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Abstract

In this paper, we develop a new indexing method for large web access-logs. We are concerned

with pattern queries, which advocate the search for access sequences that contain certain

query patterns. They find applications in processing web-log mining results (e.g., finding

typical/atypical access-sequences). The proposed method focuses on scalability to web-logs’

sizes. For this reason, we examine the gains due to signature-trees, which can further improve

the scalability to very large web-logs. Experimental results illustrate the superiority of the

proposed method.

1 Introduction

Web access-logs record the access history of users that visit a web server. The entries of the log

are collected automatically and, for this reason, their size tends to grow very rapidly. Recent

work has proposed the application of web-log mining methods[7, 3, 15, 16, 14, 12], which search

for access-patterns. Some examples include methods based on clustering [19] and sequence

mining [2].

A sequential access-pattern represents an ordered group of pages visited by clients. E.g.,

“a client who visited the page about a specific palmtop, is very likely to visit afterwards a

page about a docking cradle for the palmtop”. After some frequently occurring sequences have
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been discovered, the analyst should be able to search for user-access sequences that support

(i.e., contain) the patterns. The latter operation finds several applications, e.g., searching for

typical/atypical user-transactions (access-sequences) [8]. Moreover, web-log mining algorithms

like WUM [17], use templates to constraint the search space and to perform a more focused

mining, according to the user’s requirements. For instance, the user may specify the mining

of sequences with the template 〈A ∗ B ∗ CD〉. Thus, a selection of the user-accesses sequences

can be performed to collect those satisfying the given template. In the previous example, all

sequences containing A, B, C and D (where C and D should be consecutive) are selected. In the

following, we refer to this type of queries over the database of user-access sequence as pattern

queries.

Let a web access log depicted in Figure 1. Each web log entry represents a single user’s

access to a web page and contains the client’s IP address, the timestamp, the URL address of

the requested object, and some additional information. Access requests issued by a client within

a single session with a web server constitute a client’s access sequence (or simply sequence).1

154.11.231.17 −− [13/Jul/2000 : 20 : 42 : 25 + 0200] “GET / HTTP/1.1” 200 1673
154.11.231.17 −− [13/Jul/2000 : 20 : 42 : 25 + 0200] “GET /apache pb.gif HTTP/1.1” 200 2326
154.11.231.17 −− [13/Jul/2000 : 20 : 43 : 25 + 0200] “GET /demo.html HTTP/1.1” 200 520
192.168.1.25 −− [13/Jul/2000 : 20 : 42 : 25 + 0200] “GET /demo.html HTTP/1.1” 200 520
192.168.1.25 −− [13/Jul/2000 : 20 : 44 : 25 + 0200] “GET /books.html HTTP/1.1” 200 3402
160.81.77.20 −− [13/Jul/2000 : 20 : 42 : 25 + 0200] “GET / HTTP/1.1” 200 1673
154.11.231.17 −− [13/Jul/2000 : 20 : 4 : 29 + 0200] “GET /cdisk.html HTTP/1.1” 200 3856
192.168.1.25 −− [13/Jul/2000 : 20 : 49 : 25 + 0200] “GET /cdisk.html HTTP/1.1” 200 3856
154.11.231.17 −− [13/Jul/2000 : 20 : 51 : 25 + 0200] “GET /books.html HTTP/1.1” 200 3402
10.111.62.101 −− [13/Jul/2000 : 20 : 42 : 25 + 0200] “GET /new/demo.html HTTP/1.1” 200 971

⇓
192.168.1.25: /demo.html → /books.html → /cdisk.html

Figure 1: An example of a web access-log and an access sequence.

Assume that the web access log from Figure 1 is stored in the relation R(IP, TS, URL) (IP

is the client’s IP , TS the timestamp, and URL the requested object). Let a query for the

identification of specific users (strictly speaking IP addresses), who accessed objects A, E, and

F in this order. The relation R(IP, TS, URL) and the SQL query, which implements the above

defined pattern query, are depicted in Figure 2.
1The procedure of forming user sessions is given in [3].
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IP TS URL
1 1 O
1 1 B
1 2 A
1 3 F
1 4 E
2 1 A
2 2 E
2 3 F
3 1 O
4 2 N

select IP
from R a, R b, R c
where a.IP = b.IP

and b.IP = c.IP
and a.TS < b.TS
and B.TS < c.TS
and a.URL = ’A’
and b.URL = ’E’
and c.URL = ’F’;

(a) (b)

Figure 2: (a) The relation R of web access sequences. (b) An example of pattern query.

SQL language does not contain a sequence search statement. Therefore, to specify this

kind of query in SQL, multiple joins or multiple nested subqueries are required. For very large

web-logs, this operation may require prohibitive cost. Thus, there is a problem of appropriate

optimizing the database access while performing pattern queries. Zakrzewicz [20] has introduced

the sequential-index structure for indexing web-logs. Experimental results in [20] illustrate

the superiority of the proposed index against the answering of pattern queries with SQL and

traditional B+-tree indexes.

In this paper, we are concerned with the development of a new indexing method for the stor-

age and querying of large web access-logs. Based on the approach of [20], the proposed method

considers the ordering of accesses within sequences to effectively encode the sequences with sig-

nature representations. Moreover, we exploit the fact that the distribution of elements within

accesses sequences is usually skewed, to propose a novel approach for an approximate encoding,

and we examine the advantages of using signature-tree structures for improving the scalability

of searching. Experimental results with real and synthetic data illustrate the performance gains

over the original sequential-index.

The rest of this paper is organized as follows. Section 2 gives an overview of the related

work, whereas the scheme for the representation of sequential patterns is described in Section 3.

The proposed indexing method is presented in Section 4. Section 5 contains the experimental

results, and finally Section 6 concludes the paper.
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2 Related Work

Helmer and Moerkotte [5] adopted traditional techniques, like sequential signature files, signa-

ture trees, extensible signature hashing and inverted files, for indexing set-valued attributes.

It has been observed [5] that the inverted file dominated other index structures for subset and

superset queries. The problem of applying signature files to retrieving a given set in a large col-

lection of sets was also analyzed by Kitagawa, Ishikawa, and Obho [6]. In [10] a set-based bitmap

index is presented, which facilitates the fast subset searching in relational databases. The index

is based on the creation of group bitmap keys, which are a special case of superimposed coding

via hashing of transactions’ contents.

All the aforementioned set-based indexing approaches do not consider the ordering of items

within the searched query set, which is crucial in storing and querying sequence data like web

access-sequences. For instance, let a pattern query that searches for sequences containing A, F

and E, in this order, in the relation R of Figure 2a. A set-based index (e.g., signature file or

inverted index) will find both the first and the second sequence (sequences are determined by

the IP number), although the second does not contain the required pattern in this order. An

additional post-processing step is necessary to eliminate sequences having incorrect ordering,

which may cause a significant overhead related to reading and verifying a large number of false

sequences from the database.

The sequential-index for web access-logs [20] targets the aforementioned problem. It de-

scribes how user-access sequences can be represented with equivalent-sets, to take ordering of

sequence elements into account. Experimental results in [20] show the advantage of considering

the ordering within access sequences. Since the length of equivalent sets can increase rapidly,

a partitioning technique is proposed in [20], which divides equivalent sets into a collection of

smaller subsets. Nevertheless, the partitioning method may result into an increased cost of

index lookup, since each partition has to be represented separately. In this paper, we are based

on the equivalent-set representation in order to develop the proposed indexing scheme. How-
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ever, we propose a novel technique, which does not resort to partitioning in order to reduce the

size of equivalent-sets’, and it can exploit signature-tree structures for further improving the

scalability to large web-logs. In the sequel, we first briefly describe the aforementioned notion

of equivalent-set, and then we develop the new indexing method.

3 Equivalent Sets and Signatures

Let I be a domain of items, each corresponding to a distinct URL. A sequence S is defined as an

ordered list of item. Thus, S = 〈x1, . . . , xn〉, where each xi is called element of S. A sequence

Q = 〈y1, . . . , ym〉 (m ≤ n) is contained by S (we note Q � S), if there exist a sequence of m

integers j1 < j2 . . . < jm for which y1 ⊆ xj1 , . . . , ym ⊆ xjm . Therefore, ordering is considered

within sequences. A pattern query finds all sequential patterns S that contain a given query

sequence Q.

We assume the existence of an item-mapping function f(i) that maps each i ∈ I to an integer

value (since I may contain any type of literals). For instance, for a sequence S = 〈A, B, C, D〉

we have f(A) = 1, f(B) = 2, f(C) = 3 and f(D) = 4. We also consider an order mapping

function fo(xi, xj) that transforms a sequence of the form 〈xi, xj〉 (xi, xj ∈ S) to an integer

value. For instance, for fo(xi, xj) = 6 ·f(xi)+f(yj), we have fo(A, B) = 8. Based on the above,

we give the definition for the equivalent set of a sequential pattern [20].

Definition 1 (Equivalent Set) Given a sequence S = 〈x1, . . . , xn〉, the equivalent set E of S

is defined as:

E =


 ⋃

xi∈S

{f(xi)}

 ∪


 ⋃

xi,xj∈S,i<j

{fo(xi, xj)}



For instance, let S = 〈A, C, D〉 be a sequence. Using the mapping functions that were described

above, we get:

E =
[{f(A)} ∪ {f(C)} ∪ {f(D)}] ∪ [

fo(A,C) ∪ fo(A,D) ∪ fo(C,D)
]
= {1, 3, 4, 9, 10, 22}

It is easy to show for two sequences Q, S (EQ and ES are the corresponding equivalent
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sets) that, if Q is contained by S, then EQ ⊆ ES . This allows us to express a pattern query

problem as the problem of finding all item sets that contain a given subset. However, due to

the consideration of ordering, the length of equivalent sets grows rapidly.

For the above reason, equivalent-sets can be efficiently represented with superimposed sig-

natures. A signature is a bitstring of F bits (denoted as signature length) and is used to

indicate the presence of elements in a set. Each element of a set can be encoded, by using

a hash function, into a signature that has exactly m out F bits equal to ‘1’ and all other

bits equal to ‘0’. The value of m is called the weight of the element. The signature of the

whole set is defined as the result of the superimposition of all element signatures (i.e., each

bit in the signature of the set is the logical OR operation of the corresponding bits of all its

elements). Given two equivalent sets E1, E2 and their signatures S(E1), S(E2), it holds that

E1 ⊆ E2 ⇒ S(E1) AND S(E2) = S(E1). Thus, signatures provide a quick filter for

testing the subset relationship between sets. Evidently, false-drops may result from collisions

due to the superimposition. To verify a drop (i.e., to determine if it is a true- or a false-drop),

we have to examine the corresponding sequences with the containment criterion. Although a

signature is a concise representation of an equivalent set, a large number of elements in the

latter can impact the former. The results will be signatures which are full of ‘1’; this incurs a

large number of false-drops and large I/O overhead for the data pages.

4 Proposed Method

In [20], a partitioning technique is proposed, which divides large equivalent sets into small

groups and represents each group with a separate signature. Although this reduces the the I/O

cost for data pages, it can impact I/O cost for index pages, due to multiple signatures for each

equivalent set.

In this section we propose a new method for organizing equivalent sets. It is based on

the observation that the distribution of elements within access sequences is skewed, since the
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elements in the sequences tend to follow certain patterns. Those elements corresponding to

frequent subsequences (called large according to the terminology of [1]) have larger appearance

frequency. Hence, the pairs of elements that are considered during the determination of an

equivalent set are not equiprobable.

Due to the above, the length of equivalent sets can be reduced by taking into account only the

pairs with high co-occurrence probability. This represents an approximation of equivalent sets.

The objective of this method is the reduction of the lengths of equivalent sets, so as to reduce the

I/O cost for data pages, without increasing in the I/O cost for indexed pages, since an equivalent

set is not represented by several signatures as in [20]. According to Definition 1, an equivalent

set is the union of two sets: the one resulting by considering each element separately and the

one from considering pairs of elements. Let P (E) denote the latter set, and suppD(xi, xj)

denote the support of pair 〈xi, xj〉 in D (i.e., the normalized frequency of sequence 〈xi, xj〉 [1]),

where xi, xj ∈ I and the pair 〈xi, xj〉) ∈ P (E). The algorithm for obtaining the signatures for

approximate representations is given in Figure 3. It is assumed that variable F will contain the

resulting signatures. S(E) denotes the signature of the equivalent-set E.

1. forall i ∈ I
2. find NN = {ij | ij ∈ I, 1 ≤ j ≤ k, ij �= i,∀ l �∈ NN suppD(i, ij) ≥ suppD(i, l)}
3. endfor
4. F = ∅
5. forall p ∈ D
6. E = Equivalent Set(p)
7. forall 〈xi, xj〉 ∈ P (E)
8. if xj �∈ NN(x)
9. remove pair 〈xi, xj〉 from E
10. endif
11. endfor
12. F+ = S(E)
13. endfor

Figure 3: Algorithm for obtaining signatures of approximations of signature sets.

The indexing method in [20] uses a sequential signature file for storing the signatures. In

particular, the multiple signatures of each equivalent set are stored one after the other. In con-
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trast, an advantage of the proposed approximate representation is that it leads to one signature

for each equivalent set. Thus, improved signature indexing methods can be used, for instance

the S-tree [4].2 In our approach we used enhanced signature-tree indexing methods, based

on [18, 13]. Therefore, the elements of F , obtained with the above algorithm (Figure 3), can be

indexed with signature tree structures. In general, signature trees are B+-tree-like structures

that organize signatures. Signatures of equivalent-sets are stored in the leaf level, and signa-

tures at internal nodes are the superimposition of signatures in the corresponding subtrees. An

example of such a tree is depicted in Figure 4. Due to space constraints, more details can be

found in [18, 13].

Level 0

Level 1

Level 2

A

B

E F

C

0 0 1 0 1 1 1 0

0 0 1 1 1 0 0 0

G

1 1 1 0 0 0 0 1

1 1 0 0 0 1 1 1

1 0 1 0 0 0 0 1

0 1 1 0 0 0 0 1

1 1 0 0 0 0 1 0

0 1 0 0 0 1 0 1

0 0 1 0 1 0 1 0

0 0 1 0 1 1 0 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 1 1 1 1 1 0

1 1 1 0 0 1 1 1

Figure 4: Example of a signature tree.

For answering a pattern query, the equivalent-set of the query sequence has to be generated

first. Next, its approximation is derived, using an approach analogous to that of Figure 3.

Finally, its query is generated and the signature tree is probed. Evidently, the matching against

the actual sequences whose signature correspond to a drop, has to be applied to resolve false-

drops.

It has to be noticed that the selection of the user-defined parameter k for the calculation

of the NN set in algorithm of Figure 3, has to be done carefully. A small k value will remove

almost all pairs from an equivalent set and in this case the I/O cost for data pages increases

(intuitively, if the equivalent set has very few elements, then the corresponding signature will
2Since [20] represents each equivalent set with several signatures, they cannot be inserted independently in a

single signature tree structure.
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be full of ‘0’, thus the filtering test becomes less effective). In contrast, with a large k value,

almost all pairs are considered and this incurs large numbers of false drops. The tuning of the

k value is examined in the following section.

5 Performance results

This section contains the experimental results on the performance of all methods. We have

implemented the described methods in C. Henceforth, we SI denotes the sequential-index

method [20], whereas ST denotes the proposed method. We have examined several real web

access-logs, available at the Internet Traffic Archive3. We also examined synthetic data, which

are generated based on a model analogous to that of [1, 11]. With synthetic data we examine

the sensitivity of methods against high impact of ordering effect. The performance measure

that we used was the total I/O cost (in disk accesses), which includes both I/O for index and

data pages. The page size we used was 4 K. The default value for k is 10% of the domain size

(i.e., total distinct URL).

First, we examined real web-logs. Due to space constraints, we present results on the

ClarkNet web-log, which after cleansing, contained 7200 distinct URL organized into 75,000

sequences. The results are depicted in Figure 5a. Evidently, ST significantly outperforms SI

in all cases. Only for very very small queries (i.e., with two elements), the methods present

comparable performance, since a large part of both indexes is invoked by these queries (i.e.,

they have very low selectivity).

As described, in order to control the effect of ordering of sequences’ elements, we exam-

ined synthetic data. We used a set of pattern sequences, which correspond to seeds for the

generated user-sequences. Each pattern sequence is generated from the previous one using a

number of common elements (denoted as correlation factor) and by permutating these common

items. Therefore, the impact of ordering of elements becomes significant. Herein, due to space
3http://ita.ee.lbl.gov/html/contrib/../traces.html
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Figure 5: I/O vs. query size(a) ClarkNet web-log. (b) Synthetic web-log.

constraints, we present results on a synthetic web-log that contains 1,000 distinct URL, 100,000

user-sequences with average length equal to 10. The correlation factor that was used was 70%.

Figure 5b illustrates the results with respect to query size. As shown, ST clearly outperforms SI

in all cases. The performance difference of the two methods is significant, especially for medium

sized queries. Hence, ST is not impacted so much by the high-degree of ordering effect in the

user-sequences.

Next, we examined the scalability against the web-log size. We used synthetic web-logs,

analogous to the ones described previously, and we varied the number of sequences. The results

are depicted in Figure 6a. As illustrated, the I/O cost of ST is much less compared to the one

of SI.

Finally, we focus on tuning of k. We used synthetic logs that were similar to the ones used

in the previous experiments. We measured the I/O cost for ST with respect to k. The results

are depicted in Figure 6b, where k is given as a percentage of |I| (i.e., the domain size). As

shown, for small values of k (less than 5%), ST requires a large number of accesses, because

very small equivalent sets are produced that give signatures with almost all bits equal to ‘0’.

Thus, as explained, the filtering of the signatures becomes low and the I/O cost for data pages

increases. On the other hand, for large k values (larger than 20%) very large equivalent sets are
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Figure 6: (a) Scalability. (b) Tuning of k.

produced and the signatures have a large number of ‘1’, which impacts both the index I/O cost

(several nodes are activated) and data I/O cost (low selectivity). The best performance results

when setting k to 10% of |I|.

6 Conclusions

We considered the problem of efficient indexing large web access-logs for pattern queries. We

proposed a novel encoding scheme, which reduces the size of signatures for equivalent-sets and

can exploit signature trees for increased scalability. The performance of the proposed method is

examined experimentally with real and synthetic data. These results illustrate the superiority of

the proposed method against the sequential-index, an existing indexing method for web access-

logs. Future work will examine the examination of the proposed method in other applications

of sequence data, like music databases [9].
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