Materialized Viewsin Data Mining

Bogdan Czejdo
Department of Mathematics and Computer Science, Loyola University
czejdo@loyno.edu

Mikolaj Morzy, Marek Wojciechowski, Maciej Zakrzewicz
Institute of Computing Science, Poznan University of Technology
{mmorzy,marek,mzakrz} @cs.put.poznan.pl

Abstract

Data mining is an interactive and iterative process. It
is highly probable that a user will issue a series of simi-
lar queries until he or she receives satisfying results. Cur-
rently available mining algorithms suffer fromlong process-
ing times depending mainly on the size of the dataset. As
the pattern discovery takes place mainly in the data ware-
house environment, such long processing times are unac-
ceptable from the point of view of interactive data mining.
On the other hand, the results of consecutive data mining
gueries are usually very similar. This observation leads
to the idea of reusing materialized results of previous data
mining queries in order to improve performance of the sys-
tem. In this paper we present the concept of materialized
data mining views and we show how the results stored in
these views can be used to accelerate processing of data
mining queries. We demonstrate the use of materialized
views in the domains of association rules discovery and se-
guential pattern search.

1. Introduction

Data mining is a non-trivial process of identifying valid,
novel, potentially useful, and ultimately understandable pat-
terns in large volumes of data. Data mining systems are
evolving from systems dedicated to and specialized in par-
ticular tasks or domains to general-purpose systems, which
are tightly coupled with the existing database technology.
This integration allows for the development of universal
data mining environments that constitute a set of knowledge
discovery algorithms and a data warehouse. Data ware-
houses form excellent data sources for several mining tech-
niques but require a powerful back-end database engine.

From a user’s point of view the execution of a data min-
ing algorithm and the discovery of a set of patterns is an

answer to a sophisticated database query. A user limits the
mined dataset (e.g. by the means of a standard SQL query)
and determines the values of parameters that control a given
algorithm. In return, the system discovers the patterns and
presents them to the user. When the process starts, the user
does not know the exact goal of the exploration. Rather, he
achieves satisfying results in several consecutive steps. In
each step the user verifies the discovered patterns and, suit-
ably to his needs, expectations, and experience, modifies
either the mined dataset, or algorithm parameters, or both.
In other words, the user discovers interesting and useful re-
sults in a series of runs, with the run environment slightly
tuned in each run.

The basic problem in data mining is the processing time
of data mining queries. Data mining algorithms often re-
quire minutes or hours to answer a simple query. On the
other hand, mining practice shows that the majority of data
mining queries are only minor modifications of previous
queries. Given these circumstances, data mining systems
should try to exploit the results of previous queries, instead
of running a complete mining algorithm for each query.

In this paper we discuss techniques of reusing material-
ized results of previous queries stored in materialized views
in the context of frequent itemsets, association rules, and se-
quential patterns. Materialized views have been thoroughly
examined and successfully applied in traditional database
management systems. We propose to follow this path and
introduce materialized views to data mining systems. Con-
sidering data mining queries, finding materialized views
suitable for answering a given query is difficult. Query
defining a materialized view can differ from the current
query both in algorithm parameters and the mined dataset.
We show when and how materialized views can be used to
answer a data mining query guaranteeing correctness of the
answer. All examples presented in this paper are expressed
in MineSQL, a declarative SQL-like data mining language
[12].

2. Basic definitions
2.1. Frequent sets and association rules

Let L = Iy,1,...,1,, be a set of literals, called items.
An itemset X is a non-empty set of items (X C L). The
size of an itemset X is the number of items in X. Let D
be a set of variable size itemsets, where each itemset 7" in
D has a unique identifier and is called a transaction. We
say that a transaction 7" containsan ittem z € L if z isin
T. We say that a transaction 7" contains an itemset X C L
if T' contains every item in the set X. The support of the
itemset X is the percentage of transactions in D that contain
X. The problem of mining frequent itemsets in D consists
in discovering all itemsets whose support is above a user-
defined support threshold.

An association rule is an implication of the form X —
Y,where X CL, Y CL XNY = (. Wecall X the
body of a rule and Y the head of a rule. The support of
the rule X — Y in D is the support of the itemset X U Y.
The confidence of the rule X — Y is the percentage of
transactions in D containing X that also contain Y. The
problem of mining association rules in D consists in discov-
ering all association rules whose support and confidence are
above user-defined minimum support and minimum confi-
dence thresholds.

2.2. Sequential patterns

Let L = Iy,ls,...,1,, be a set of literals called items.
An itemset is a non-empty set of items. A sequence is an
ordered list of itemsets and is denoted as < X1 X5...X,, >,
where X; isan itemset (X; C L). X; is called an element of
the sequence. The size of a sequence is the number of items
in the sequence. The length of a sequence is the number of
elements in the sequence.

We say that a sequence X =< X;X5...X,, > is a sub-
sequence of a sequence Y =< Y1Y5...Y,,, > if there exist
integers i; < is < ... < i, suchthat X; C ¥;,, X, C
Yi, 0 Xnn CY; . Wecall < Y, Y;,...Y;, > anoccurrence
of XinY.

Let D be a set of variable length sequences (called data-
sequences), where for each sequence S =< 5155...5, >,
a timestamp is associated with each .S;. With no time con-
straints we say that a sequence X is contained in a data-
sequence S if X is a subsequence of S. We consider the
following user-specified time constraints while looking for
occurrences of a given sequence in a given data-sequence:
minimal and maximal gap allowed between consecutive ele-
ments of an occurrence of the sequence (called min-gap and
max-gap), and time window that allows a group of consec-
utive elements of a data-sequence to be merged and treated

as a single element as long as their timestamps are within
the user-specified window-size.

The support of a sequence < X; X»...X,, > in D is the
fraction of data-sequences in D that contain the sequence.
A sequential pattern is a sequence whose support in D is
above the user-specified minimum support threshold.

2.3. Related work

The work on materialized views started in the 80s. The
basic concept was to use materialized views as a tool to
speed up queries and serve older copies of data. Multiple
algorithms for view maintenance were developed [8][15].

The problem of association rule discovery was intro-
duced in [1]. In the paper, discovery of frequent itemsets
was identified as the key step in association rule mining. In
[2], the authors proposed an efficient frequent itemset dis-
covery algorithm called Apriori that became the basis for
many other mining algorithms.

The idea of sequential pattern discovery was first pre-
sented in [3]. In [4], time constraints were incorporated
into the problem and a sequential pattern discovery algo-
rithm called GSP was introduced.

Incremental mining was first discussed in [7] in the con-
text of association rules. A novel algorithm called FUP
was proposed to efficiently discover frequent itemsets in an
incremented dataset, exploiting previously discovered fre-
quent itemsets. Incremental mining was also analyzed in
the context of sequential patterns (e.g. [14]).

The notion of interactive and iterative knowledge discov-
ery first appeared in [13]. The authors postulated to cre-
ate a knowledge cache that would keep recently discovered
frequent itemsets along with their support value. Besides
presenting the notion of knowledge cache the authors intro-
duced several maintenance techniques for such cache, and
discussed using the cache contents when answering new fre-
quent set queries. To facilitate interactive and iterative se-
quential pattern discovery, [14] proposed to materialize pat-
terns discovered with the least restrictive selection criteria,
and answer incoming queries by filtering the materialized
pattern collection.

The concept of Knowledge and Data Management Sys-
tems was first introduced in [9]. In the opinion of the au-
thors, KDMSs should replace contemporary database man-
agement systems by integrating data and knowledge related
activities in one central place. The authors also defined the
notion of a data mining query and suppressed the need to
tightly integrate knowledge discovery systems with the ex-
isting database and data warehouse infrastructure to provide
a framework for advanced applications.

3. Data mining queries
3.1. Queries

Several declarative data mining query languages have
been proposed so far [6][10][12]. Such languages can be
used to separate user applications from data mining algo-
rithms. In this paper we use a multipurpose data mining
query language called MineSQL [12] to formulate exam-
ple queries. MineSQL employs the concept of data mining
queries to express data mining tasks. MineSQL syntax mim-
ics that of standard SQL and allows for tight and seamless
integration of data mining queries with traditional database
queries. MineSQL currently allows to issue commands that
discover frequent itemsets, association rules and sequential
patterns. MineSQL defines a set of additional data types
(e.g., SET, SEQUENCE, RULE) as well as a set of opera-
tors and functions for those data types (e.g., CONTAINS,
BODY(x), HEAD(x), SIZE(x), LENGTH(x)). The follow-
ing data mining query discovers all frequent itemsets with
support higher than 20% and containing an item milk. Min-
ing takes place in the part of the database that contains trans-
actional data for the 4th quarter of 2001.

MINE ITEMSET

FROM (SELECT SET (PURCHASED_ITEM)

FROM PURCHASES

WHERE DATE_OF_PURCHASE >= ‘01.10.2001’

AND DATE_OF_PURCHASE <= ’31.12.2001’

GROUP BY TRANSACTION_ID)

WHERE SUPPORT (ITEMSET) > 0.2

AND ITEMSET CONTAINS TO_SET('‘milk’) ;

Two classes of constraints can be seen in the above ex-
ample. Database constraints are placed within WHERE
clause in the SELECT subquery. Database constraints
define the source dataset, i.e., the subset of the original
database in which data mining is performed. Mining con-
straints are placed within the WHERE clause in the MINE
statement. Mining constraints define the conditions that
must be met by discovered patterns.

3.2. Relationships between results of data mining
queries

In [5] three relationships which occur between two data
mining queries ()1 and @, have been identified. Two data
mining queries are equivalent if for all datasets they both
return the same set of patterns and the values of statistical
significance measures (e.g., support) for each pattern are the
same in both cases. A data mining query), includes a
data mining query Q- if for all datasets each pattern in the
results of) is also returned by (), with the same values of
the statistical significance measures. A data mining query
(1 dominates a data mining query @ - if for all datasets

each pattern in the results of @, is also returned by @,
and for each pattern returned by both queries its values of
the statistical significance measures evaluated by () ; are not
less than is case of ()-.

Relationships described above occur between the results
of data mining queries and can be used to identify the situa-
tions in which a query (0, can be efficiently answered using
the materialized results of another query 2. Those rela-
tionships are general in nature and can be applied to various
types of patterns (frequent sets, association rules, sequen-
tial patterns) and various constraint models. General idea
of using materialized query results is the following. If for
a given query, results of a query equivalent to it, including
it, or dominating it are available, the query can be answered
without running a costly mining algorithm. In case of equiv-
alence no processing is required, since the queries have the
same results. In case of inclusion, one scan of the mate-
rialized query results is necessary to filter out patterns that
do not satisfy constraints of the included query. In case of
dominance, one scan of the source dataset is necessary to
evaluate the statistical significance of materialized patterns
(filtering out the patterns that do not satisfy constraints of
the dominated query is also required).

3.3. Data mining views

Traditional views are used mainly to hide difficult query
structures from a user. Views also provide independence
of applications from the schema changes occurring in the
database. All changes must be reflected only in the defini-
tion of the view and no modification is required in end-user
applications. Every access to the view triggers the execution
of the query that defines the view.

Data mining is an interactive and iterative process and
data mining queries tend to be fairly complicated. Data
mining views hide the complexity of the algorithm from
an application and simplify access to discovered patterns.
The notion of a data mining view was introduced in [11].
The following MineSQL statement creates a data mining
view V_SEQ_PATS The view presents sequential patterns
discovered in the CUST_TRANSACTIONS table, having the
support exceeding 0.2, using the following time constraints:
max-gap of 100, min-gap of 1, and no window-size (the de-
fault value of 0 is used).

CREATE VIEW V_SEQ PATS AS

MINE PATTERN MAXGAP 100 MINGAP 1

FROM (SELECT SEQUENCE (T_TIME, ITEM)

FROM CUST_TRANSACTIONS

GROUP BY C_ID)

WHERE SUPPORT (PATTERN) >0.2;

Data mining views provide additional independency
layer between the database and the end-user application.
Slight modifications of algorithm parameters or explored

dataset are reflected only in the view definition whilst the
application does not notice any changes. Besides, the user
is separated from the technical details of the algorithm and
can perform repetitive data mining tasks without knowing
the details of syntax of the MINE statement. As with tradi-
tional views, every access to the data mining view triggers
the execution of the underlying algorithm.

The algorithms for pattern discovery are usually time-
consuming. Processing time of a data mining query could
easily become unacceptable from the point of interactive
mining. The solution to this problem is materialization of
previously obtained results of data mining queries. A ma-
terialized data mining view is a database object storing the
results of a data mining query (frequent sets, association
rules, sequential patterns). With every materialized view a
time period can be associated, after which the view is au-
tomatically refreshed. The following statement creates the
materialized data mining view MV_SEQ_PATS The view is
to be refreshed automatically once a week.

CREATE MATERIALIZED VIEW MV_SEQ_PATS

REFRESH 7 AS

MINE PATTERN MAXGAP 100 MINGAP 1

FROM (SELECT SEQUENCE (T_TIME, ITEM)

FROM CUST._TRANSACTIONS

GROUP BY C_ID)

WHERE SUPPORT (PATTERN) >0.2;

Materialized data mining views can be refreshed either
automatically or on user’s demand. In most cases such re-
fresh can be performed by one of the incremental mining
algorithms instead of running the complete discovery algo-
rithm. Additional advantage of materialized views is the
fact that data mining usually takes place in a data warehouse
where changes to base relations (and thus to the stored pat-
terns) do not happen continually over time but are accumu-
lated and loaded to the data warehouse during data ware-
house refresh process. The patterns discovered and stored
in the materialized view remain valid for a long period of
time until next data warehouse refresh. Validation of pat-
terns can be postponed until next warehouse refresh event.

4. Using materialized data mining views in
data mining query execution

In many cases contents of the materialized view can be
used to answer a query that is similar to the query defining
the view. For example, if the query defining the view @ ,
includes a given query @ then the latter can be answered by
simply reading the contents of the view and pruning those
patterns that do not meet the conditions formulated in Q.
The key issue is identification of syntactic differences lead-
ing to situations in which one query can be efficiently an-
swered using the results of another query.

In our analysis we consider only materialized views con-

taining frequent sets and sequential patterns. Even if the
final goal is discovery of association rules, we propose to
materialize frequent sets for two reasons. As it was also ob-
served by other researchers: generation of rules from item-
sets is straightforward [1], and materialized itemsets can be
used to answer more itemset and rule queries [13].

4.1. Frequent sets

Given two queries @1 and Qo we say that ()» extends
database constraints of @, if syntactic differences between
the queries imply that the source dataset for @) » will always
be a subset of the source dataset for @ ;.

We say that ()» extends mining constraints of @, if for
an arbitrary collection of patterns, filtering it according to
the outer WHERE clause of (), will lead to a subset of the
results of filtering it according to the outer WHERE clause
of Q1 .

Depending on circumstances, given the query) and the
results of the query (), stored in a materialized view, several
mining methods are available.

Incremental mining refers to the situation when one of
the incremental discovery algorithms is executed on ex-
tended dataset. This method is used when the query @,
extends database constraints of ().

Another possibility is complementary mining. This
method can be utilized when the query @, extends min-
ing constraints of () (all patterns available in the view will
be present in the answer to the query). In this case, there is
no need to compute the support of some patterns because it
can be read from the materialized view.

Verifying mining is possible when () extends pattern con-
straints of (), and has the same database constraints (this
case corresponds to the inclusion relationship from [5]).
The method consists in reading materialized view and prun-
ing away those patterns that do not satisfy extended mining
constraints of).

Finally, full mining refers to running a complete data
mining algorithm that does not exploit results of previous
queries. This method has to be applied when for a given
query materialized views supporting incremental, comple-
mentary, or verifying mining are not available.

Let us consider the following example. We are given the
following definition of a materialized data mining view @

MINE ITEMSET

FROM (SELECT SET (PURCHASED_ITEM)

FROM PURCHASES

GROUP BY TRANSACTION_ID

HAVING COUNT (*) >= 5)

WHERE SUPPORT (ITEMSET) > 0.3;
and the following data mining query Q:

MINE ITEMSET

FROM (SELECT SET (PURCHASED_ITEM)

FROM PURCHASES

GROUP BY TRANSACTION_ID)

WHERE SUPPORT (ITEMSET) > 0.5;
The query) extends mining constraints of (), by setting a
higher value of minimum support. On the other hand, the
query), extends database constraints of @) by adding the
HAVING clause. To answer (@ using the contents of @, the
following steps need to be taken. First, verifying mining
is performed to prune patterns with support not exceeding
0.5. Next, incremental mining is performed on the part of
the database consisting of transactions shorter than 5 items.

4.2. Sequential patterns

Similarly to frequent itemset discovery, materialized
views can be successfully utilized in sequential pattern
search. Apart from the mining and database constraints,
in sequential pattern discovery time constraints are also
present in data mining queries. These time constraints are
min-gap, max-gap and window-size.

The relationships of extending mining and database con-
straints defined in the previous section carry over to sequen-
tial patterns. Additionally, we say that () » extendstime con-
straints of (), if it tightens at least one of the time parame-
ters without relaxing any remaining parameters.

All the query processing techniques involving material-
ized views: incremental mining, complementary mining,
and verifying mining are also valid for sequential patterns,
provided that the current query @ and the query @ ,, defining
a materialized view have the same time constraints.

If ., extends time constraints of) full mining has to be
performed. On the other hand, if () extends time constraints
of @, with the same mining and database constraints, @
can be answered by re-evaluating the support of patterns re-
turned by (), using the time constraints of () and pruning
the patterns not satisfying the minimum support threshold
of) (this case corresponds to dominance relationship from
[5]). This technique can be used as the initial step before
incremental, complementary, and verifying mining, if dif-
ferences in mining and database constraints suggest a given
method, and additionally () extends time constraints of @ ,,.

5. Conclusions

We have addressed the problem of employing material-
ized data mining views to optimize data mining queries in
large data warehouses. Materialized data mining views are
physical data warehouse structures, created explicitly or im-
plicitly, used to store precomputed results of selected data
mining queries.

We showed that in some situations, a new data min-
ing query can be mapped to an existing materialized data
mining view and it can be answered without the need to

run a complete data mining algorithm. We classified min-
ing methods exploiting materialized results of previous data
mining queries, and identified situations in which those
methods are applicable in the context of two main data min-
ing techniques: frequent itemset discovery and sequential
pattern discovery.

In practical data mining systems, a cost-based query op-
timizer should be responsible for using the described meth-
ods for seamless rewriting of users’ queries to shorten their
execution time. Designing such a data mining query opti-
mizer is one of our future research goals.

References

[1] R. Agrawal, T. Imielinski, A. Swami. Mining association
rules between sets of items in large databases. In Proc. of
the 1993 ACM SSGMOD Conference, 1993.

[2] R. Agrawal, R. Srikant. Fast Algorithms for Mining Associa-
tion Rules. In Proc. of the 20th VLDB Conference, 1994.

[3] R. Agrawal, R. Srikant. Mining Sequential Patterns. In Proc.
of the 11th ICDE Conference, 1995.

[4] R. Agrawal, R. Srikant. Mining Sequential Patterns: Gener-
alizations and Performance Improvements. In Proc. of the 5th
EDBT Conference, 1996.

[5] E. Baralis, G. Psaila. Incremental refinement of mining
queries. In Proc. of the 1st DaWaK Conference, 1999.

[6] S. Ceri, R. Meo, G. Psaila. A New SQL-like Operator for
Mining Association Rules. In Proc. of the 22nd VLDB Con-
ference, 1996.

[7] D. W.-L. Cheung, J. Han, V. Ng, and C. Y. Wong. Mainte-
nance of discovered association rules in large databases: An
incremental updating technique. In Proc. of the 12th ICDE
Conference, 1996.

[8] A. Gupta, I. S. Mumick. Maintenance of Materialized Views:
Problems, Techniques, and Applications. |EEE Data Engi-
neering Bulletin, Special Issue on Materilaized Views and
Data Warehousing, 18(2), 1995.

[9] T.Imielinski, H. Mannila. A Database Perspective on Knowl-
edge Discovery. Communications of the ACM, 39(11), 1996.

[10] T. Imielinski, A. Virmani, A. Abdulghani. Datamine: Ap-
plication programming interface and query language for data
mining. In Proc. of the 2nd KDD Conference, 1996.

[11] T. Morzy, M. Wojciechowski, M. Zakrzewicz. Materialized
Data Mining Views. In Proc. of the the 4th PKDD Confer-
ence, 2000.

[12] T. Morzy, M. Wojciechowski, M. Zakrzewicz. Data Mining
Support in Database Management Systems. In Proc. of the
2nd DaWaK Conference, 2000.

[13] B. Nag, P. Deshpande, D. J. DeWitt. Using a Knowledge
Cache for Interactive Discovery of Association Rules. In
Proc. of the 5th KDD Conference, 1999.

[14] S. Parthasarathy, M. J. Zaki, M. Ogihara, S. Dwarkadas. In-
cremental and interactive sequence mining. In Proc. of the
1999 ACM CIKM Conference, 1999.

[15] N. Roussopoulos. Materialized Views and Data Warehouses.
S GMOD Record, 27(1), 1998.

