a = LD|S.a

S, L ⊢ a Idle
(Idle)

where LS |S.a = {mS.a | mS.a ∈ set(LS)}

LD|S.a = {mS.a | mS.a ∈ set(LD)}

Figure 5.9: The Synchronized DPU algorithm



5.3. SWITCHING ALGORITHMS 127

S3 .̇ Upon receipt of (S2, a, b) from all stacks, wait until module a is idle in
the local stack S, then broadcast a fresh message (S3, a, b, Finish).

A module a of stack S is idle, denoted S, L ⊢ a Idle where L is a message
history, if all messages sent to a (by any stack) have been delivered by
a 1.

S4 .̇ Upon receipt of (S3, a, b, Finish) from all stacks, remove module a from
the local stack S and bind module b.

Note that the output and delivery of update-related control messages do
not modify message histories.
Below is an example result about the S-DPU algorithm, which states that

module rebinding by the algorithm is safe.

Lemma 14 (Safe Rebinding). If S-DPU algorithm binds a new protocol mod-
ule in some state, then the module being replaced with the new module is free
in this state.

Proof. Consider binding of some module a in step S4 of S-DPU. Then

1. by premise of S4 and (ABcast), each stack S in φ has executed S3 ,

2. by 1. and S3 and the definition of S, L ⊢ a Idle, each stack S in φ has
been in a state φ, L, such that LS |S.a = LD|S.a,

3. by premise of S3 and (ABcast), each stack has executed S2 ,

4. by 3. and S2 , each stack has unbound a in S3 , so LS |S.a = LD|S.a is
true not only in S3 but also in S4 ,

5. by 4. and premise of S4 and (ABcast), LS |S.a = LD|S.a for all stacks
S ∈ φ,

6. by 5. and the definition of Li|a (i = S, D) in Figure 5.2, LS |a = LD|a,

7. by 6. and (Freedom), φ, L ⊢ a Free in S4 ,

8. by 7. and conclusion of S4 , this completes the proof.

We conclude that the S-DPU algorithm satisfies the Message-Order.

Theorem 8 (S-DPU Safety). Updating a distributed system with the S-DPU
algorithm satisfies the Message-Order property.

1We assume the existence of a global snapshot algorithm [65] to determine this predicate.
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Proof. Consider global update UG(φ, b/a). By Lemma 14 and S4 , when a new
module b is bound in a state φ, L, then an old module a is free. By S2 , a
has been unbound in state φ, L, i.e. for any state φ′, L′ following φ, L in S4 ,
we have L′

S |a = L′
D|a. Since the new module b can be used for the first time

to deliver a message in any state following state φ, L, by (Message-Order) this
completes the proof.

The S-DPU switching algorithm essentially implements a distributed hand-
over of protocol modules in all stacks. To be able to replace modules safely,
the system must be transformed to a global state which guarantees that no
messages can ever be destined for the protocol to be replaced. This global
predicate can be computed, e.g. using distributed algorithms for computing
global states in asynchronous distributed systems (see, e.g. [65] for many ex-
amples of such algorithms). The S-DPU algorithm also depends on reliable
broadcasts, preserving a total order of message delivery. Unfortunately, the
totally ordered broadcast protocols that give such semantics are not efficient
enough for some distributed applications.

Below we describe a switching algorithm that is efficient and well scalable
but it does not satisfy the (Message-Order) property. It requires that each pro-
tocol message is communicated with a module that can be used to interpret
the message; this module is installed in a stack upon message delivery (unless
the stack has already installed the module). This means that the old and new
implementations of a given service must coexist in every stack, since either of
them may be used to deliver messages. In order to remove obsolete modules,
some “garbage collection” algorithms could be designed; an example algorithm
would be similar to the one computing the Idle predicate.

5.3.2 Lazy protocol update

The Lazy Dynamic Protocol Update (L-DPU) algorithm updates a distributed
system lazily, by extending stacks with a new module whenever needed.

We associate messages with modules that are used to deliver the messages.
If a protocol module required to deliver a message is not in a local stack, then
it is added to the stack, bound, and the binding of the old module imple-
menting the same service is “passivated”. Thus, any following rounds of the
new protocol will use in this stack the new protocol module. However, any
pending rounds of the old protocol can still complete using the “passivated”
module. Therefore, the algorithm allows the old and new protocols to coexist
in the distributed system for some time, i.e. they can deliver their messages
concurrently.
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L1 : b /∈ S

S.c ⇑ [b, m] for some c ∈ S

a l ∈ S S{b/a}

S ′ = (S \ {a l}) ∪ {a ↑} ∪ {b l}

L = (LS , LD)

S, L −→ S ′, L
S.b⇑m
−→ S ′, (LS , mS.b :: LD)

L2 : b ∈ S

S.c ⇑ [b, m] for some c ∈ S

L = (LS , LD)

S, L
S.b⇑m
−→ S, (LS , mS.b :: LD)

Figure 5.10: The lazy DPU algorithm

The L-DPU algorithm does not require any distributed infrastructure, ex-
cept the one used by the distributed system to communicate messages via
network. Thus, it scales to large networks. Below are actions of the L-DPU
algorithm (see Figure 5.10 for a definition in our model).

Definition 9 (Lazy Dynamic Protocol Update (L-DPU)).

L1 .̇ Upon delivery by a protocol module c in a stack S of a message [b, m],
if there is no module b in stack S, then take any module a in S that is
bound and replaceable by b, passivate a, and bind the module b from
the message, so that the protocol Θ(b) can use message [b, m]. Finally,
deliver m using b.

L2 .̇ Upon delivery by a protocol module c in a stack S of a message [b, m],
if module b is already in the stack S, then the protocol Θ(b) can use
message [b, m]. Finally, deliver m using b.

To guarantee termination of the global update, we could require that an
“update” message containing any new modules is periodically broadcast to all
stacks.

According to Theorem 9, the L-DPU algorithm guarantees that all pro-
tocol messages that have been sent are delivered but message ordering is not
preserved.
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Theorem 9 (L-DPU Safety). Updating a distributed system with the L-DPU
algorithm satisfies the No-Message-Lost property.

Proof. Straightforward by (No-Message-Lost) and atomicity of rebinding in L1 .

5.4 Example: Adaptive Group Communication

In [93, 91], we describe the Adaptive Group Communication (AGC) middle-
ware, that has been developed to facilitate experimentation with switching
algorithms for dynamic protocol update. The AGC middleware can be used to
implement fault-tolerant distributed applications that must dynamically adapt
to unanticipated changes in the network environment. The middleware proto-
cols build on those from the Fortika group communication toolkit [71, 69, 33];
the AGC middleware has been implemented in Java, using the SAMOA pro-
tocol framework, described briefly in Section 2.

An unusual feature of our group communication middleware is that dif-
ferent protocols implementing the same service can be loaded, and switched
dynamically. The switching occurs under control of specialized switching al-
gorithms, which are designed for each updateable service independently from
any existing or future protocols implementing these services. The switching
algorithms guarantee global service availability and correctness while a dis-
tributed update operation takes place. They are executed by the SAMOA
runtime system in background, transparently to the protocols replaced under
their control. Therefore, the SAMOA programmers do not need to be aware
that the protocols which they implement, can be loaded or replaced on-the-fly.
The key idea of our design was to add a level of indirection between the service
callers and the service provider; see [92] for details.

The main building blocks of the AGC system are distributed agreement
protocols1, providing essentially two services: distributed consensus and atomic
broadcast . In [93, 91], we have described specialized switching algorithms de-
veloped for dynamically switching between arbitrary protocols implementing
these services. Our switching algorithms maintain the Message-Order prop-
erty, which is required by the distributed agreement. However, they are more
efficient than the S-DPU algorithm described in this chapter. The key idea was
to explore the semantics of the services to be updated, and in this way to avoid
synchronization that was not necessary. In order to guarantee Message-Order,

1For information on example distributed agreement protocols and their specifications,
see, e.g. [65, 19, 20, 95].
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the switching algorithms in [93, 91] depend on the support of synchronization
that is already provided by the distributed agreement services.

For example, let us consider global update of the distributed consensus
service. This service ensures that given a group of distributed processes, after
a round of consensus, all processes would agree on the same value, which has
been chosen from values proposed individually by each process. Our switching
algorithm has three steps, and uses the semantics of consensus for replacement
of the consensus protocols, as follows. Firstly, an intend to replace a consensus
protocol Θ(a) by Θ(b) is broadcast. Then, all processes must decide when b
can be bound locally. For this, b could be piggybacked on any message that
must be processed by the consensus service. Finally, when the decision about
b has been delivered (that means all stacks reached consensus about binding
b), a is passivated and b is bound; from now on, the new module b is used to
process any subsequent messages. The time between binding a new module
and making the old one passive is maximally reduced.

The details of the AGC switching algorithms and some results of perfor-
mance measurements are in [93, 91]. The results show that the group commu-
nication service is available almost continuously while protocols implement-
ing the updated distributed agreement service are switched on-the-fly. This
practical experiment demonstrates that dynamic protocol update in a group
communication system is feasible, and can be done efficiently. Most notably,
our approach only uses the agreement service. This is in contrast to other
adaptive group communication systems, which often require additional mech-
anisms, such as barrier synchronization (Graceful Adaptation [21]) or group
membership (Maestro [105] and Appia [78]). Moreover, the application on top
of the AGC middleware is never blocked, which is not the case in Maestro.

5.5 Related Work

The previous work closest to the work described in this chapter is on dynamic
protocol update (DPU). While there has been a lot of interest in dynamic
software updating (see, e.g. [47, 28, 4, 15, 66, 107, 12, 101, 14, 57, 42, 105, 21,
100, 59, 78] among others), and a number of implementations exist, relatively
little work has been done on a rigorous design of dynamic update features for
communication protocols. Below we discuss example protocol frameworks that
support DPU. Next, we present selected work on formalization of DPU, and
on language support for dynamic software updating (DSU).
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5.5.1 Protocol frameworks for DPU

Recent years have seen a growing interest in the design of programming tools
for adaptive systems, i.e. systems that can be reconfigured and adapted to new
environments or changing user requirements; see [68] for examples of such tools
and techniques. In particular, many programming tools and solutions have
been proposed for dynamic protocol update [105, 21, 100, 59, 78]. However,
some of these solutions (e.g. [100] and [59]) are clearly not satisfactory.

In [100], the authors propose a solution that uses a centralized manager,
which limits its tolerance to failures. On the other hand, the solution proposed
in [59] provides facilities to replace only a single module of a protocol, i.e. there
is no synchronization (or coordination) of local and remote module replace-
ments. Few systems offer any support for coordinating local updates. Contrary
to SAMOA, described in Section 2.4, most of the systems that provide any
coordination (or synchronization) of distributed updates, require an explicit
interaction between the updateable protocols and the replacement manager,
which leads to poor modularity since the implementation of DPU strongly
depends on the updateable protocols. Thus, the designers of switching algo-
rithms in these systems must understand the updateable protocols, while in
our approach they only need to know the specification of updateable protocols.
Below is the previous work closest to our own.

The Maestro [105] framework implements a switching protocol, which syn-
chronizes dynamic replacement of protocol stacks in the Ensemble group com-
munication toolkit. However, it only supports replacement of complete proto-
col stacks, i.e. in order to replace a single protocol, the whole stack (containing
the protocol to be updated) is replaced, thus blocking, during update, all ap-
plications executed on top of the stack. Moreover, the design of protocols is not
transparent to the dynamic update mechanism. In order to finalize the protocol
stack, protocols in the stack must be extended with a method finalize that
properly terminates the execution of these protocols. The finalize method is
called by the stack switch module each time the stack replacement is required.
An approach described in [78] is similar to Maestro but implemented using
the Appia [76] protocol framework.

Graceful Adaptation [21] implements switching between network compo-
nents using the Cactus protocol framework. A replacement manager, located
on each host, interacts explicitly with replaceable network components. The
local switch between components is done by deactivating the component that
is currently active, and activating a new component. Each of these operations
is performed by the components themselves; the replacement manager only
coordinates all operations, thus the replacement operation is not transparent.
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The replacement manager uses barrier synchronization for coordinating the
beginning of the replacement across different hosts. A barrier for a group of
threads or processes means that any thread (or process) must stop at this
point and cannot proceed until all other threads (or processes) reach this bar-
rier. The S-DPU switching algorithm, described in Section 5.3.1, resembles
this idea. A similar solution has also been proposed in [100] but it uses a
centralized manager, which limits its scope of applicability.

The approach to DPU in the SAMOA protocol framework has several ad-
vantages over above protocol frameworks. The main advantage is that the
implementation of the switching module does not depend on any concrete im-
plementation of the updateable protocols (and algorithms used by these pro-
tocols), but it is entirely based on the specification of the service implemented
by these protocols. In Maestro and Graceful Adaptation, each updateable pro-
tocol module must be extended with code related to dynamic protocol update.
To be able to write this code, the programmer must understand algorithmic
details of the protocols that may be switched. Contrary to this, the switching
algorithm in SAMOA is encoded entirely by the replacement module. Ordinary
protocol modules are not even aware that the protocol replacement operation
takes place. Our solution is therefore modular in contrast to existing solutions
that require to extend each updateable module.

Another advantage of our approach is that it is highly flexible. Contrary
to Graceful Adaptation, our solution does not limit possible replacements by
imposing any restrictions on the services that the new protocol may require.
Unlike Maestro, replacement of a single protocol in our system does not require
a whole protocol stack to be replaced.

A more detailed comparison of the DPU support in Maestro, Grace Adap-
tation, and SAMOA, using adaptive group communication as an example, has
appeared in [93].

5.5.2 Formalization of DPU

To date relatively little work has been carried out on formalization of dynamic
protocol update. In particular, in none of the above systems (except for Mae-
stro/Ensemble and SAMOA) is there any well developed evidence as to what
conditions are needed to guarantee the correctness of updating distributed
systems on-the-fly. Below we discuss this formalization work.

In [10, 62], the authors describe a generic switching protocol using the
Nupr logical programming environment; the algorithm was intended for the
Maestro/Ensemble [105] group communication toolkit. They have formally de-
fined several meta properties on traces of send and deliver events, that should
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be preserved by updateable protocols. While in [118], we have identified space
between lazy and synchronized update strategies with a correspondingly large
number of very different switching algorithms, they only describe one switch-
ing algorithm. The algorithm is correct only for replacement of protocols that
must exhibit all their (six) meta-properties; it cannot be applied for arbitrary
protocols.
On the contrary, in the context of the SAMOA protocol framework, we have

defined in [93], two generic correctness properties of dynamically updateable
systems: stack-well-formedness and protocol-operationability. Preserving these
properties and some additional correctness properties, which are specific to
the protocols being replaced, guarantees that the dynamic protocol update is
transparent to the users of the protocols.

5.5.3 Language support for DSU

Below we discuss example work in the area of language design for dynamic
software update.
The Erlang [4] programming language allows software modules to be re-

placed at runtime, however with no safety guarantees.
The Java HotSpot Virtual Machine [50] allows a class instance to be re-

placed with the new instance in a running application through the debugger
Application Programming Interfaces (APIs).
In the recent years there have been several efforts to support safe dynamic

software updating by construction, i.e. to guarantee statically that the updated
program remains type-correct. Below we discuss some of this work.
Dynamic ML [107] enables type-safe module replacement at runtime;

changes can include the alternation of abstract types at update-time, and the
addition (and possibly removal) of module definitions via garbage-collection.
Dynamic Java classes [66] offer type safety preservation but compromise porta-
bility by modifying the Java Virtual Machine; also, class replacement is not
synchronized with threads using old code. Duggan [28] describes a type-safe
approach that allows a new module to change the types exported by the orig-
inal module; it however does not discuss the rebinding facility.
Bierman et al. [11] study dynamic software updating with a small extension

of a lambda calculus that supports an Erlang-like updating features. A prelim-
inary discussion of safety properties is included. In continuation of this work,
Stoyle et al. [101] investigate type-safe dynamic updating in C-like languages.
Methods of distributed versioning, such as Sewell’s [96] fine-grain version-

ing control of values of abstract types, could be used to support interoperation
of old and new modules.



Chapter 6

Dynamic Rebinding

To be able to compose and decompose software components at run time, some
form of dynamic rebinding between components (or objects) is needed. In this
chapter, we identify basic properties of dynamic object (re)binding, and define
a class-based object calculus that gives precise meaning to these properties. A
preliminary variant of this calculus has been published in [115].

What do we mean by dynamic object rebinding? Consider a construct
bind A a that binds a name A to an object a. The effect of binding name
A to a is that we can refer to a via name A, e.g. a method m of object a can
be invoked either via a.m or A.m. The crucial point here is that the object a
can be later unbound from A (using a construct unbind A) and another object
b can be rebound to A at runtime. By the alias change, any concurrent object
c that knows name A, has been therefore unbound from a and bound to b.

We must ensure that types of objects a and b that are dynamically bound
to A, match the corresponding types of fields and methods accessed or called
via name A. For this, A is not a pure name but it is a signature that declares
types of fields and methods of objects that are bindable to A. Objects are
defined by classes, which define fields and methods with their types. Checking
the match between signatures and classes is mostly standard; for clarity, we
leave therefore our calculus untyped, focusing on the operational semantics.
Note that an object c invoking a method A.m may not even know the object
on which method m is invoked. This simple mechanism can be used to imple-
ment software components (or objects with a predefined interface) that can
be composed dynamically.

In this chapter, we investigate a small set of low-level language constructs
that can be used to reason formally about dynamic object rebinding. In par-
ticular, we have used our language to give precise meaning to basic properties
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of dynamic object rebinding. We also define two example semantic properties
that are often demanded by concurrent programs with low-level bind/unbind
operations. We illustrate one of the semantic properties using a small example,
erroneous program. Then, we show how the program can be fixed up using
the synchronization abstractions designed in this book (the atomic construct
and concurrency combinators).

The chapter is organized as follows. Section 6.1 introduces basic notions
and defines the syntax of our calculus. Section 6.2 presents a set of language
properties of dynamic object rebinding, and two example semantic properties
of programs that use the dynamic rebinding feature. To illustrate one prop-
erty, Section 6.3 shows an example erroneous program and how to fix it up.
Section 6.4 formalizes the operational semantics of our language, thus giving
precise meaning to the properties defined earlier. Finally, we discuss related
work in Section 6.5.

6.1 The Object Calculus of Dynamic Rebinding

In this section we define the calculus of dynamic rebinding (or the DR-calculus,
in short) as the call-by-value λ-calculus [87], extended with signatures, objects,
object binding/unbinding, exceptions, threads and atomic tasks. The syntax
of the language is in Figure 6.1. The main syntactic categories are signatures,
classes, values and expressions. For convenience, we differentiate names: A, B
range over signature names; P , Q range over class names; f ranges over object
field names, and m ranges over method names. We write x as shorthand for a
possibly empty sequence of variables x1, ..., xn (and similarly for t, v, and e).
We abbreviate operations on pairs of sequences in the obvious way, writing e.g.
x : t as shorthand for x1 : t1, ..., xn : tn (and similarly for f = v). Sequences
of parameter names in functions and class methods are assumed to contain
no duplicate names. We write M as shorthand for a (non-empty) sequence of
methods M1, ... , Mn in a class. Methods of the same class must contain no
duplicate names; similarly, field names are unique per class.

6.1.1 Syntax

Types

Types include the base type Unit of unit expressions, which abstracts away
from concrete ground types for basic constants (integers, Booleans, etc.), the
type Sig of object signatures, the type Obj of objects, and the type t → t′ of
functions and class methods.
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Variables x, y, a, b ∈ Var

Signature names A, B, C ∈ Sig

Class names P, Q ∈ Lab

Field names f

Method names m

Interface names n ∈ Sel ::= f | m

Types t ::= Unit | Sig | Obj | t → t′

Signatures s ::= sig A {f1 : t1, ... , fk : tk,

m1 : t1 → t′1, ... , mn : tn → t′n}

Fun. abstractions F ::= x : t = {e}

Methods M ::= t m F

Classes C ∈ Class ::= class P {f1 = v1, ... , fk = vk,

M1, ... , Mn}

Values v, w ∈ Val ::= () | A | new P | F

Expressions e ∈ Exp ::= x | v | e.n | e e | let x = e in e

| e := e | bind e e | unbind e

| try e catch e | escape | fork e

We work up to alpha-conversion of expressions throughout, with x binding in e in an

expression x : t = {e}, and x in e′ in an expression let x = e in e′. Names do not

bind, and so are not subject to alpha-conversion.

Figure 6.1: The class-based object calculus of dynamic rebinding: Syntax

Signatures

A signature describes an object interface, i.e. a declaration of object fields and
methods that can be accessed or called upon an object via the signature. Syn-
tactically, a signature is a keyword sig, followed by the name of the signature,
and a sequence of field and method names, accompanied with their types. If an
object implements some service, then the name of this service is the signature.

Methods

A method of the form t m F has declarations of a type t of the values that
it returns, its name m, and its body F . Access control is not modelled (all
fields and methods are public). Objects can refer to their own methods with
self.m, where self is a variable. A method’s body is a function abstraction of
the form x : t = {e} (we adopted the C++ or Java notation, instead of the
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usual λx : t.e from the λ-calculus).

Classes

A class has declarations of its name (e.g. class P ) and the class body {f =
v,M}, where f = v is a sequence of fields (data containers) accessible via
names f and instantiated to values v, and M is a sequence of object methods.
Classes do not explicitly declare their superclass with extends since we do not
model class inheritance. Class inheritance and object constructor methods can
be easily added to the calculus definition, in the style of Featherweight Java
(FJ) [53]. We assume that every class implicitly extends a special class Object,
like in FJ. The class Object does not define any fields nor methods.

Values

A value is either an empty value () of type Unit, a signature name, e.g. A,
an object instance, e.g. new P , or function abstraction x : t = {e}. Values
are first-class, they can be passed as arguments to functions and methods,
and returned as results or extruded outside objects. (Typing could be used to
forbid extruding functions that contain object self references.)

Basic expressions

Basic expressions e are mostly standard and include variables, values,
field/method selectors, function/method applications, let binders, and field
assignment e := e. The let-binder is a construct of ML-like languages, that
can be used to define functions, and to bind object and immutable data to
variables. For instance, let x = new P in e creates a new object of class P
that is bound to a variable x (where x binds in e). Then, we can write e.g.
x.f := v to overwrite a field f of object x with a value v, or we can write e.g.
x.m v to call a method m of object x. We use syntactic sugar e1; e2 (sequential
execution) for let x = e1 in e2 (for some x, where x is fresh).

Dynamic binders and exceptions

Execution of bind A a binds a signature A to an object a; any previous binding
of signature A disappears. Execution of unbind A unbinds a signature A from
any object bound to A, or raises an exception if no object is bound to A.

To catch exceptions, we have an expression try e catch e′, which is sim-
ilar to the one found in ML-like languages. If there was an exception thrown
in e then the execution of e terminates and e′ commences. Execution of
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try e catch e′ returns either the result of e, if no exception occurred, or
the result of e′, if there was an exception thrown in e and no exception in e′.
Exceptions can be thrown explicitly using escape, or implicitly (as in unbind).
If there is no expression to catch an exception, the execution of escape blocks
its thread of execution.

Threads

The language allows multithreaded programs by including an expression
fork e, which spawns a new thread for the evaluation of expression e. This
evaluation is performed only for its effect; the result of e is never used.

Programs

A program is a pair (ct, e) of a class table ct and a main expression e, where
the class table ct is a mapping from class names to class declarations. To
lighten the notation, we always assume a fixed class table ct. To avoid un-
caught exceptions we syntactically restrict the program’s main expression e to
have the form try e′ catch v, where v is a value. We assume that a class table
satisfies some sanity conditions: (1) ct(P ) = class P ... ; (2) Object /∈ ct;
and (3) for every class name P (except Object) appearing anywhere in ct,
we have P ∈ dom(ct). Given these conditions, a class table can be easily
identified with a sequence of class declarations.

6.2 Properties of Dynamic Rebinding

Below we present basic properties of language constructs for binding/unbind
objects in our calculus, together with some discussion of higher-level rebinding
constructs that could be built on top of our calculus.
Then, we give two example semantic properties of programs, in which ob-

jects can be rebound dynamically. The untyped calculus presented in this
chapter does not have language support to declare and verify if such semantic
properties hold. We leave this for future work.

6.2.1 Language properties

Below are runtime properties of the language constructs. After each property,
we provide a short justification of our design choice.

Property 3 (Binding Uniqueness). At run time, a signature A has two pos-
sible states: it either binds to some object or not.
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This is due to the fact that we decided to have two language constructs:
bind A v that binds a signature A to an object v, and unbind A that unbinds
the signature. Our intention was to model these two operations. At the higher-
level of abstraction, however, the programmers may want to have a single
construct that e.g. replaces software components in one atomic step. Then,
there is a guarantee that every signature is always bound to some object.

Property 4 (Binding Restriction). At most one object can be bound to a
signature A at a time.

If more than one object could be bound to a signature A, then a method call
A.m would not know which object to call; similarly, a field accessA.f would not
know which object to select. (In our language, the same field or method names
can appear in different classes.) At the higher-level of abstraction, however,
overwriting bindings of A could be encoded; the higher-level unbind construct
could then remove the current binding and deactivate any previous binding if
it exists.

Property 5 (Object Aliasing). An object can be bound to many signatures.

We allow this for expressiveness at the operational semantics. We think that
object aliasing could be useful for programmers. If any restriction is required,
then it should be declared by programmers, and enforced via a type system.

Property 6 (Failures). If no object is bound to A, then unbind A fails, field
access A.f fails for any f , and method call A.m fails for any m.

The above property with an exception mechanism built into the calculus allows
for more expressiveness. We can express alternative actions in the event of
failure at the higher level of abstraction, e.g. “wait till some object is bound”.

Property 7 (Concurrency). The operations of binding/unbinding a signature
A, and the object field accesses or method calls via A can be concurrent.

Concurrency stems from various reasons, e.g. old and new protocol compo-
nents may need to coexist for some time, as it was in the case of the switching
algorithms in Chapter 5, and the execution of the switching algorithms them-
selves is concurrent with the execution of the updated protocols.

6.2.2 Semantic properties

Below are two example properties that may be required by some programs
with object rebinding.
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Property 8 (Reference Consistency). A set of object references R =
{Ai.nj | i = 1..k, j = 1..l} is consistent in an expression e, if exists object
v such that any method call or field access Ai.nj in R, as part of evaluation
of e, refers to v.

This property is useful, e.g. to guarantee that if a method call via a given
signature has been executed upon some object, then another reference via
this signature (a method call or field access) in the same protocol round will
also be executed upon the same object. In Section 6.3, we present an example
program that illustrates this case.

Property 9 (Signature Linearity). A signature A is linear in a program,
if it is either unbound, or it binds the same object v during whole program
execution; object v that was bound to A cannot be rebound to other signature.

If a linear signature A has been bound to some object, then it cannot be
rebound to another object, and vice versa. This property could be useful in
programs in which dynamic object rebinding is not a feature to mask imple-
mentations of a given signature, but to authenticate an object via a signature.
If objects are communicated between machines (as part of some protocol), it
may be useful to use for the authentication an abstract signature of an object,
rather than its concrete name.

6.3 Example Program

To explain the need for the reference consistency property (Property 8 in Sec-
tion 6.2), we use a small, erroneous program. Then, we fix up the program
using two synchronization means described in this book, i.e. the atomic con-
struct and the concurrency combinators.
The program below implements an exchange of messages between a client

and an anonymous server, accessible via a signature A. The program instanti-
ates two objects a and b that implement two different variants of the server,
defined by classes A and B. Initially, A binds to a but later it is rebound to
b. Server switching occurs in parallel with the message exchange between the
client and the server. For simplicity, the server and the client are not dis-
tributed but executed on a single machine.
The client-server protocol uses public key cryptography , which can be ex-

plained as follows. The client encrypts a message m using server’s public key
to produce an encrypted message; only the server can decrypt this message,
so this ensures secrecy. The server can sign a message m by encrypting it with
its secret key (which is the inverse of the public key); any client in possession
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of server’s public key can then decrypt this message. Public key cryptography
is used, e.g. in an authentication protocol [64]).

(* Declaration of signatures and classes *)

sig A

{
getn : Obj

put : Int -> Int

}

class P

{
getn = self (* an object’s unique name *)

secretKey = 1 (* a secret key of P *)

Int put (v : Int) =

{
decrypt (v, self.secretKey)

}}

class Q

{
getn = self (* an object’s unique name *)

secretKey = 2 (* a secret key of Q *)

Int put (v : Int) =

{
decrypt (v, self.secretKey)

}}

class Updater

{
Unit update (x : Sig, o : Obj) =

{
unbind x; (* unbind signature x from any object *)

bind x o (* bind signature x to object o *)

}}

(* Init *)

let a = new P in (* create object a *)

bind A a; (* and binds sig A to a *)

let b = new Q in (* create object b *)

(* The updater *)

fork (new Updater).update(A, b); (* rebind A to b *)
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(* The client *)

try

A.put (encrypt (100, keyStore.publicKey(A.getn)))

catch

0

The client (see the clause try ... catch ...) obtains server’s public key from a
trusted key store keyStore, using a method keyStore.publicKey; the method
accepts as its argument the server’s name, which is obtained by reading a
field A.getn of the server’s object. This name is guaranteed to be unique for
every new instantiation of the server (in our program, it is an object location
returned by self). The key store (omitted here) returns a public key that
corresponds to this name. To send a message (a value 100) encrypted using
the public key, the client invokes server’s method A.put. Execution of A.put
(see class P or class Q) decrypts the message using server’s secret key, which is
stored in the server’s object field secretKey.

An exchange of an encrypted message between the server and the client
occurs in parallel with dynamic replacement of the actual object implementing
the server. For this, we have an updater object Updater, with a single method
update that implements a simple handover protocol: it takes as arguments a
signature and an object, unbinds anything bound to the signature and binds
the new object. In the main expression, a concurrent thread (created with
fork) calls an updater’s method update that unbinds a server object a (bound
to A) and binds server object b to A. For simplicity, we require that A is
initially bound. The client does not know if it calls a or b—it is not aware of
the hot-swapping done by the updater.

The program is problematic in twofold ways. Firstly, the client may call a
server using a signature A that has been unbound by the update method and
not rebound yet, thus leading to an exception error. Secondly, the following
property is not true:

Property 10 (Safety). A message encrypted with a public key of object x is
also received by x (for any x).

We would like this property to hold in our program. Otherwise, the client
may encrypt and send a message to the server using a public key of another
server, which is like an attack on the public key cryptography protocol. Note
that if we could make sure that all references to the server via a signature A
(i.e. methods calls and field accesses via A) satisfy the reference consistency
property, then safety is preserved. Below are two different implementations of
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the reference consistency in our program. The first solution uses the atomic
construct, described in Chapter 3, while the second one uses the concurrency
combinators, described in Chapter 4.

6.3.1 Solution using atomic

To fix up our program, we encode the message exchange protocol (initiated
by the client) and the update protocol (in the update method) as two atomic
tasks. We assume that the language in this chapter has been extended with
the atomic and sync constructs described in Chapter 3. This extension is
straightforward since the core of both languages is the same calculus (the
call-by-value λ-calculus). Below is an example code of the corrected program.

(* Declaration of verlocks, signatures and classes *)

newlock l : Type in

class Updater

{
Unit update (x : Sig, o : Obj) =

{
atomic l sync l

(unbind x; (* unbind signature x from any object *)

bind x o) (* and bind signature x to object o

atomically *)

}}

(* Init *)

(...)

(* The updater *)

fork (new Updater).update(A, b); (* rebind A to b *)

(* The client *)

try

atomic l sync l A.put(encrypt(100, keyStore.publicKey(A.getn)))

catch

0

The two atomic tasks in the above program use only one verlock of some
abstract type Type. Thus, this implementation of reference consistency is not
different from another implementation that would simply use a single coarse-
grain lock instead of atomic tasks. Atomic tasks could turn out to be more
useful, e.g., if the client would need to communicate with more than one server
using the same secret key.
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Consider a variant of our program, in which there are many clients com-
municating with the server, where each client is executed by a separate thread.
The use of the atomic construct or locks to implement reference consistency
means however that the concurrent clients are also isolated each other. For
the program to satisfy safety (see Property 10), it is actually enough to syn-
chronize a client with the updater, but there is no need to synchronize the
execution of concurrent clients among themselves. Below is another solution
that builds on this observation.

6.3.2 Solution using concurrency combinators

Below we fix up our program using the concurrency combinators. We assume
that our language has been extended accordingly, using the constructs and se-
mantics described in Chapter 4, except that the rudimentary binding construct
there has been replaced by the bind construct introduced in this chapter. Be-
low is an example code of the corrected program.

(* Declaration of signatures and classes *)

sig C

{
update : Sig, Obj -> Unit

}

class Updater

{
Unit update (x : Sig, o : Obj) =

{
unbind x; (* unbind signature x from any object *)

bind x o (* bind signature x to object o *)

}}

(* Declaration of concurrency combinators *)

D = A.getn ⊲ A.put
D isol C.update

(* Init *)

(...)

(* The updater *)

bind C (new Updater);

fork C.update(A, b); (* rebind A to b *)
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(* The client *)

try

A.put (encrypt (100, keyStore.publicKey(A.getn)))

catch

0

The core part of the code (implementing the client and the server) is exactly
like in the original, erroneous version of our program. The only differences are
as follows. We added a definition of a signature for the updater class. Then,
we have used the concurrency combinators to declare a synchronization policy,
which specifies that a server’s method A.getn should be called before a method
A.put, and the execution of these two methods should be atomic with respect
to the execution of a method C.update. Note that the policy does not require
any concurrent callers of methods A.getn and A.put to be synchronized, i.e.
they can be executed in parallel.
We also needed to slightly rewrite the updater’s code so that it calls the

updatemethod via a signature C bound to the updater’s object; this is required
since the declared synchronization policy refers to this object. The code of the
client and of the server’s classes remains however unchanged.

6.4 Operational Semantics

6.4.1 Basic definitions

We specify the operational semantics of our language using the abstract ma-
chine defined in Figures 6.2 and 6.3. The machine evaluates a program by
stepping through a sequence of states. A state S consists of three components:
an object store ∆, a bind store β, and execution threads T , organized as a
sequence T0, ..., Tn.
The object store ∆ is a finite map from object field selectors to values

stored in the fields, where a field selector, denoted oP .f , is an object location
oP indexed by a field name f . The bind store β is a set of pairs (A, oP ) of
a signature name A and an object location oP bound to the signature. The
set difference β \ β′ is the set of elements found in β but not found in β′; the
union of sets β ∪ β′ is the set consisting of the elements of both sets, with no
duplicate elements.
We define a small-step evaluation relation 〈∆, β | e〉 −→ 〈∆′, β′ | e′〉, read

“expression e reduces to expression e′ in one step, with ∆, β being transformed
to ∆′, β′”. We also use −→∗ for a sequence of small-step reductions. By con-
current evaluation, we mean a sequence of small-step reductions in which the
reduction steps can be taken by different threads with possible interleaving.
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State Space

S ∈ State = ObjStore × BindStore × ThreadSeq

∆ ∈ ObjStore = ObjLoc.Sel → Val

β ∈ BindStore = Sig × ObjLoc

oP ∈ ObjLoc ⊂ Var

T ∈ ThreadSeq ::= e | T, T

Evaluation Contexts

E = [ ] | E .n | E e | v E | let x = E in e | E := e | oP .f := E | bind E e

| bind A E | try E catch e | E , T | T, E

Structural Congruence

T, T ′ ≡ T ′, T

T, () ≡ T

〈∆, β | T 〉 −→ 〈∆′, β′ | T ′〉

〈∆, β | E [ T ]〉 −→ 〈∆′, β′ | E [ T ′ ]〉

T −→ T ′

〈∆, β | T 〉 −→ 〈∆, β | T ′〉

Transition Relation

eval ⊆ ((Lab → Class) × Exp) × Val

eval((ct, e), v0) ⇔ 〈∅, ∅ | e〉 −→∗ 〈∆, β | v0, (),· · · , ()〉

Method Body Lookup

ct(P ) = class P {f = v,M}

t m F ∈ M

mbody(m, P ) = F

Figure 6.2: The DR-calculus: Reduction semantics – Part I
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x : t = {e} v −→ e{v/x} (R-App)

let x = v in e −→ e{v/x} (R-Let)

oP /∈ dom(∆)

ct(P ) = class P {f1 = v1, ..., fk = vk, M}

∆′ = (∆, oP .f1 7→ v1, ..., o
P .fk 7→ vk)

〈∆, β | new P 〉 −→ 〈∆′, β | oP 〉
(R-New)

〈∆, β | oP .f := v〉 −→ 〈∆[oP .f 7→ v], β | ()〉 (R-Assign)

〈∆, β | oP .f〉 −→ 〈∆, β | v{oP /self}〉 if ∆(oP .f) = v (R-Field)

mbody(m, P ) = F

oP .m v −→ F{oP /self} v
(R-Invk)

try v catch e −→ v (R-Try)

try..catch /∈ E ′

try E ′[ escape ] catch e −→ e
(R-Esc)

〈∆, β | bind A oP 〉 −→ 〈∆, (β \ {(A, ·)}) ∪ {(A, oP )} | ()〉 (R-Bind)

〈∆, β | unbind A〉 −→ 〈∆, β \ {(A, oP )} | ()〉 if (A, oP ) ∈ β (R-Unbind-1)

〈∆, β | unbind A〉 −→ 〈∆, β | escape 〉 if (A, ·) /∈ β (R-Unbind-2)

〈∆, β | A.n〉 −→ 〈∆, β | oP .n〉 if (A, oP ) ∈ β (R-Lookup-1)

〈∆, β | A.n〉 −→ 〈∆, β | escape 〉 if (A, ·) /∈ β (R-Lookup-2)

E [ fork e ] −→ E [ () ], e (R-Fork)

vi, v
′
j −→ vi if i < j (R-Thread)

Figure 6.3: The DR-calculus: Reduction semantics – Part II
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Reductions are defined using evaluation context E for expressions e. The
evaluation context ensures that the left-outermost reduction is the only ap-
plicable reduction for each individual thread in the entire program. Context
application is denoted by [], as in E [ e ]. Structural congruence rules allow us
to simplify reduction rules by removing the context whenever possible.

Evaluation of a program (ct, e), where ct is constant, starts in an ini-
tial state with empty stores ∅, and with a single thread that evaluates the
expression e. Evaluation then takes place according to the machine’s rules in
Figure 6.3. The evaluation terminates once all threads have been reduced to
values, in which case the value v0 of the initial, first thread T0 is returned
as the program’s result. Subscripts in values reduced from threads denote the
sequence number of the thread, i.e. vi is reduced from i’s thread, denoted Ti

(i = 0, 1, ..). The execution of threads can be arbitrarily interleaved.

6.4.2 Reduction rules

Below we describe reduction rules in Figure 6.3. The first two evaluation rules
are the standard rules of a call-by-value λ-calculus. We write e{v/x} to denote
the capture-free substitution of vi for xi in the expression e (i = 1, .., n).
Function application x : t = {e} v in (R-App) reduces to the function’s body
e in which formal arguments x are replaced with the actual arguments v.
Execution of let x = v in e in (R-Let) reduces the whole expression to the
expression e in which variable x is replaced by value v.

Execution of new P creates a new object of class P . The object is identified
by a fresh object location oP , and represented by a new record of object fields
f1, ..., fk in the object store ∆; see the (R-New) rule. The notation (∆, oP .f 7→
v) means “the store that maps oP .f to v and maps all other selectors to
the same thing as ∆”. The object fields f1, .., fk are accessible via the object
location oP , e.g. oP .fi (i = 1..k) refers to a field fi of object oP . The object
fields in the object record are initialized with field values v1, .., vk defined by
class P .

Rules (R-Assign) and (R-Field) correspondingly, assign a new value v to the
field f of an object oP , and read the current value stored in an object field oP .f .
For instance, let us look at the rule (R-Assign). We use the notation ∆[oP .f 7→
v] to denote update of map ∆ at oP .f to v. Note that the term resulting from
this evaluation step is just (); the interesting result is the updated store. The
(R-Assign) rule must be applied first, if not possible then we try (R-Field).

Similarly to FJ, the invocation oP .m v of a method m of an object oP

applies the beta-reduction rule from the call-by-value λ-calculus; see the (R-
Invk) rule. The rule first looks up in the class table ct a method body F of
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the form x : t = {e} (using a function mbody(m, P ) defined in the bottom of
Figure 6.2); then, it reduces to the method body in which self is replaced by
the receiver oP . Then, the application rule (R-App) (described earlier) can be
used, which applies the arguments v to the method m.

Exceptions are defined using two rules. The (R-Try) rule defines the
case when no exception was thrown; it simply reduces the whole expression
try ... catch with the body reduced to a value v to the value v; the catch
clause is discarded. To throw an exception, the escape construct is used. If
escape is in the redex position of the expression e′ in the body of the inner-
most try e′ catch e, the (R-Esc) rule reduces try e′ catch e to the exception
handler e.

Dynamic binder bind A oP in rule (R-Bind) removes from store β any
previous binding (A, ·) of a signature A, and extends β with a new element
of A paired with an object location oP . The whole expression reduces to the
empty value (). Dynamic unbinder unbind A in rules (R-Unbind-1) and (R-
Unbind-2) removes the binding (A, ·) from store β and reduces to the empty
value (), or throws an exception with escape if no binding of A exists.

Dynamic resolver A.n in rules (R-Lookup-1) and (R-Lookup-2) returns the
field/method selector oP .n, where oP is the object location currently bound
to a signature A, or throws an exception if no binding of A exists.

Execution of an expression fork e in (R-Fork) creates a new thread which
evaluates e; the result of evaluating expression e will be discarded by rule
(R-Thread); threads may however have side-effects, e.g. modification of ob-
ject fields. The results of evaluating threads (except of the initial thread) are
discarded by (R-Thread).

6.5 Related Work

6.5.1 Object calculi

There have been many proposals of various object calculi; we sketch some of
the most known examples below.

Abadi and Cardelli [2] have developed an imperative calculus of objects,
equipped with an operational semantics and typing (and subtyping); with
addition of polymorphism, the calculus can express classes and inheritance.
The object calculus of Gordon and Hankin [36] extends Abadi and Cardelli’s
imperative object calculus with operators for concurrency from the π-calculus
[74] and operators for synchronization based on mutexes. Our calculus also has
synchronization abstractions built-in (the atomic construct and concurrency
combinators), albeit semantically richer than mutexes.
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Igarashi, Pierce and Wadler [53] have proposed a small calculus, Feath-
erweight Java (FJ), that provides classes, methods, fields, inheritance, and
dynamic typecasts, with semantics closely following Java’s. The design of ob-
ject features in our calculus has been inspired by FJ, e.g. we have the same
rule for method calls, which uses the call-by-value principle of the λ-calculus.
However, their calculus omits interfaces and even assignment, while we have
assignment and also signatures (which are similar to Java interfaces). On the
other hand, we do not model typing and class inheritance since our focus is
on the reduction semantics.

The above calculi have been developed mainly to reason about the imple-
mentation of objects, object encodings, typing, class inheritance, etc. We are
not aware of concurrent object calculi that would have constructs for dynamic
object rebinding similar to ours. We discuss some examples of (non-object)
calculi with dynamic binding in the next paragraph.

6.5.2 Dynamic rebinding

Dynamic rebinding should not be confused with dynamic linking. Dynamic
linking of objects in object languages such as Java, refers to resolving object
components at runtime (see, e.g. [27] for different models of dynamic linking).
Once bound the dynamically linked code usually cannot be rebound, which is
different from dynamic object rebinding.

A lot of work on dynamic rebinding appeared in the context of functional
languages (see, e.g. work of Moreau [79] on formalization of dynamic binding),
focusing either on dynamic scoping , in which variable occurrences are resolved
with respect to their dynamic environment, or static scoping with explicit re-
binding , where variables are resolved with respect to their static environment,
but additional primitives can be used to explicitly modify these environments.

Dynamic scoping exists in most modern dialects of Lisp, e.g. MIT Scheme’s
fluid-let [77] construct performs dynamically-scoped rebinding of local and
global variables; once the construct’s expression has been evaluated, the values
of the variables are restored. The quasi-static scoping Scheme extension of
Lee and Friedman [58] has a class of variables, which are initially unresolved.
The programmer can use a rebinding primitive to specify new bindings for
individual variables. This work is different from ours; we bind whole objects
to typed signatures, while the above work is on dynamic binding of variables in
functional languages, with a correspondingly different semantics of rebinding.

There are different applications of dynamic rebinding. For instance, dy-
namic rebinding appears in marshalling and unmarshalling network messages
containing values that refer to local resources. Abstraction-safe marshalling
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and unmarshalling values between separate programs has been studied by
Bierman et al. [12], in the context of modules with abstract types; see also the
Acute programming language [60]. An extension of Smalltalk with dynamic
method redefinition in the scope of classboxes is described in [7]; the dynamic
rebinding feature is used there to support software evolution.
We are not aware of much work on dynamic rebinding in the context of

concurrency. The existing implementations are often not satisfactory, e.g. the
runtime support of type-safe dynamic Java classes in [66] aborts a thread if a
class update is attempted while the thread is executing a method of that class.
Our solution is to execute rebindable code fragments and code fragments that
do rebinding as concurrent atomic tasks. The semantics of atomicity eliminates
the need to abort threads while doing an update.



Chapter 7

Conclusions

In this book we have described language and runtime support, designed for
atomicity, synchronization and dynamic protocol update in communicating
systems. We have focused on the simplest languages (or calculi) that allow us
to study the core problems of Chapter 1; they can provide some basis for any
extensions of industrial-strength languages with the support of atomic tasks,
declarative synchronization and dynamic object rebinding. All the calculi build
on the λ-calculus, which is a theoretical foundation of many present-day pro-
gramming languages. We think however that analogous work could be carried
out for other languages, too. Below we give some concluding remarks and
sketch example avenues for future work.

7.1 Atomic Tasks and Versioning

The language of atomic tasks with the runtime system using versioning algo-
rithms described in Chapters 2 and 3 can be useful for encoding atomicity in
communicating systems. It allows atomic tasks to perform arbitrary I/O op-
erations, and eliminates the risk of multiple restarts when many atomic tasks
compete for the same shared resource (since no task is aborted).

The language of atomic tasks is typed, with a type system able to verify if
versioning algorithms have correct input data; this feature provides guarantees
that the runtime execution of atomic tasks satisfies isolation. The operational
semantics of the language has enabled formal proofs of language safety, in-
cluding the proof of dynamic correctness of the VA versioning algorithm. For
efficiency, the type system could be easily extended to add distinction between
read-only and read-write locking. It may be also worthwhile to investigate al-
gorithms for inferring the typing annotations.
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For clarity, we have presented somewhat idealised concurrency control al-
gorithms. For instance, if a thread of some task is preempted while holding a
verlock then no other thread can access the verlock; this can be solved in any
practical implementation using some detection mechanism. In the future, we
would like to find more robust ways of implementing atomic.

7.2 Declarative Synchronization

The calculus of concurrency combinators in Chapter 4 may be a useful basis
for work on different problems of declarative synchronization. One problem
that we have identified and solved using a type system, is satisfiability of
concurrency combinators. Typing is used to verify if synchronization policy
declared using combinators can be satisfied by any execution of the program.
This feature could provide some basis for future work on composition safety
in modular, communicating systems.

In Chapter 4, we have also demonstrated how to achieve separation of syn-
chronization concerns from functional ones while keeping visible role-oriented
aspects of synchronization problems. We described a constraint language for
the role-based synchronization. Contrary to similar proposals, the language al-
lows programmers to declare complex synchronization constraints, which may
refer to program variables and data structures.

7.3 Dynamic Protocol Update and Rebinding

A model of dynamic protocol update, described in Chapter 5, helped us to
clarify basic requirements that are important when implementing support of
dynamic protocol update, e.g.: the replaceability property specifies minimal
structural (static) requirements on module replacement, and the No-Message-
Lost and Message-Order safety properties specify minimal semantic, dynamic
requirements during dynamic protocol update.

The model of DPU guided the design of two example DPU algorithms,
which are based on synchronized and lazy updating strategies. The algorithms
illustrate a trade-off in the design of dynamic protocol update. The former al-
gorithm exhibits strong safety guarantees but requires a subtle distributed
infrastructure (totally ordered broadcast) which does not scale to large net-
works. The latter algorithm scales well but the order of message delivery by
updateable service is not respected, which limits its applicability.

A class-based object calculus of dynamic rebinding, described in Chapter 6,
could provide basis for the design of component languages for dynamically up-



7.3. DYNAMIC PROTOCOL UPDATE AND REBINDING 155

dateable, communicating systems. We have used a small example program,
expressed in the calculus, to illustrate the concept of dynamic object (com-
ponent) rebinding and other constructs described in this book, such as the
atomic construct and the concurrency combinators.
By merging the object calculus with the concurrency combinators, we could

declare synchronization policy for concurrent objects, with the possibility of
replacing the object code at runtime. However, in this case, the static typing
rules for verification of combinator satisfiability would have to be redesigned
to support dynamic type checking, e.g. a lá a mechanism used in Java-like
languages for class loading.





Appendix A

Correctness proofs

A.1 Well-typed Programs Satisfy Isolation

A.1.1 Absence of non-declared verlocks

The type system designed for the language of atomic tasks (see Chapter 3)
provides rules for proving that in well-typed programs:

(i) each task spawned using the atomic construct can only read from or
write to a reference which is protected by a verlock, and

(ii) the verlock itself has been specified in the argument of atomic.

Since by the absence of race conditions (Theorem 1 in Section 3.4.1,
adopted from the type system for safe locking [31]), in well-typed programs a
task cannot access a reference without first obtaining a verlock, we only need
to show the second part of the above result. Below we use the semantics to
state property (ii) formally.

An expression f is part of a task task pv T if T = E [ f ] for some evaluation
context E . A task task pv T has a version of a lock l if pv(l) is defined. An
expression f has a version of a lock l if there exists some task which has a
version of l, and f is part of this task. An expression f requests a lock location
l if f = E [ sync l e ] for some evaluation context E and expression e. A task
task pv T is in a critical section on a lock location l, if some thread of T is in
a critical section on the lock location l.

Now, for the complete language with atomic and task, the judgment ⊢cs S
says in addition to mutual exclusion property stated in Section 3.4.1, that each
task being in a critical section on some lock in state S has a version of this
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lock (see Figure 3.8 and 3.9). According to Lemma 15, the property ⊢cs S is
maintained during evaluation.

Lemma 15 (Version-Completeness Preservation). If ⊢cs S and S −→ S′, then
⊢cs S′.

Proof. State S may consist of several threads that are evaluated concurrently.
Suppose S = π, σ | E [ task pv T ] for some well-typed store π, σ, context E and
(possibly multithreaded) term T . By rule (R-Task) and evaluation context for
task, we know that task task pv T can either reduce to the empty value ()
if T is a value, or to task pv T ′ otherwise, where T ′ is some expression. The
former case is trivial since we have immediately

∅ ⊢cs () (A.1)

by (CS-Empty), which is what we needed.
Let us now consider the latter case. Suppose that task task pv T is in a

critical section on some lock location l. From premise ⊢cs S, we have

M ⊢cs task pv T (A.2)

for some M by (CS-State) and the fact that task task pv T is a thread in S
(by (R-Isol)). But then by (CS-Task)

l ∈ M (A.3)

and version pv(l) is defined. Now we need to consider two subcases, depending
on if the reduction step of T enters a new critical section, or not.

Case a). Reduction to a new critical section.
Consider an evaluation step from T to T ′, such that T has sync l′ e in its
redex position. Thus, by rule (R-Sync) T ′ = E ′[ insync l′ e ] and π(l′) = 1 for
some context E ′, lock location l′, and expression e, where l′ 6= l. Hence, T ′ is
in a critical section on lock l′. Note that by mutual exclusion (Lemma 4) it is
not possible to have a reduction step from T to T ′ if l′ = l since (A.2) and
(A.3) hold.
Let us assume that task pv T ′ does not have a version of lock l′, i.e. pv(l′)

is not defined. But this is not possible, since by version-based protection
Lemma 16 (below), if a task task pv T requests lock location l′, then version
pv(l′) is defined, which contradicts our assumption (since we also know
that the private versions map pv is preserved by the reduction step as it is
never modified). Thus, M′ ⊢cs task pv T ′ and precisely M′ = M ⊎ {l′} by
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(CS-InSync). From the latter, we have l ∈ M′ by (A.3).

Case b). No new critical section.
Consider reduction from T to T ′ such that T has in its redex position an ex-
pression other then sync l′ e. But then from (A.2) we haveM ⊢cs task pv T ′

since T ′ is in the same critical sections as T , and we know that l ∈ M and
pv(l) is defined.

From (A.1), a) and b) we obtain the needed result ⊢cs S′ by type preservation
Corollary 1 (in Section A.1.3) and (CS-State) and induction on threads in
S.

Lemma 16 says that a well-typed thread obtains a verlock only when it
holds a version of this verlock.

Lemma 16 (Version-Based Protection). Suppose that Σ | Γ; a; p ⊢ f : t,
and f requests a lock location l. Then Σ | Γ; a; p ⊢ l : m for some lock type
m. Furthermore, there exists a task task pv T which f is part of, such that
Σ | Γ; a; p ⊢ task pv T : Unit and version pv(l) is defined.

Proof. If f requests a lock location l then from the definition of “requesting
a lock location” we have f = E [ sync l e′ ] for some evaluation context E and
expression e′. Suppose that Σ | Γ; a; p ⊢ sync l e′ : t′ for some type t′. Then,
by (T-Sync) we have

Σ | Γ; a; p ⊢ l : m (A.4)

for some lock typem, andm ∈ a. From the latter and premise Σ | Γ; a; p ⊢ f : t,
we know that f must be part of some task with allocation a (since a 6= ∅).
Hence, by (T-Isol) f is reduced from some expression atomic l e0, such that

Σ | Γ; a′; p′ ⊢ atomic l e0 : Unit (for some a′ and p′), where l is a sequence of
lock locations. Moreover, since allocation a is preserved during task evaluation
(since only (T-Isol) can modify a) we have Σ | Γ; a; ∅ ⊢ e0 : t′′ for some t′′, also
by (T-Isol).

From the above, we have immediately l ∈ l by (A.4) and (T-Isol) since
m ∈ a. (Note that (T-Isol) is the only rule which could add m to allocation a.)

But then, by (R-Isol) expression e0 can only reduce to task pv e0 for some
pv, such that version pv(l) is defined, which is precisely the needed result since
pv is constant and so it does not change while expression e0 would reduce to
T such that T = E ′[ f ] for some context E ′. By (T-Task), term task pv T has
type Unit, which completes the proof.
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Note that the above property implies that in our language all lock requests
are part of some task. This feature has simplified the type system and reason-
ing about the isolation property. A full-size language could make a difference
between accessing a lock as part of some task, or outside tasks.
We conclude that all verlocks used by each task in well-typed programs

are known a priori.

Theorem 10 (Verlock-Usage Predictability). All verlocks that may be re-
quested by a task of a well-typed program are known before the task begins.

Proof. By lock-based protection Lemma 5, it is enough to show that the ar-
gument l of the atomic l e construct used to spawn a task, is a sequence of
all verlocks that may be requested by the task. The proof is straightforward
by the version-based protection Lemma 16, version-completeness preservation
Lemma 15, and induction on tasks and lock location requests.

The above result implies that the VA algorithm will be able to create upon
a task’s creation, a private version of each verlock that may be used by the
task.

A.1.2 The main result of isolation preservation

We have defined the isolated evaluation for complete tasks (see Section 3.3.3).
This is however not a problem since in practice we are interested only in result
states of this evaluation. Below we therefore formulate an isolation preservation
result for traces that begin and finish in a task-free state. The judgment for
such states has the form ⊢tf S, read “state S is task-free”, which means that
either no task has been spawned yet, or if there were any, then they have
already completed.
Below we state that each trace of a well-typed program has the “isolation

up to” property, provided that the corresponding evaluation finishes in a result
state.

Lemma 17 (Isolation Property Up To). Suppose Σ | ∅; ∅; ∅ ⊢ S : t and ⊢tf S.
If S −→∗ S′ and ⊢tf S′, then the run S −→∗ S′ satisfies the isolation property
up to S′.

Proof. From premise ⊢tf S, we have ⊢cs S by (TF-State). From the latter and
premise Σ | ∅; ∅; ∅ ⊢ S : t, each task in S (if we would let S not to be task-
free) is well-typed by (T-State), and by version-based protection Lemma 16, it
has versions of all verlocks it may request. Moreover, by version-completeness
preservation Lemma 15, we know that this property is preserved by reduction
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from S to S′′ for some state S′′. Hence, it is also preserved by any following
reductions up to S′ (by re-applying Lemma 15). Thus, it holds in all states
reached by any tasks that could be spawned by these reductions. But this
is precisely one of the two requirements for the correctness of the “isolated
evaluation” using the VA algorithm (i.e. Property 12, see A.2.1).
Moreover, from ⊢cs S, the lock-based protection Lemma 5 and mutual ex-

clusion Lemma 4 give another requirement (i.e. Property 11, see Section A.2.1)
for the correctness of evaluation using the VA algorithm.
By premises ⊢tf S and ⊢tf S′, we also know that the evaluation has begun

and finished with no active tasks. Hence, by noninterference Theorem 14 (that
we prove in Section A.2) and the definition of isolation, we obtain the needed
result.

We conclude that well-typed, terminating programs satisfy the isolation
property. A program is terminating if all its runs terminate; a run terminates
if it reduces to a value.

Theorem 11 (Isolation Property). If ⊢ e : t, then all terminating runs e −→∗

v0, where v0 is some value of type t, satisfy the isolation property.

Proof. From premise ⊢ e : t, e is a closed, well-typed term. Consider any well-
typed store π, σ, that is Σ | ∅; ∅; ∅ ⊢ π, σ for some Σ. Then ⊢ π, σ | e : t by
Definition 10 (see Section A.1.3) and (T-State). Moreover, we have

⊢tf π, σ | e (A.5)

since program e (before commencing its execution) does not have any task by
syntax (see Figure 3.2). Pick up any terminating trace such that π, σ | e −→∗

π′, σ′ | v0 for some store π′, σ′ and value v0. From (A.5), we have ⊢cs π′, σ′ | v0

by (TF-State) and version-completeness preservation (Lemma 15). From the
latter, and the fact that v0 6= task pv T for any pv and T , we get ⊢tf π′, σ′ | v0,
which together with (A.5) implies that the run satisfies the isolation property
up to v0 by Lemma 17. Then the result follows by induction on the length of
the terminating reduction sequences from π, σ | e to any value.

We stated our main result for terminating programs. Note however that
if a program deadlocks or never terminates, all its runs reaching some result
state have the “isolation up to” property (up to this state).

A.1.3 Type soundness

Reduction of a program may either continue forever, or may reach a final
state, where no further evaluation is possible. Such a final state represents
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either an answer or a type error. Since programs expressed in our language
are not guaranteed to be deadlock-free, we also admit a deadlocked state to be
an (acceptable) answer. Thus, proving type soundness means that well-typed
programs yield only well-typed answers.
Our proof of type soundness rests upon the notion of type preservation

(also known as subject reduction). The type preservation property states that
reductions preserve the type of expressions.
Type preservation by itself is not sufficient for type soundness. In addition,

we must prove that programs containing type errors are not typable. We call
such expressions with type errors faulty expressions and prove that faulty
expressions cannot be typed.

Type safety

The statement of the main type preservation lemma must take stores and store
typings into account. For this we need to relate stores with assumptions about
the types of the values in the stores. Below we define what it means for a store
π, σ to be well typed. (For clarity, we omit permissions p from the context and
global gv and local lv counters from states when possible.)

Definition 10. A store π, σ is said to be well typed with respect to a store
typing Σ and a typing context Γ, written Σ | Γ; a ⊢ π, σ, if dom(π, σ) = dom(Σ)
and Σ | Γ; a ⊢ µ(l) : Σ(l) for every store µ ∈ {π, σ} and every l ∈ dom(µ).

Intuitively, a store π, σ is consistent with a store typing Σ if every value in
the store has the type predicted by the store typing.
By canonical forms (Lemma 25 in Section A.1.3), each location value l ∈

dom(π, σ) can be either a lock location, or a reference location, depending on
a concrete type. For simplicity, we often refer to π, σ as the store, meaning
individual stores, i.e. either π or σ, depending on a given value and type. If a
location value l is a lock location then it is kept in a lock store π; if the value
is a reference location then it is kept in a reference store σ.
Type preservation for our language states that the reductions defined in

Figures 3.3, 3.4 and 3.5 preserve type:

Theorem 12 (Type Preservation). If Σ | Γ; a ⊢ T : t and Σ | Γ; a ⊢ π, σ
and 〈π, σ | T 〉 −→ 〈(π, σ)′ | T ′〉, then for some Σ′ ⊇ Σ, Σ′ | Γ; a ⊢ T ′ : t and
Σ′ | Γ; a ⊢ (π, σ)′.

The type preservation theorem asserts that there is some store typing
Σ′ ⊇ Σ (i.e., agreeing with Σ on the values of all the old locations) such
that a new term T ′ is well typed with respect to Σ′. This new store typing Σ′
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is either Σ or it is exactly (Σ, l : t0), where l is a newly allocated location, i.e.
the new element of dom((π, σ)′), and t0 is the type of the initial value bound
to l in the extended store (µ, l 7→ v0) for some µ ∈ {π, σ}.

Proof. The proof is a straightforward induction on a derivation of T : t, using
the lemmas below and the inversion property of the typing rules. The proof
proceeds by case analysis according to the reduction T −→ T ′.

Case 〈π, σ | λb,px : s. e v 〉 −→ 〈π, σ | e{v/x}〉.

From Σ | Γ; a ⊢ λb,px : s. e v : t we have Σ | Γ; a ⊢ v : s and
Σ | Γ; a ⊢ λb,px : s. e : s →b,p t and b ⊆ a by (T-App). From the lat-
ter, Σ | (Γ, x : s); b ⊢ e : t follows by (T-Fun). Hence Σ | Γ; b ⊢ e{v/x} : t by
substitution Lemma 21 and Σ | Γ; a ⊢ π, σ from premise.

Case 〈π, σ | refm v 〉 −→ 〈π, (σ, r 7→ v) | r〉 if r /∈ dom(σ).

From Σ | Γ; a ⊢ refm v : t where t = Refm t′, we have

Σ | Γ; a ⊢ v : t′ (A.6)

and Γ ⊢ m by (T-Ref), and (Σ, r : t′) | Γ; a ⊢ v : t′ by store typing Lemma 24,
where r is a fresh reference cell location. Hence (Σ, r : t′) | Γ; a ⊢ r : Refm t′

by (T-RefLoc), which is the first part of the needed result.

From the latter, since Σ | Γ; a ⊢ π, σ (premise) and r : t′ /∈ Σ (immediate
from the premise that π, σ is well-typed and the assumption that r /∈ dom(σ))
hence (Σ, r : t′) | Γ; a ⊢ π, (σ, r 7→ v) by (A.6) and store extension (Lemma 23),
which completes the second part of the needed result.

Case 〈π, σ | !r〉 −→ 〈π, σ | v〉 if σ(r) = v.

From Σ | Γ; a ⊢!r : t, we have Σ | Γ; a ⊢ r : Refm t by (T-Deref). From
the latter, we have Σ(r) = t and Σ | Γ ⊢ m by (T-RefLoc), and so
Σ | Γ; a ⊢ σ(r) : Σ(r) by premise that the store π, σ is well typed and
Definition 10. Hence Σ | Γ; a ⊢ v : t (immediate from the assumption that
σ(r) = v) and Σ | Γ; a ⊢ π, σ from premise.

Case 〈π, σ | r := v〉 −→ 〈π, σ[r 7→ v] | ()〉.

From Σ | Γ; a ⊢ r := v : t where t = Unit, and Σ | Γ; a ⊢ () : Unit
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by (T-Unit), we have immediately the first part of the needed result. From
Σ | Γ; a ⊢ r := v : Unit, we have Σ | Γ; a ⊢ r : Refm t′ and

Σ | Γ; a ⊢ v : t′ (A.7)

by (T-Assign). From the former, we have Σ(r) = t′ and Σ | Γ ⊢ m by
(T-RefLoc), hence Σ | Γ; a ⊢ π, σ[r 7→ v] by (A.7), premise that the store π, σ
is well typed, and the store update Lemma 22, which completes the second
part of the needed result.

Case 〈π, σ | E [ fork e ]〉 −→ 〈π, σ | E [ () ], e〉.

From Σ | Γ; a ⊢ E [ fork e ] : t we have

Σ′ | Γ′; a ⊢ e : Unit (A.8)

Σ′ | Γ′; a ⊢ fork e : Unit (A.9)

for some Σ′ and Γ′ by (T-Fork). From Σ | Γ; a ⊢ E [ fork e ] : t and (A.9) we
have Σ | Γ; a ⊢ E [ () ] : t by (T-Unit) and replacement Lemma 20. From the
latter and (A.8) we have Σ | Γ; a ⊢ E [ () ], e : t by (T-Unit) and (T-Thread),
which together with Σ | Γ; a ⊢ π, σ (premise), completes both parts of the
needed result.

Case 〈π, σ | fi, f
′
j〉 −→ 〈π, σ | fi〉 if i < j.

From Σ | Γ; a ⊢ fi, f
′
j : t and i < j we have immediately Σ | Γ; a ⊢ fi : t and

Σ | Γ; a′ ⊢ f ′
j : t′ for some a′ and t′ by (T-Thread). The former derivative and

Σ | Γ; a ⊢ π, σ (premise) complete both parts of the needed result.

Case 〈π, σ | E [ atomic l e ]〉 −→ 〈π, σ | E [ () ], task pv e〉.

From Σ | Γ; a ⊢ E [ atomic l e ] : t, by (T-Isol) we have Σ′ | Γ′; a ⊢ li : oli

for all i = 1..|l|, and Σ′ | Γ′; {ol1} ∪ ... ∪ {ol|l|} ⊢ e : t′ for some t′, and

Σ′ | Γ′; a ⊢ atomic l e : Unit for some Σ′ and Γ′. Hence Σ | Γ; a ⊢ E [ () ] : t by
(T-Unit) and replacement Lemma 20. Since Σ′ | Γ′; a ⊢ task pv e : Unit by
(T-Task), hence 〈π, σ | E [ () ], task pv e〉 : t by (T-Unit) and (T-Thread), which
together with Σ | Γ; a ⊢ π, σ (premise), completes both parts of the needed
result.
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Case 〈π, σ | task pv v〉 −→ 〈π, σ | ()〉.

From Σ | Γ; a ⊢ task pv v : t we have t = Unit by (T-Task), and
Σ | Γ; a ⊢ () : Unit by (T-Unit), which together with Σ | Γ; a ⊢ π, σ (premise),
completes both parts of the needed result.

Case 〈π, σ | newlock x : m in e〉 −→ 〈(π, l 7→ 0), σ | e{l/x}{ol/m}〉 if l /∈
dom(π).

From Σ | Γ; a ⊢ newlock x : m in e : t and Σ | Γ; a ⊢ π, σ (premise),
we have Σ | (Γ, m :: Lock, x : m); a ⊢ e : t and Σ | Γ ⊢ a and Σ | Γ ⊢ t by
(T-Lock), and hence

(Σ, l : {0, 1}, ol :: Lock) | (Γ, m :: Lock, x : m); a ⊢ e : t (A.10)

by store typing (Lemma 24). Since (Σ, l : {0, 1}, ol :: Lock) | Γ; a ⊢ l : ol by
(T-LockLoc), hence (Σ, l : {0, 1}, ol :: Lock) | Γ; a ⊢ e{l/x}{ol/m} : t by (A.10),
substitution (Lemma 21) and the definition of a singleton lock type, which is
the first part of the needed result.
From the latter, since Σ | Γ; a ⊢ π, σ (premise), l : {0, 1} /∈ Σ (immediate

from the premise that π, σ is well-typed and the assumption that l /∈ dom(π)),
and Σ | Γ; a ⊢ 0 : {0, 1} hence (Σ, l : {0, 1}, ol :: Lock) | Γ; a ⊢ (π, l 7→ 0), σ by
store extension (Lemma 23).

Case 〈π, σ | sync l e〉 −→ 〈π[l 7→ 1], σ | insync l e〉 if π(l) = 0.

From Σ | Γ; a ⊢ sync l e : t, we have

Σ | Γ; a ⊢ l : ol ol ∈ a (A.11)

Σ | Γ; a ⊢ e : t (A.12)

by (T-Sync). From (A.11) and Σ | Γ; a ⊢ π, σ (premise), we have

Σ(l) = {0, 1} (A.13)

and Σ(ol) = Lock by (T-LockLoc). From (A.11) and (A.12) and Σ | Γ; a ⊢ π, σ
(premise), we have Σ | Γ; a ⊢ insync l e : t by (T-InSync), which completes the
first part of the needed result.
From Σ | Γ; a ⊢ π, σ (premise) and (A.13) and Σ | Γ; a ⊢ 1 : {0, 1}, we

have Σ | Γ; a ⊢ π[l 7→ 1], σ by the store update Lemma 22, which completes
the second part of the needed result.
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Case 〈π, σ | insync l v〉 −→ 〈π[l 7→ 0], σ | v〉 if π(l) = 1.

From Σ | Γ; a ⊢ insync l v : t, we have

Σ | Γ; a ⊢ l : ol (A.14)

Σ | Γ; a ⊢ v : t (A.15)

and ol ∈ a by (T-InSync), which completes the first part of the needed
result. From Σ | Γ; a ⊢ π, σ (premise) and (A.14), we have Σ(l) = {0, 1} and
Σ(ol) = Lock by (T-LockLoc). From the latter and Σ | Γ; a ⊢ π, σ (premise)
and Σ | Γ; a ⊢ 0 : {0, 1}, we have Σ | Γ; a ⊢ π[l 7→ 0], σ by the store update
Lemma 22, which completes the second part of the needed result.

This completes the main part of the proof. It remains to establish several
technical lemmas.

Some obvious facts about deductions that we use:

• if Σ | Γ ⊢ E [ e ] : t then there exist Σ′, Γ′ and t′ such that Σ′ | Γ′ ⊢ e : t′;

• if there are no Σ′, Γ′ and t′ such that Σ′ | Γ′ ⊢ e : t′, then there are no
Σ, Γ, and t such that Σ | Γ ⊢ E [ e ] : t.

These follow from the facts that (1) there is exactly one inference rule for
each expression form e, and (2) each inference rule requires a proof for each
subexpression of the expression in its conclusion.

The first lemma states that we may permute the elements of a context, as
convenient, without changing the set of typing elements that can be derived
from under it.

Lemma 18 (Permutation). If Σ | Γ; a ⊢ T : t and ∆ is a permutation of Γ,
then Σ | ∆; a ⊢ T : t. Moreover, the latter derivation has the same depth as
the former.

Proof. Straightforward induction on typing derivations.

The following lemma states that extra variables in the typing environment
Γ of a judgment Γ ⊢ e : t that are not free in the expression e may be ignored.

Lemma 19 (Weakening). If Γ(x) = Γ′(x) for all x ∈ fv(e) then Σ | Γ; a ⊢ e : t
iff Σ | Γ′; a ⊢ e : t.

Proof. Straightforward induction on typing derivations.
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A key lemma that we use in the proof of type preservation is the replace-
ment lemma. It allows the replacement of one of the subexpressions of a typable
expression with another subexpression of the same type, without disturbing
the type of the overall expression.

Lemma 20 (Replacement). If:

1. D is a deduction concluding Σ | Γ; a ⊢ E [ e1 ] : t,

2. D′ is a subdeduction of D concluding Σ′ | Γ′; a′ ⊢ e1 : t′,

3. D′ occurs in D in the position corresponding to the hole (E) in E [ ], and

4. Σ′ | Γ′; a′ ⊢ e2 : t′

then Σ | Γ; a ⊢ E [ e2 ] : t.

Proof. See [122] (for a language with no stores and store typing; the proof is
also valid for our language).

The substitution lemma is the key to showing type preservation for reduc-
tions involving substitution.

Lemma 21 (Substitution). If Σ | (Γ, x : t); a ⊢ e : t′ and Σ | Γ; a ⊢ v : t, then
Σ | Γ; a ⊢ e{v/x} : t′.

Proof. We proceed by induction on a derivation of the statement (Γ, x : t) ⊢
e : t′, and case analysis on the final typing rule used in the proof. (For clarity,
we remove store typing Σ, allocation and permission whenever possible.)

Case e = ().

If so then Γ ⊢ () : t′ and t′ = Unit by (T-Unit). Then Γ ⊢ (){v/x} : t′

since (){v/x} = () (the same would be for any other constants).

Case e = x′.

There are two sub-cases to consider, depending on whether x′ is x or
another variable.
(1) If x′ 6= x, then x′ : t′ ∈ Γ by (T-Var), and Γ ⊢ x′ : t′ again by (T-Var).

Then Γ ⊢ x′{v/x} : t′ since x′{v/x} = x′.
(2) If x′ = x, then x : t′ ∈ Γ by (T-Var), and Γ ⊢ x : t′ again by (T-Var).

Since x{v/x} = v, hence Γ ⊢ x{v/x} : t′ .
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Case e = λb,px′ : t1. e1.

By (T-Fun), it follows from the assumption (Γ, x : t) ⊢ λb,px′ : t1. e1 : t′

that t′ = t1 →b,p t2 and (Γ, x : t, x′ : t1) ⊢ e1 : t2. Using permutation
on the given subderivation, we obtain (Γ, x′ : t1, x : t) ⊢ e1 : t2. Using
weakening (Lemma 19) on the other given derivation (Γ ⊢ v : t), we obtain
(Γ, x′ : t1) ⊢ v : t.

Now, by the inductive hypothesis, (Γ, x′ : t1) ⊢ e1{v/x} : t2. By (T-Fun), we
have Γ ⊢ λb,px′ : t1. e1{v/x} : t1 →b,p t2. But this is precisely the needed result,
since, by the definition of substitution, Γ ⊢ (λb,px′ : t1. e1){v/x} : t1 →b,p t2.

Case e = e1 e2 .

From (Γ, x : t); a ⊢ e1 e2 : t′ by the first premise of (T-App), we have
(Γ, x : t); a ⊢ e1 : t1 →b,p t′ for some t1 and b ⊆ a, and

Γ; a ⊢ e1{v/x} : t1 →b,p t′ (A.16)

by induction hypothesis. By the second premise of (T-App), we have (Γ, x :
t); a ⊢ e2 : t1, and

Γ; a ⊢ e2{v/x} : t1 (A.17)

by induction hypothesis.

Then by (T-App) with (A.16) and (A.17) Γ; a ⊢ e1{v/x} e2{v/x} : t′.
But this is precisely the needed result, since, by the definition of substitution
Γ; a ⊢ (e1 e2 ){v/x} : t′.

Case e = refm e : Refm t1 .

By (T-Ref), it follows from the assumption (Γ, x : t) ⊢ refm e : t′ that
t′ = Refm t1, and (Γ, x : t) ⊢ e : t1 and Γ ⊢ m.

Now, by the induction hypothesis, Γ ⊢ e{v/x} : t1. By (T-Ref), we have
Γ ⊢ refm e{v/x} : Refm t1 . But this is precisely the needed result, since, by
the definition of substitution Γ ⊢ (refm e){v/x} : Refm t1 .

Case e = !e.

By (T-Deref), it follows from the assumption (Γ, x : t); a ⊢ !e : t′ that
(Γ, x : t); a ⊢ e : Refm t′ for some m ∈ a.
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Now, by the induction hypothesis, Γ; a ⊢ e{v/x} : Refm t′. By (T-Deref),
we have Γ; a ⊢!e{v/x} : t′. But this is precisely the needed result, since, by
the definition of substitution Γ; a ⊢ (!e){v/x} : Refm t′.

Case e = e1 := e2.

From (Γ, x : t); a ⊢ e1 := e2 : t′, where t′ = Unit, by the first premise
of (T-Assign), we have (Γ, x : t); a ⊢ e1 : Refm t1 for some t1, and

Γ; a ⊢ e1{v/x} : Refm t1 (A.18)

by induction hypothesis. By the second premise of (T-Assign), we have (Γ, x :
t); a ⊢ e2 : t1 and m ∈ a, and

Γ; a ⊢ e2{v/x} : t1 (A.19)

by induction hypothesis.

Then by (T-Assign) with (A.18) and (A.19) Γ; a ⊢ e1{v/x} := e2{v/x} :
Unit. But this is precisely the needed result, since, by the definition of
substitution Γ; a ⊢ (e1 := e2){v/x} : Unit.

Case e = newlock x′ :m in e′.

By (T-Lock), it follows from the assumption (Γ, x : t); a ⊢ newlock x′ :
m in e′ : t′ that (Γ, x : t, m :: Lock, x′ : m); a ⊢ e′ : t′ and Γ ⊢ a and Γ ⊢ t′.

Now, by the induction hypothesis, (Γ, m :: Lock, x′ : m); a ⊢ e′{v/x} : t′.
By (T-Lock), we have Γ; a ⊢ newlock x′ : m in e′{v/x} : t′. But this
is precisely the needed result, since, by the definition of substitution,
Γ; a ⊢ (newlock x′ :m in e′){v/x} : t′.

Case e = sync e1 e2.

From (Γ, x : t); a; p ⊢ sync e1 e2 : t′ by the first premise of (T-Sync),
we have (Γ, x : t); a; p ⊢ e1 : m and

m ∈ a . (A.20)

By induction hypothesis

Γ; a ⊢ e1{v/x} : m . (A.21)
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By the second premise of (T-Sync), we have (Γ, x : t); a; p ∪ {m} ⊢ e2 : t′. By
induction hypothesis

Γ; a; p ∪ {m} ⊢ e2{v/x} : t′ . (A.22)

Then by (T-Sync) with (A.20), (A.21) and (A.22) we have Γ; a; p ⊢
sync e1{v/x} e2{v/x} : t′. But this is precisely the needed result, since, by
the definition of substitution Γ; a; p ⊢ (sync e1 e2){v/x} : t′.

Case e = insync e f .

By (T-InSync), it follows from the assumption (Γ, x : t); a; p ⊢ insync e f : t′

that (Γ, x : t); a; p ⊢ e : m and (Γ, x : t); a; p ⊢ f : t′ and m ∈ a, m ∈ p.
Now, by induction hypothesis, Γ; a; p ⊢ e{v/x} : m and Γ; a; p ⊢

f{v/x} : t′. By (T-InSync), we have Γ; a; p ⊢ insync e{v/x} f{v/x} : t′. But
this is precisely the needed result, since, by the definition of substitution
Γ; a; p ⊢ (insync e f){v/x} : t′.

Case e = fork e.

By (T-Fork), it follows from the assumption (Γ, x : t) ⊢ fork e : t′ that
(Γ, x : t) ⊢ e : t′ and t′ = Unit.
Now, by the induction hypothesis, Γ ⊢ e{v/x} : t′. By (T-Fork), we have

Γ ⊢ fork e{v/x} : t′. But this is precisely the needed result, since, by the
definition of substitution Γ ⊢ (fork e){v/x} : t′.

Case e = atomic e1, ..., en e0.

From (Γ, x : t); a; p ⊢ atomic e1, ..., en e0 : t′ and t′ = Unit, by the
first premise of (T-Isol), we have (Γ, x : t); a; p ⊢ ei : mi for all i = 1..n, and

Γ; a; p ⊢ ei{v/x} : mi for all i = 1..n (A.23)

by induction hypothesis. By the second premise of (T-Isol), we have (Γ, x :
t); {m1} ∪ ... ∪ {mn}; p ⊢ e0 : t0 for some t0, and

Γ; {m1} ∪ ... ∪ {mn}; ∅ ⊢ e0{v/x} : t0 (A.24)

by induction hypothesis.
Then by (T-Isol) with (A.23) and (A.24) we have Γ; a; p ⊢

atomic e1{v/x}, ..., en{v/x}
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e0{v/x} : Unit. But this is precisely the needed result, since, by the definition
of substitution Γ; a; p ⊢ (atomic e1, ..., en e0){v/x} : Unit.

Case e = fi, f
′
j and i < j.

By (T-Thread), it follows from the assumption (Γ, x : t) ⊢ fi, f
′
j : t′ and

i < j, that (Γ, x : t) ⊢ fi : t′ and (Γ, x : t) ⊢ f ′
j : t′′ for some t′′.

Now, by the induction hypothesis, Γ ⊢ fi{v/x} : t′ and Γ ⊢ f ′
j{v/x} : t′′.

By (T-Thread) and i < j, we have Γ ⊢ fi{v/x}, f ′
j{v/x} : t′. But this

is precisely the needed result, since, by the definition of substitution
Γ ⊢ (fi, f

′
j){v/x} : t′.

Case e = task pv f .

By (T-Task), it follows from the assumption (Γ, x : t); a ⊢ task pv f : t′

where t′ = Unit, that a = {ol1 , ..., oln} and (Γ, x : t); a ⊢ li : oli and
(Γ, x : t); a ⊢ pv(li) : Nat for all i = 1..n, and

Γ; a ⊢ pv(li){v/x} : Nat for all i = 1..n (A.25)

by induction hypothesis. By the last premise of (T-Task), we have (Γ, x : t); a ⊢
f : t for some t, and

Γ; a ⊢ f{v/x} : t (A.26)

by induction hypothesis.

Then by (T-Task) with (A.25, A.26) Γ; a ⊢ task pv{v/x} f{v/x} : Unit.
But this is precisely the needed result, since, by the definition of substitution
Γ; a ⊢ (task pv f){v/x} : Unit.

The next lemma states that replacing the contents of a store with a new
value of appropriate type does not change the overall type of the store.

The notation (π, σ)[l 7→ v] should be read as π[l 7→ v], σ if l is a lock
location, or π, σ[l 7→ v] if l is a reference cell location. See the canonical forms
Lemma 25 in Section A.1.3 that states the possible shapes of values of various
types.

Lemma 22 (Store Update). If Σ | Γ; a ⊢ π, σ and Σ(l) = t and Σ | Γ; a ⊢ v : t
then Σ | Γ; a ⊢ (π, σ)[l 7→ v].

Proof. Immediate from the definition of Σ | Γ; a ⊢ π, σ (see Definition 10).
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The next lemma states that extending the contents of a store with a new
value of appropriate type is consistent with the store typing.

The notation ((π, σ), l 7→ v) should be read as (π, l 7→ v), σ if l is a lock
location, or π, (σ, l 7→ v) if l is a reference cell location. See the canonical forms
Lemma 25 in Section A.1.3 that states the possible shapes of values of various
types.

Lemma 23 (Store Extension). If Σ | Γ; a ⊢ π, σ and l : t /∈ Σ and Σ | Γ; a ⊢
v : t then (Σ, l : t) | Γ; a ⊢ ((π, σ), l 7→ v).

Proof. Immediate from the definition of Σ | Γ; a ⊢ π, σ.

Finally, we need a kind of weakening lemma for stores, stating that, if a
store is extended with a new location then the extended store still allows us
to assign types to all the same terms as the original.

Lemma 24 (Store Typing).
If Σ | Γ; a ⊢ e : t and Σ′ ⊇ Σ, then Σ′ | Γ; a ⊢ e : t.

Proof. Easy by induction.

A corollary of Type Preservation (Theorem 12) is that reduction steps
preserve type.

Corollary 1 (Type Preservation). If Σ | Γ; a ⊢ T : t and Σ | Γ; a ⊢ π, σ and
〈π, σ | T 〉 −→∗ 〈(π, σ)′ | T ′〉, then for some Σ′ ⊇ Σ, Σ′ | Γ; a ⊢ T ′ : t and
Σ′ | Γ; a ⊢ (π, σ)′.

Proof. If 〈π, σ | T 〉 −→ 〈(π, σ)′ | T ′〉, then T = E [ e1 ] and T ′ = E [ e2 ], and
〈π, σ | e1〉 −→ 〈(π, σ)′ | e2〉 and Σ′ | Γ; a ⊢ (π, σ)′, for some Σ′ ⊇ Σ, so Σ′ | Γ; a ⊢
T ′ : t by the replacement Lemma 20. Then the result follows by induction on
the length of the reduction sequence 〈π, σ | T 〉 −→∗ 〈(π, σ)′ | T ′〉.

Evaluation progress

Subject reduction ensures that if we start with a typable expression, then
we cannot reach an untypable expression through any sequence of reductions.
This by itself, however, does not yield type soundness.

Below, we prove that evaluation of a typable expression cannot get stuck,
i.e. either the expression is a value or there is some reduction defined. How-
ever, we do allow reduction to be suspended indefinitely since our language is
not deadlock-free. This is acceptable since we define and guarantee isolation,
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respectively isolation-up-to, only for programs that either terminate, or reach
some result state (see Theorem 11 and Lemma 17).

A canonical forms lemma states the possible shapes of values of various
types.

Lemma 25 (Canonical Forms).
1) If v is a value of type Unit, then v is ().
2) If v is a value of type t →a,p s, then v = λa,px : t. e.
3) If v is a value of type m, then v is a lock location.
5) If v is a value of type Refm t, then v is a reference cell location (or reference
location, in short) of a reference cell storing values of type t.

Proof. Straightforward from the grammar in Figure 3.2 and the extended
grammar in Figure 3.3.

We state progress only for closed expressions, i.e. with no free variables.
For open terms, the progress theorem fails. This is however not a problem
since complete programs—which are the expressions we actually care about
evaluating—are always closed.

Independently of the type system and store typing, we should define which
state we regard as well-formed. Intuitively, a state is well-formed if the content
of the store is consistent with the expression executed by the thread sequence.
(We omit global and local counters that are also part of the state, as they are
not represented in expressions explicitly.) In case of store π, if there is some
evaluation context E [ insync l e ] in the thread sequence for any lock location
l, then π(l) should contain 1, marking that the lock has been acquired. As for
the store σ, containing the content of each reference cell, we may only require
that it is well typed.

Definition 11. Suppose π, σ is a well-typed store, and f is a well-typed
sequence of expressions, where each expression is evaluated by a thread. Then,
a state π, σ | f is well-formed, denoted ⊢wf π, σ | f , if for each expression fi

(i < |f |) such that fi = E [ insync l e ] for some l, there is π(l) = 1.

Of course, a well-typed, closed expression with empty store is well-formed.

According to Lemma 26, the property ⊢wf π, σ | f is maintained during
evaluation.

Lemma 26 (Well-Formedness Preservation). If ⊢wf π, σ | f and π, σ | f −→

(π, σ)′ | f
′
then ⊢wf (π, σ)′ | f

′
.
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Proof. Consider a well-formed state π, σ | e0, for some well-typed program
⊢ e0 : t and well-typed store π, σ. Suppose that e0 = E [ sync l e ] for some
context E , and π(l) = 0. (Note that when a lock location l is created, then
initially π(l) = 0 by (R-Lock).) From the latter and premise that the state is
well-formed, we know that there is no context E ′ such that e0 = E ′[ insync l e′ ]
for any e′. From the latter and premise, by (R-Sync), we could reduce expression
e0 to (π, σ)′ | e1, such that e1 = E [ insync l e ]. But then, after reduction
step, we have π(l) = 1 (again by (R-Sync)). Moreover, by type preservation
Theorem 12, the new state is well typed. Thus, from the definition of well-
formedness, we get immediately that ⊢wf (π, σ)′ | e1. Finally, we obtain the
needed result by induction on thread creation.

A state π, σ | T is deadlocked if there exist only evaluation contexts E , such
that T = E [ sync l e ] for some verlocks l, such that π(l) = 1 for each l (i.e.
the verlocks are not free) and there is no other evaluation context possible.

Now, we can state the progress theorem.

Theorem 13 (Progress). Suppose T is a closed, well-typed term (that is,
Σ | ∅; ∅; ∅ ⊢ T : t for some t and Σ). Then either T is a value or else, for any
store π, σ such that Σ | ∅; ∅; ∅ ⊢ π, σ and ⊢wf π, σ | T , there is some term T ′

and store (π, σ)′ with π, σ | T −→ (π, σ)′ | T ′, or else T is deadlocked on some
lock(s).

Proof. Straightforward induction on typing derivations. We need only show
that either π, σ | T −→ (π, σ)′ | T ′, or T is a value, or π, σ | T is a deadlocked
state. From the definition of −→, we have T −→ T ′ iif T = E [ e1 ], T ′ = E [ e′1 ],
and e1 −→ e′1.

Case The variable case cannot occur (because e is closed).
Case The abstract case is immediate, since abstractions are values.
Case T = e1 e2 with ⊢ e1 : t →b,p s and ⊢ e2 : t
By the induction hypothesis, either e1 is a value or else it can make a step
of evaluation, and likewise e2, or T is a deadlocked state. If e1 can take a
step, then e1 = E1[ e

′ ] and e′ −→ e′′. But then T = E [ e′ ] where E = E1 e2 ;
thus T −→ E [ e′′ ]. Otherwise, e1 is a value. If e1 is a value and e2 can take
a step, then e2 = E2[ e

′ ] and e′ −→ e′′ then T = E [ e′ ] where E = e1 E2 ;
thus T −→ E [ e′′ ]. Otherwise, e1 and e2 are values, or T is a deadlocked state.
Finally, if both e1 and e2 are values, then the canonical forms lemma tells us
that e1 has the form λb,px : t. e′1, and so rule (R-App) applies to T .

Other cases are straightforward induction on typing derivations, following
the pattern of the case with T = e1 e2 .
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A.2 Dynamic Correctness of the VA Algorithm

Independently of the type system, we must prove that our example versioning
algorithm (VA), which is used for scheduling of task operations, is correct, i.e.
it can be actually used to evaluate programs so that all possible executions
satisfy the isolation property.

A.2.1 Assumptions and definitions

The VA algorithm is correct only for programs that have the following two
properties:

Property 11. All data accesses are protected by verlocks.

Property 12. Each task has a version of each verlock it may use.

But these two properties correspond precisely to the absence of race freedom,
and the absence of undeclared verlocks properties. We have shown that they
hold for all well-typed programs (see Theorems 1 and 10). Thus, to prove
the correctness of the VA algorithm, it remains to show that all tasks of a
well-typed program never interfere (from the definition of isolation).
From the definition of sync l e, we know that a locked expression e can be

executed only by a single thread since other threads would be blocked (due to
the atomicity property of locks). Moreover, by the absence of race conditions
Theorem 1, we know that in order to access a reference, first a verlock must
be taken. Therefore, we can formulate the definition of noninterference using
verlocks instead of references:

Definition 12 (Noninterference). Tasks in a concurrent run do not interfere
(or satisfy the noninterference property) if there exists some ideal serial run
Rs of all these tasks, such that given any verlock, the order of acquiring the
verlock by tasks in the concurrent run is the same as in Rs.

Below we explain each step of the algorithm, given by evaluation rules
VA0-3 in Figure 3.5. We require steps VA1 and VA2 to be atomic. We write
gvl and lvl as shorthand for gv(l) and lv(l).

VA0 .̇ Upon lock creation, by rule (R-Lock), initialize global and local counters
of the new lock to zero.

VA1 .̇ At the moment of spawning a new task k using atomic l e, by rule
(R-Isol), for each lock li where i = 1, .., |l|, that may be requested by this
task, increase counter gvli by one. Create a fresh (read-only) map pvk

that contains bindings from the locks li to their upgraded versions gvli .
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VA2 .̇ A task k can acquire a lock l only when, by rule (R-Sync), the lock
is free and the task holds a (private) version of this lock that—when
downgraded by one—matches the current (local) version maintained by
the lock, i.e.

pvk(l) − 1 = lvl . (A.27)

VA3 .̇ After a task k has completed its execution, i.e. all threads of the task
have terminated, by rule (R-Task), for each lock li, where i = 1, .., |l|,
wait until condition (A.27) is true, then upgrade a local version of each
lock li, so that lvli = pvk(li).

Essentially, the VA algorithm implements ordering of lock acquisitions
based on versions. Tasks acquire verlocks in such order as is required to satisfy
the noninterference property. We need to show that all possible evaluations
of a typable expression cannot lead to a task-free state that is not obtainable
by some serialized evaluation of tasks. Note that we do not require a program
to terminate. However, we consider its correctness only for a set of tasks that
will eventually terminate.

To prove the correctness of the algorithm, we only need to show that
all tasks of each well-typed program never interfere (from the definition of
isolation).

The proof proceeds by proving lemmas about safety and liveness proper-
ties of verlocks, verlock-based mutual exclusion, and finally about ordering
properties of verlock-based access to references. We begin from introducing a
few definitions.

For a task task pv e where pv(l) is defined, we define access of this task
to a verlock l, denoted a, as a pair (pv(l), lvl), where pv(l) and lvl are corre-
spondingly, a private and local versions of verlock l. Access of task pv e to a
lock l is defined if pv(l) is defined.

Access ak = (pvk(l), lvl) of a task k is valid if condition (A.27) is true. A
task gets a valid access (pvk(l), lvl) when condition (A.27) is becoming true.

A.2.2 Verlock access

Lemma 27 (Verlock Safety). A verlock can be acquired only by a task which
has valid access to the verlock.

Proof. Straightforward from the definition of access and the premise of (R-
Sync).
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Lemma 28 (Access Liveness). Each access of a given task in a concurrent
run will be eventually valid, provided that all tasks terminate.

Proof. Let k0 be the first task, with access ak0
to some verlock l defined.

By steps VA0 and VA1 , ak0
= (pvk0

(l), lvl), where pvk0
(l) = 1 and lvl = 0.

Moreover, access ak0
is valid since condition (A.27) is true. Consider a task k1

created after k0, with access ak1
to l defined, where ak1

= (2, 0). The access
ak1
is not valid since (A.27) is false (2 − 1 6= 0). However, since we assumed

that tasks terminate, then by step VA3 , the local version of verlock l will be
eventually upgraded by 1 as soon as k0 terminate. But then ak1

is valid. Hence,
by induction on tasks, we will get the needed result.

Lemma 29 (Verlock Liveness). Each non-free verlock requested by a task will
be eventually acquired, provided that it will be released.

Proof. Straightforward from access liveness Lemma 28 and the premise of (R-
Sync).

Lemma 30 (Private-Version Uniqueness). Each task has a unique private
version of each verlock during task lifetime.

Proof. Immediate from step VA1 , where for each verlock l, pv(l) is given a
value equal gvl increased by one, and the fact that step VA1 is atomic and
pv(l) is constant.

Lemma 31 (Access Uniqueness). For each verlock and any task which has
access to this verlock defined, the access is globally unique.

Proof. Immediate from the definition of access and the private version unique-
ness Lemma 30.

Lemma 32 (Valid-Access Mutual Exclusion). At any time, there is only one
access to a given verlock which is valid.

Proof. Consider a verlock l. Since local version lvl of this verlock is the same
for all tasks at any time, from private-version uniqueness Lemma 30, we have
that at any given time, there is only one task which can have access for which
validity condition (A.27) is true. Hence, we obtain the needed result.

Lemma 33 (Access Privacy). A valid access ak of a task k can be invalidated
only by task k.
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Proof. Consider a valid access ak = (pvk(l), lvl) of some task k to a ver-
lock l. By access uniqueness Lemma 31, there is no other task k′ with access
(pvk′(l), lvl) such that pvk′(l) = pvk(l). On the other hand, from valid-access
mutual exclusion Lemma 32, we know that it is not possible that some other
task could have (different) access to verlock l that is also valid. Thus, we know
that only k has a valid access to l. Moreover, by step VA3 we know that task
k can only upgrade lvl if (A.27) is true. It means that lvl can only be upgraded
if k has a valid access ak to l. But this is precisely the needed result, since by
modifying lvl access ak to l is no longer valid.

Lemma 34 (Valid-Access Preservation). If a task has got valid access to a
verlock, then it will have valid access to it at any time (until it would invalidate
it).

Proof. Straightforward from valid-access mutual exclusion Lemma 32 and ac-
cess privacy Lemma 33.

Lemma 35 (Verlock-Set Mutual Exclusion). As long as a task is allowed to
acquire a verlock l, no other task can acquire verlock l.

Proof. Straightforward from valid-access-preservation Lemma 34 and verlock
safety Lemma 27.

By verlock-set mutual exclusion Lemma 35, and the fact that we are not
interested in the relative order of lock acquisitions made by the same task
(since any such order would satisfy Definition 12 of noninterference), we can
represent all acquisitions of a given verlock made by a given task by any single
such acquisition. Thus, in the rest of the proof, we can consider a system in
which each verlock is acquired by a task at most once. By Lemma 35, the
proven result will be valid for any system.

A.2.3 Access ordering

Lemma 36 (Access Ordering). The order of acquiring a verlock by tasks
corresponds to the order in which tasks got valid access to it.

Proof. Immediate by verlock safety Lemma 27 and verlock-set mutual exclu-
sion Lemma 35.

Lemma 37 (Valid-Access Ordering). The relative order of getting valid access
to a verlock by tasks corresponds to the order of creating the tasks.
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Proof. Consider a task k, which gets valid access to some lock l. Access be-
comes valid when condition (A.27) becomes true. By step VA3 , this occurs
when some other task k′ upgrades a local version lvl by 1. By access privacy
and valid-access mutual exclusion, the task k′ has valid access to l and is the
only one which has it. The valid access of k′ becomes invalidated after upgrad-
ing lvl by 1, and then given to k. From the latter and (A.27), we can derive
that

pvk′(l) = pvk(l) − 1 . (A.28)

Moreover, from step VA1 , we know that the order of private versions corre-
sponds to the order of creating tasks, i.e. if ki has been created before kj , then
pvki

(l) < pvkj
(l) for each lock l such that both tasks have defined access to

it. Hence, from (A.28), we know that k′ has been created before k. Finally, by
induction on tasks we obtain the needed result.

Lemma 38 (Total Ordering). The relative order of acquiring a verlock by
tasks is the same for every verlock.

Proof. Immediate from verlock safety Lemma 27, verlock-set mutual exclusion
Lemma 35, and access ordering Lemma 36, valid-access ordering Lemma 37,
and the fact that the order of creating tasks is total (by step VA1 ).

Lemma 39 (Natural Ordering). The order of acquiring verlocks by tasks in
a concurrent run is the same as in some serial run.

Proof. By the definition of a serial run of tasks, we have immediately that all
verlocks are acquired by the tasks in the order in which the tasks have been
created (let’s call this property a “natural order”).

From verlock safety Lemma 27, valid-access ordering Lemma 37, verlock-
set mutual exclusion Lemma 35, and total ordering Lemma 38, it is straight-
forward that any concurrent run has the “natural order” property. Moreover,
since we only consider isolation for expressions that reached a task-free state
(see Lemma 17), hence we are allowed to consider only concurrent runs in
which all tasks terminate. This means that each verlock acquired must be
eventually released (note that all verlocks are initially free by (R-Lock)). Thus,
by verlock liveness Lemma 29, all verlocks requested will be eventually ac-
quired. From the latter, we conclude that there can be a plausible serial run
considered, and obtain the needed result.
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A.2.4 Isolated task execution

We conclude that the VA algorithm can be used to implement the isolated
execution of tasks.

Theorem 14 (Noninterference). If a program has Properties 11 and 12, then
any evaluation of the program up to any result state, using the VA algorithm,
satisfies the noninterference property.

Proof. By natural ordering Lemma 39, the noninterference property is satisfied
in any concurrent run in which verlocks are acquired when permitted by the
algorithm, which completes the proof.
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!e dereference, 51

(T ) thread grouping, 87

, (comma) concurrency, 87

::= BNF form, 51, 83, 137, 147

:: K has kind K, 62

: t has type t, 62, 95, 112

; (semicolon) sequentiality, 87

< less than, 54, 68, 97, 148

= equal, 116

> greater than, 68, 97

@ list append, 121

A = a synchronization rule A, 83

A, B, C service names, 28, 83, 112

A, B, C signature names, 137

F function abstractions, 137

G the graph of service calls, 38

K combinators declaration, 83

L global message history, 112

LD delivered messages, 112

LD|S.a message history cut, 125

LS sent messages, 112

LS |a message history cut, 114
M the set of service names, 34

M methods, 137

P programs, 83

P, Q class names, 137

P, Q protocol names, 112

Prl parallel, 95

S evaluation states, 53, 87, 147

S + S′ evaluation choice, 89

Seq sequential, 95

T threads, 53, 87, 147

T, T concurrent threads, 53, 87, 147

T ; T sequential threads, 87

[ ] context application, 53, 87, 147

[b, m] message with fields b, m, 129

∧ logical AND, 101
All-Excluded policy type, 101

All-Required policy type, 101

β bind store, 147

CS constraint set, 86

ct class table, 147

D constraints declarations, 101

φ distributed system, 112

φ, L global states, 112

Γ typing environment, 62, 95

Γ ⊢ ⋄ well-formed environment Γ, 62

F role families, 101

t → t function type, 137

t →p t function type, 83

t →a,p t function type, 51

G synchronization guards, 101

K synchronization constraints, 101

⇔ evaluation equivalence, 54, 89, 147
M typing environment for threads, 67
Nat natural numbers, 53

∨ logical OR, 101
∆ object store, 147

Obj object type, 137
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P synchronization policies, 101
Refm t reference type, 51
R required services, 112
SP synchronization policy, 83, 85
Σ store typing, 64
S protocol stacks, 112
S.A(m) service call in S, 112
S.a module a in stack S, 112
S{b/a} replace b for a in S, 119
Sig signature type, 137
Some-Excluded policy type, 101
Some-Required policy type, 101
S role states, 101
U policy rules, 101
Unit unit type, 51, 83, 137
⇑ message delivery, 112
α, β, γ service calls, 28
e e function application, 51, 83, 137
→ function, 53, 101, 147
bind e e object binding, 137
A # e service A, 83
a l bound module a, 116
l bound (module), 112
κ = (κc, κa) bound service names, 95
κa services bound by all threads, 95
κc services bound by current thread,

95
⊲ causal-order combinator, 83
· placeholder (any element), 148
◦ concurrent or sequential thread eval-

uation, 87
	 recursive call in graph G, 38
class P {...} class declaration, 137
∪ set summation, 95, 119, 148
S.a ⇑ m delivery of message m, 112
dom(σ) domain of σ, 54, 148
satisfied policy satisfaction, 101
∅ empty set, 54, 147
enter(r, S) = K ∨ ... ∨ K constraint

declaration, 101

≡ equivalence, 54, 87, 147
escape exception throwing, 137

eval evaluation relation, 54, 89, 147

∃ exists, 95, 101
(σ, r 7→ v) map extension, 54, 148

∀ for all, 68, 95, 101
fork e thread creation, 51, 83, 137

x : t = {e} function abstraction, 137
λpx : t. e function abstraction, 83

λa,px : t. e function abstraction, 51

≥ greater or equal, 57
UG global update, 119

E evaluation context, 53, 87, 147
C combinator context, 87
∈ in set, 51, 54, 83, 114, 137, 148
task pv T in atomic task, 53

insync l f in synchronized block, 53

։ isolated, multiple-step reduction,
89

atomic e e atomic task, 51

foll followed-by combinator, 83

isol isolation combinator, 83

In role state, 101

Wait role state, 101
lab
−→ labelled small-step reduction, 114
let x = e in e “let be” expression,

83, 137

UL local update, 119
lab

−→∗ labelled multi-step reduction,
121

−→∗ multiple-step reduction, 54, 89,
114, 147

⊢ judgment, 62, 95
⊢cs judgment about critical sections,

67

new P object creation, 137

newlock x : m in e verlock creation,
51

6= not equal, 68, 89, 116
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/∈ not in set, 54, 114, 148
⊢tf judgment about task-freedom, 67
a ↑ passive module a, 119
↑ passive (module), 112
Θ(a : t) protocol encoded by a, 112
Θ(a) protocol encoded by a, 112
π lock store, 53
e sequence of elements, 51, 137
‖ parallel combinator, 83
−→ small-step reduction, 54, 89, 114,

147
refm e reference creation, 51
→ causal dependency on calls, 38
A{ τ } threads τ of service A, 87
AE T { τ } abbreviation for

E [ A{ τ } ];T , 87
\ set minus, 119, 148
sig A {...} signature declaration, 137
σ reference store, 53
σ(r) map lookup, 54, 148
σ[r 7→ v] map update, 54, 148
〈stores | T 〉 evaluation states, 54, 147
〈stores | E [ T ]〉 evaluation states, 54,

147
⊂ subset, 57, 147
⊆ subset or equal, 54, 89, 95, 147
sync e e synchronized with verlock, 51
τ threads, 87
θ the first service in graph G, 38
self this object (self reference), 148
× Cartesian product, 53, 147
try e catch e exception catching, 137
unbind e object unbinding, 137
() unit value, 51, 83, 137
⊎ symbolic set summation, 67
⊢h judgement about message histo-

ries, 121
⊢tgu judgement about transparent

global update, 121
a role actions (methods), 101

a, b allocations (type annotation), 51

a, b variables, 137

a, b, c concurrency combinators, 83

a, b, c protocol modules, 112

a w module with binding, 112

c logical condition, 101

e := e object field assignment, 137

e expressions, 51, 83, 137

e.n field or method selector, 137

e{v/x} substitution of v for x in e, 54,
148

f extended expressions, 53, 87

f field names, 137

gv global version counters, 34, 53

l lock location, 53

lv local version counters, 34, 53

m messages, 112

m method names, 137

m, o type variables, 51

mS.a message destined for S.a, 112

mbody(m, P ) method body, 147

n interface names (of fields or meth-
ods), 137

o objects, 101

oP location of object of class A, 148

oP object location, 147

oP .f object field selector, 148

p packages (type annotation), 83

p permissions (type annotation), 51

p = (pc, pa) package, 95

pa package of all threads, 95

pc package of current thread, 95

pv private version counters, 34, 53

r reference location, 53

r synchronization roles, 101

r := e reference assignment, 51

s signatures, 137

s types, 51

set(LS) set from list LS , 114
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supremum the supremum map of ser-
vice calls, 36

t module types, 112

t policy types, 101

t types, 51, 137

t m F method declaration, 137

v, w values, 51, 83, 137

w module bindings, 112

x, y variables, 51, 83, 137

C classes, 137
| or (BNF), 51, 83, 137
| such that, 112
|T | number of elements in T , 68, 97

Free module freedom, 114

Idle module idleness, 126

A

absence of non-declared verlocks, 65

absence of race conditions, 65

access defined, 176

AGC (Adaptive Group Communica-
tion) middleware, 130

allocation (type annotation), 52

AOP, see aspect-oriented program-
ming

aspect-oriented programming, 107

aspects, 107

atomic broadcast, 125, 130

atomic operations, 16

atomic tasks, 18, 25, 29, 52, 58

atomic transactions, 16, 25

atomicity, 11, 25

authentication protocol, 142

B

banker’s algorithm, 43

barrier synchronization, 110, 133

Basic Versioning Algorithm, 34

bind store, 146

binders, see dynamic binders

bound modules, 116
bound service names, 94
BVA (Basic Versioning Algorithm),

26, 31–37, 46, 56

C
calls, see service calls
causal-order combinator, 84
causally dependent calls, 27
causally dependent services, 94
causally related calls, see causally de-

pendent calls
causally related services, see causally

dependent services
classboxes, 152
classes, see object classes
combinator declarations, 84
combinator satisfiability, 21, 81, 93
combinators, see concurrency combi-

nators
compensation, see transaction com-

pensation
complete run, 28
completion of protocol update, 117
composite protocol, 27
composite services, 82
concerns, see aspects
concurrency combinators, 20, 78, 83
concurrent evaluation, 55, 90, 146
concurrent execution, see concurrent
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Streszczenie

Paweł T. Wojciechowski

Projekt języka operacji atomowych, deklaratywnej synchroni-
zacji i dynamicznej aktualizacji w systemach komunikacyjnych

Obecnie występuje rosnące zainteresowanie projektowaniem nowych języków
programowania, które łączą takie cechy, jak współbieżność (lub równoległość)
oraz możliwość dodawania nowego kodu w trakcie działania programu. Dzięki
tym cechom możliwości procesorów wielordzeniowych mogą być lepiej wyko-
rzystane, pozwalając przy tym na dynamiczną aktualizację oprogramowania.
Przykładowymi aplikacjami są usługi rozproszone, które muszą być dostępne
bez przerwy, np. finansowe i telekomunikacyjne, rezerwacje lotów oraz kon-
trola ruchu lotniczego. Zatrzymanie usług świadczonych „non-stop” powoduje
straty finansowe; może także spowodować zagrożenie bezpieczeństwa. Dlatego
też usługodawcy muszą móc naprawić, zaktualizować lub rozszerzyć swoje
systemy z minimalną ingerencją w dostępność usługi. Dające się dynamicznie
aktualizować systemy rozproszone mogą być implementowane z użyciem po-
pularnych języków programowania, które pozwalają na dynamiczne ładowanie
i łączenie komponentów kodu. Jednakże, aby usprawnić programowanie oraz
zagwarantować niezawodność, potrzebne są nowe abstrakcje programistyczne.
Przykładem są konstrukcje do synchronizacji różnych operacji wejścia/wyjścia,
wykonywanych lokalnie w maszynie lub globalnie w systemie rozproszonym.
W tej rozprawie zaprojektowano nowe konstrukcje językowe i algorytmy

uzyskiwania atomowości, deklaratywnej synchronizacji oraz dynamicznej ak-
tualizacji protokołów. Mogą one służyć do budowy systemów komunikacyjnych
z modularnych protokołów, które można zastępować dynamicznie.

• Atomowość (niepodzielność) gwarantuje, że zbiór operacji wykonywa-
nych w miejscu sieciowym (maszynie) może być brany pod uwagę jako
pojedyncza jednostka obliczeniowa, niezależnie od jakichkolwiek innych
operacji wykonywanych współbieżnie.
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• Deklaratywna synchronizacja oznacza sposób implementacji sterowania
różnego rodzaju współbieżnymi akcjami lub zdarzeniami w systemie,
który polega na zdefiniowaniu polityki synchronizacji (takiej jak ato-
mowość). Definiuje się ją w formie zbioru reguł, oddzielnie od kodu
komponentów. Takie podejście umożliwia ponowne użycie komponentów
protokołów w różnych stosach protokołów oraz ułatwia ich dynamiczną
zamianę.

• Dynamiczna aktualizacja protokołów oznacza transparentną zamianę
protokołów w trakcie działania systemu w taki sposób, że korzystanie z
usług implementowanych przez te protokoły nie jest narażone na błędy.
Jednoczesna dynamiczna zamiana komponentów protokołów zlokalizo-
wanych w różnych miejscach sieciowych odbywa się pod kontrolą algo-
rytmów przełączania.

Rozprawa ma następującą strukturę. Rozpoczęto od przedyskutowania
motywacji i kontrybucji. Następnie opisano algorytmy wersjonowania prze-
znaczone do sterowania współbieżnością w zadaniach atomowych. W kolej-
nym rozdziale zaprojektowano rachunek (ang. calculus) zadań atomowych,
tj. transakcji atomowych bez odtwarzania stanu, mogących mieć efekty wej-
ścia/wyjścia. Rachunek ten wyposażony jest w system typów do statycznej
weryfikacji danych wymaganych przez dynamiczne wersjonowanie. System ty-
pów gwarantuje, że proponowane w rachunku konstrukcje programistyczne są
używane w sposób prawidłowy. Następnie opisano dwa różne podejścia do syn-
chronizacji deklaratywnej: (1) rachunek kombinatorów współbieżności z opartą
na typach weryfikacją spełnialności kombinatorów (co daje gwarancję ich po-
prawnego zastosowania) oraz (2) język ograniczeń (ang. constraint language)
dla modelu synchronizacji opartego na rolach. W kolejnym rozdziale opisano
model dynamicznej aktualizacji protokołów oraz podano dwa przykładowe al-
gorytmy przełączania protokołów, mające określone pożądane własności. W
ostatnim rozdziale zaprojektowano oparty na klasach obiektowy rachunek wią-
zań dynamicznych. Rachunek posłużył do pokazania zastosowań mechanizmów
synchronizacji opisanych w tej książce (tj. zadań atomowych i kombinatorów
współbieżności) przy dynamicznym wiązaniu obiektów. W dodatku zamiesz-
czono formalne dowody poprawności szeregu twierdzeń wykazujących trafność
(poprawność) systemu typów (ang. type soundness) dla rachunku zadań ato-
mowych, w tym dowód dynamicznej poprawności przykładowego algorytmu
wersjonowania.


