
Materialized Data Mining Views*

Tadeusz Morzy, Marek Wojciechowski, Maciej Zakrzewicz

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland
tel. +48 61 6652378, fax +48 61 8771525

{morzy,marek,mzakrz}@cs.put.poznan.pl

Abstract. Data mining is a useful decision support technique, which can be
used to find trends and regularities in warehouses of corporate data. A serious
problem of its practical applications is long processing time required by data
mining algorithms. Current systems consume minutes or hours to answer
simple queries. In this paper we present the concept of materialized data mining
views. Materialized data mining views store selected patterns discovered in a
portion of a database, and are used for query rewriting, which transforms a data
mining query into a query accessing a materialized view. Since the
transformation is transparent to a user, materialized data mining views can be
created and used like indexes.

1 Introduction

Data mining, also referred to as database mining or knowledge discovery in databases
(KDD), aims at discovery of useful patterns from large databases or warehouses.
Currently we are observing the evolution of data mining environments from
specialized tools to multi-purpose data mining systems offering some level of
integration with existing database management systems. From a user’s point of view
data mining can be seen as advanced querying: a user specifies the source data set and
the requested class of patterns, the system chooses the right data mining algorithm
and returns discovered patterns to the user. The most serious problem concerning data
mining queries is a long response time. Current systems consume minutes or hours to
answer simple queries.

Another important feature of data mining is that it is an iterative and interactive
process. Users very often periodically perform the same data mining tasks to get the
up-to-date information. We claim that data mining systems should provide support for
such repetitive queries. It is desirable to store the results of a data mining query that
will be repeated after some changes to the database because there are known
algorithms for incremental data mining. In this paper we propose using periodically
refreshed materialized data mining views (MDMVs) for repetitive data mining

* This work was partially supported by the grant no. KBN 43-1309 from the

State Committee for Scientific Research (KBN), Poland.

queries in the same manner as materialized views are used in relational database
management systems to store results of complex and time consuming queries.

Benefits of using MDMVs to answer data mining queries where the query to be
answered is the same as the query defining an existing MDMV are obvious. The que-
stion we try to answer in this paper is: can we use MDMVs to efficiently answer a
data mining query that is not equal but only similar to the query defining some
MDMV? We consider two data mining queries similar, if they have the same schema
of source datasets and resulting patterns, and differ in selection predicates applied to
the query on the source dataset and/or constraints concerning statistical strength and
contents of patterns.

In this paper we present the concept of MDMVs and their application in the
discovery of frequent itemsets and association rules. Since it is straightforward to
generate association rules from frequent itemsets, we focus on the frequent itemsets
only. We illustrate our optimization rules with many examples expressed in MineSQL,
which is a declarative, multi-purpose SQL-like language for interactive and iterative
data mining in relational databases, developed by us over the last couple of years
[8][9].

1.1 Basic Definitions

Frequent itemsets. Let L={l1, l2, ..., lm} be a set of literals, called items. Let a non-
empty set of items T be called an itemset. Let D be a set of variable length itemsets,
where each itemset T⊆L. We say that an itemset T supports an item x∈L if x is in T.
We say that an itemset T supports an itemset X⊆L if T supports every item in the set
X. The support of the itemset X is the percentage of T in D that support X. The
problem of mining frequent itemsets in D consists in discovering all itemsets whose
support is above a user-defined support threshold.

Association rules. An association rule is an implication of the form X→Y, where
X⊂L, Y⊂L, X∩Y=∅. Each rule has associated measures of its statistical significance
and strength, called support and confidence. The rule X→Y holds in the set D with
support s if s% of itemsets in D support X∪Y. The rule X→Y has confidence c if c%
of itemsets in D that support X also support Y. The problem of mining association
rules in D consists in discovering all associations rules whose support and confidence
are above user-defined support thresholds for support and confidence respectively.

1.2 Data Mining Queries

We have proposed a declarative language, called MineSQL, for expressing data
mining problems by means of data mining queries. MineSQL is a SQL-based interface
between a client application and a data mining system. It plays similar role to data
mining applications as SQL does to traditional database applications. MineSQL is
declarative - the client application is separated from the data mining algorithm being
used. Any modifications and improvements done to the algorithm do not influence the
applications. MineSQL follows the syntax philosophy of SQL language – data mining

queries can be combined with SQL queries, i.e. SQL results can be mined and
MineSQL results can be queried. Thus, existing database applications can be easily
modified to use data mining methods. In this section we present elements of MineSQL
that are used later in the paper, where MDMVs and their usage are discussed. The
detailed syntax of MineSQL can be found in [8].

MineSQL language defines a set of new SQL data types, which are used to store
and manage association rules and itemsets. The SET OF data types family (SET OF
NUMBER, SET OF CHAR, etc.) is used to represent sets of items, e.g. a shopping cart
contents. In order to convert single item values into a SET OF value, we use a new
SQL group function called SET.

The ITEMSET OF data types family is used to represent frequent itemsets. For an
itemset its support is stored together with the set of items it contains. We define a set
of SQL functions and operators that operate on rules: SIZE(x) returns the number of
items in the itemset x, s CONTAINS q returns TRUE if the itemset s contains the
set q, SUPPORT(x) returns support of the itemset x.

The RULE OF data types family is used to represent association rules, containing
body, head, support and confidence values. We define a set of SQL functions and
operators that operate on rules: BODY(x) returns the SET OF value representing the
body of the rule x, HEAD(x) returns the SET OF value representing the head of the
rule x, SUPPORT(x) returns support of the rule x, CONFIDENCE(x) returns
confidence of the rule x.

The central statement of the MineSQL language is MINE. MINE is used to discover
frequent itemsets or association rules from the database. MINE also specifies a set of
predicates to be satisfied by the returned rules or patterns.

The following MINE statement uses the PURCHASED_ITEMS table to discover all
frequent itemsets, whose support is greater than 0.1. We display the itemsets and their
supports.

MINE ITEMSET, SUPPORT(ITEMSET)
FOR X FROM (SELECT SET(ITEM) AS X
 FROM PURCHASED_ITEMS GROUP BY T_ID)
WHERE SUPPORT(ITEMSET)>0.1;

1.3 Related Work

The problem of mining association rules was first introduced in [1] and an algorithm
called AIS was proposed. In [2], two new algorithms were presented, called Apriori
and AprioriTid that are fundamentally different from the previous ones. The
algorithms achieved significant improvements over AIS and became the core of many
new algorithms for mining association rules. Apriori and its variants first generate all
frequent itemsets (sets of items appearing together in a number of database records
meeting the user-specified support threshold) and then use them to generate rules.
Apriori and its variants rely on the property that an itemset can only be frequent if all
of its subsets are frequent. It leads to a level-wise procedure. First, all possible 1-
itemsets (itemsets containing 1 item) are counted in the database to determine
frequent 1-itemsets. Then, frequent 1-itemsets are combined to form potentially
frequent 2-itemsets, called candidate 2-itemsets. Candidate 2-itemsets are counted in

the database to determine frequent 2-itemsets. The procedure is continued by
combining the frequent 2-itemsets to form candidate 3-itemsets and so forth. A
disadvantage of the algorithm is that it requires K or K+1 passes over the database to
discover all frequent itemsets, where K is the size of the greatest frequent itemset
found.

In [4], an algorithm called FUP (Fast Update Algorithm) was proposed for finding
the frequent itemsets in the expanded database using the old frequent itemsets. The
major idea of FUP algorithm is to reuse the information of the old frequent itemsets
and to integrate the support information of the new frequent itemsets in order to
reduce the pool of candidate itemsets to be re-examined. Another approach to
incremental mining of frequent itemsets was presented in [11]. The algorithm
introduced there required only one database pass and was applicable not only for
expanded but also for reduced database. Along with the itemsets, a negative border
[12] was maintained.

In [10] the issue of interactive mining of association rules was addressed and the
concept of knowledge cache was introduced. The cache was designed to hold frequent
itemsets that were discovered while processing other queries. Several cache
management schemas were proposed and their integration with the Apriori algorithm
was analyzed. An important contribution was an algorithm which used itemsets
discovered for higher support thresholds in the discovery process for the same task,
but with a lower support threshold.

The idea of precomputing frequent itemsets in a partitioned database and using
them while discovering association rules in the whole database or parts of it was
discussed in [13]. The itemsets were materialized and store in a compact form. The
proposed method exploited the property that an itemset can be frequent in the union
of a number of partitions if and only if it is frequent in at least one of the partitions.
Thus itemsets that were frequent in at least one of the partitions of the mined dataset,
formed the set of candidates for one verifying database pass.

The notion of data mining queries (or KDD queries) was introduced in [6]. The
need for Knowledge and Data Management Systems (KDDMS) as second generation
data mining tools was expressed. The ideas of application programming interfaces
and data mining query optimizers were also mentioned. Several data mining query
languages that are extensions of SQL were proposed [3][5][7][8][9].

2 Data Mining Views

Relational databases provide users with a possibility of creating views and
materialized views. A view is a virtual table presenting the results of the SQL query
hidden in the definition of the view. Views are used mainly to simplify access to
frequently used data sets that are results of complex queries. When a user selects data
from a view, its defining query has to be executed but the user does not have to be
familiar with its syntax.

Since data mining tasks are repetitive in nature and the syntax of data mining
queries may be complicated, we propose to extend the usage of views to handle both

SQL queries and MineSQL queries. The following statement creates the data mining
view presenting the results of the data mining task discussed earlier.

CREATE VIEW BASKET_ITEMSETS
AS MINE ITEMSET
FOR X FROM (SELECT SET(ITEM) AS X FROM PURCHASED_ITEMS GROUP BY T_ID)
WHERE SUPPORT(ITEMSET)>0.1;

In the defining statement of a data mining view, there are two classes of constraints:
database constraints and mining constraints. Database constraints are located within
the SELECT statement in the FROM clause of the MINE statement. Database
constraints are used to apply selection conditions on the source dataset that is being
mined. Mining constraints are located in the WHERE clause of the MINE statement
and are used to specify selection conditions on the set of patterns to be discovered.

An important advantage of data mining views is separation of applications
processing results of data mining queries from predicates defining parameters of data
mining algorithms. If applications access frequent patterns by means of data mining
views, they do not have to be changed when only selection predicates (database or
mining predicates) are changed in a data mining query. In such case only views have
to be modified.

Any SQL query concerning the view presented above involves performing the data
mining task according to the data mining query that defines the view. This guarantees
access to up-to-date patterns but leads to long response times, since data mining
algorithms are time consuming.

3 Materialized Data Mining Views

In database systems it is possible to create materialized views that materialize the
results of the defining query to shorten response times. Of course, data presented by a
materialized view may become invalid as the source data changes. One of the
solutions minimizing effects of this problem is periodic refreshing of materialized
views. In fact, in the area of data mining, changes to the source database should not be
considered to be a serious problem because data mining tasks are usually performed
on data warehouses rather than on operational databases. In data warehouses, changes
are applied in bulks and materialized data mining views should be refreshed only after
a series of changes, together with other views existing in the data warehouse.

We introduce materialized data mining views (MDMVs) with the option of
automatic periodic refreshing. A materialized data mining view is a database object
containing patterns (association rules or frequent itemsets) discovered as a result of a
data mining query. It contains rules and patterns that were valid at a certain point of
time. MDMVs can be used for further selective analysis of discovered patterns with
no need to re-run mining algorithms. They can be automatically refreshed according
to a user-defined time interval. This might be useful when a user is interested in a set
of rules or itemsets, whose specification does not change in time, but he or she always
wants to have access to relatively recent information.

The following statement creates a MDMV containing all frequent itemsets with
support greater than 0.1, discovered in the set of transactions from
PURCHASED_ITEMS table. The view is to be refreshed once a week.

CREATE MATERIALIZED VIEW BASKET_ITEMSETS
REFRESH 7 AS MINE ITEMSET
FOR X FROM (SELECT SET(ITEM) AS X FROM PURCHASED_ITEMS GROUP BY T_ID)
WHERE SUPPORT(ITEMSET)>0.1;

In most cases when a MDMV is being refreshed, it can be refreshed efficiently with
one of the algorithms for incremental mining. Moreover, it is desirable to store
information about the time of last changes applied to the source objects, in order to
detect situations when refreshing is not necessary, since the source dataset has not
changed.

4 Data Mining Query Rewriting with Materialized Data Mining
 Views

MDMVs can be also used to reduce execution time of data mining queries, which are
not identical to those, on which the views were built. Consider the following example:
we are given a MDMV defined over the following data mining query.

CREATE MATERIALIZED VIEW V1
AS MINE ITEMSET
FOR ITEMS FROM (SELECT SET(ITEM) AS ITEMS
 FROM PURCHASED_ITEMS GROUP BY T_ID)
WHERE SUPPORT(ITEMSET)>0.2;

Assume that a user wants to discover frequent itemsets with the following data mining
query.

MINE ITEMSET
FOR ITEMS FROM (SELECT SET(ITEM) AS ITEMS
 FROM PURCHASED_ITEMS GROUP BY T_ID)
WHERE SUPPORT(ITEMSET)>0.2
AND ITEMSET CONTAINS TO_SET('A,D');

Notice that in order to execute the query, we can simply filter the actual contents of
the materialized data mining view V1, without running a data mining algorithm. Thus,
MDMVs can play a similar role to data mining queries, as indexes or materialized
views do to database queries. Application developers can create MDMVs to
transparently decrease execution times of their applications' data mining queries.

We need formal methods for determining data mining query execution plans,
which use MDMVs to reduce time complexity. First, we define four relations, which
may occur between two data mining queries, DMQ1 and DMQ2. We say that:

1. DMQ1 extends database constraints of DMQ2, if DMQ1 does one of the following:
- appends a WHERE or HAVING clause of database constraints of DMQ2

- appends an additional ANDed condition to a WHERE or HAVING clause of database
constraints of DMQ2

- removes an ORed condition from a WHERE or HAVING clause of database
constraints of DMQ2
Example. The following data mining query DMQ1 extends database constraints of the
data mining query DMQ2.

 DMQ1:
MINE ITEMSET
FOR ITEMS
FROM (SELECT SET(ITEM) AS ITEMS
 FROM PURCHASED_ITEMS
 WHERE ITEM!='D' AND T_ID>100
 GROUP BY T_ID)
WHERE SUPPORT(ITEMSET)>0.2;

DMQ2:
MINE ITEMSET
FOR ITEMS
FROM (SELECT SET(ITEM) AS ITEMS
 FROM PURCHASED_ITEMS
 WHERE ITEM!='D'
 GROUP BY T_ID)
WHERE SUPPORT(ITEMSET)>0.2;

Intuitively, extension of database constraints means narrowing the mined data set.

2. DMQ1 reduces database constraints of DMQ2, if DMQ1 does one of the following:
- removes a WHERE or HAVING clause of database constraints of DMQ2

- appends an additional ORed condition to a WHERE or HAVING clause of database
constraints of DMQ2
- removes an ANDed condition from a WHERE or HAVING clause of database
constraints of DMQ2
Example. The following data mining query DMQ1 reduces database constraints of the
data mining query DMQ2.

DMQ1:
MINE ITEMSET
FOR ITEMS
FROM (SELECT SET(ITEM) AS ITEMS
 FROM PURCHASED_ITEMS
 GROUP BY T_ID)
WHERE SUPPORT(ITEMSET)>0.2;

DMQ2:
MINE ITEMSET
FOR ITEMS
FROM (SELECT SET(ITEM) AS ITEMS
 FROM PURCHASED_ITEMS
 GROUP BY T_ID
 HAVING COUNT(*)>10)
WHERE SUPPORT(ITEMSET)>0.2;

Intuitively, reduction of database constraints means extending the mined data set.

3. DMQ1 extends mining constraints of DMQ2, if DMQ1 does one of the following:
- replaces SUPPORT(ITEMSET)>x with SUPPORT(ITEMSET)>y in DMQ2,
where x<y
- replaces SUPPORT(ITEMSET)<x with SUPPORT(ITEMSET)<y in DMQ2,
where x>y
- replaces ITEMSET CONTAINS X with ITEMSET CONTAINS Y in DMQ2,
where X⊂Y
- replaces ITEMSET NOT CONTAINS X with ITEMSET NOT CONTAINS Y in
DMQ2, where Y⊂X
- replaces SIZE(ITEMSET)>x with SIZE(ITEMSET)>y in DMQ2, where x<y
- replaces SIZE(ITEMSET)<x with SIZE(ITEMSET)<y in DMQ2, where x>y
- appends a WHERE or HAVING clause of mining predicates of DMQ2

- appends an additional ANDed condition to a WHERE or HAVING clause of mining
constraints of DMQ2
- removes an ORed condition from a WHERE or HAVING clause of mining
constraints of DMQ2

Example. The following data mining query DMQ1 extends mining constraints of the
data mining query DMQ2.

DMQ1:
MINE ITEMSET
FOR ITEMS
FROM (SELECT SET(ITEM) AS ITEMS
 FROM PURCHASED_ITEMS
 GROUP BY T_ID)
WHERE SUPPORT(ITEMSET)>0.4;

DMQ2:
MINE ITEMSET
FOR ITEMS
FROM (SELECT SET(ITEM) AS ITEMS
 FROM PURCHASED_ITEMS
 GROUP BY T_ID)
WHERE SUPPORT(ITEMSET)>0.2;

Intuitively, extension of mining constraints means narrowing the resulting set of
discovered patterns.

4. DMQ1 reduces mining constraints of DMQ2, if DMQ1 does one of the following:
- replaces SUPPORT(ITEMSET)>x with SUPPORT(ITEMSET)>y in DMQ2,
where x>y
- replaces SUPPORT(ITEMSET)<x with SUPPORT(ITEMSET)<y in DMQ2,
where x<y
- replaces ITEMSET CONTAINS X with ITEMSET CONTAINS Y in DMQ2,
where Y⊂X
- replaces ITEMSET NOT CONTAINS X with ITEMSET NOT CONTAINS Y in
DMQ2, where X⊂Y
- replaces SIZE(ITEMSET)>x with SIZE(ITEMSET)>y in DMQ2, where x>y
- replaces SIZE(ITEMSET)<x with SIZE(ITEMSET)<y in DMQ2, where x<y
- removes a WHERE or HAVING clause from mining constraints of DMQ2

- appends an additional ORed condition to a WHERE or HAVING clause of mining
constraints of DMQ2
- removes an ANDed condition from a WHERE or HAVING clause of mining
constraints of DMQ2
Example. The following data mining query DMQ1 reduces mining constraints of the
data mining query DMQ2.

DMQ1:
MINE ITEMSET
FOR ITEMS
FROM (SELECT SET(ITEM) AS ITEMS
 FROM PURCHASED_ITEMS
 GROUP BY T_ID)
WHERE SUPPORT(ITEMSET)>0.4;

DMQ2:
MINE ITEMSET
FOR ITEMS
FROM (SELECT SET(ITEM) AS ITEMS
 FROM PURCHASED_ITEMS
 GROUP BY T_ID)
WHERE SUPPORT(ITEMSET)>0.2;

Intuitively, reduction of mining constraints means expanding the resulting set of
discovered patterns.

We also define four different mining methods, which will be used to execute data
mining queries over MDMVs: full mining, incremental mining, complementary
mining, and verifying mining. Full mining (FM) refers to executing a complete
algorithm for discovering frequent itemsets (e.g. [2]). This method is used if MDMV
contents is unusable to execute the data mining query. Incremental mining (IM) refers
to discovering frequent itemsets in an incremented data set (e.g. [4]). It can be used
for data mining queries which reduce database constraints. Complementary mining

(CM) refers to discovering frequent itemsets based on currently materialized itemsets,
which will remain frequent (e.g. [10]). This method can be used for data mining
queries which reduce mining constraints. Finally, we have verifying mining (VM),
that simply consists in pruning those materialized itemsets, which do not satisfy
mining constraints. It is used for data mining queries, which extend mining
constraints.

If two relations occur between a data mining query and a data mining query on
which a MDMVis based, then we use the compatibility table (see Table 1) to decide
what mining method to use.

Table 1. Compatibility table for using materialized data mining views

 reduction of database
constraints

extension of database
constraints

-

reduction of mining constraints CM, IM FM CM
extension of mining constraints VM, IM FM VM

- IM FM -

Example. We are given the following data mining query DMQ1 and the materialized
data mining view MDMV1.

DMQ1:
MINE ITEMSET
FOR ITEMS
FROM (SELECT SET(ITEM) AS ITEMS
 FROM PURCHASED_ITEMS
 GROUP BY T_ID)
WHERE SUPPORT(ITEMSET)>0.4;

MDMV1:
MINE ITEMSET
FOR ITEMS
FROM (SELECT SET(ITEM) AS ITEMS
 FROM PURCHASED_ITEMS
 GROUP BY T_ID
 HAVING COUNT(*)>10)
WHERE SUPPORT(ITEMSET)>0.2;

Since DMQ1 extends mining constraints (higher minimum support) and reduces
database constraints (removed HAVING clause) of the data mining query of MDMV1,
we perform verifying mining (VM), and then incremental mining (IM). The verifying
mining prunes all materialized itemsets, whose support value is not above 0.4, while
the incremental mining discovers frequent itemsets using the information on frequent
itemsets discovered in a subset of the mined data set. It was proven in the literature
that the execution time of the above mining algorithms will be shorter than when
performing full mining.
Example. We are given the following data mining query DMQ1 and the materialized
data mining view MDMV1.

DMQ1:
MINE ITEMSET
FOR ITEMS
FROM (SELECT SET(ITEM) AS ITEMS
 FROM PURCHASED_ITEMS
 GROUP BY T_ID)
WHERE SUPPORT(ITEMSET)>0.3
AND ITEMSET CONTAINS TO_SET('A,B');

MDMV1:
MINE ITEMSET
FOR ITEMS
FROM (SELECT SET(ITEM) AS ITEMS
 FROM PURCHASED_ITEMS
 GROUP BY T_ID)
WHERE SUPPORT(ITEMSET)>0.2;

Since DMQ1 extends mining constraints (higher minimum support as well as
additional ANDed condition) of the data mining query of MDMV1, we perform
verifying mining (VM). The verifying mining prunes all materialized itemsets, whose
support value is not above 0.3 or which do not contain the subset {A,B}.

5 Conclusions and Future Work

In this paper we have presented the concept of materialized data mining views. We
have proposed several rules for optimization of data mining queries in environments,
where MDMVs, containing results of other data mining queries are available. These
rules can serve as a basis for rule-based data mining query optimizers. An important
advantage of the solutions we propose is that the algorithms required to implement
our optimization framework have already been introduced and verified.

In the future we plan to address the problem of cost-based data mining query
optimization, especially concentrating on situations when there are several MDMVs
that can be used to optimize the processing of a given data mining query.

Another topic that we plan to discuss is concurrent refreshing of several MDMVs.
We believe that in such case, sometimes it might be desirable to combine mining
tasks associated with several MDMVs to optimize the global performance of the
refresh operation.

In the paper we focused on discovery of frequent itemsets and association rules. In
the future we plan to analyze possibilities of using data mining views for optimizing
queries concerning other data mining tasks such as discovery of sequential patterns.

References

1. Agrawal R., Imielinski T., Swami A.: Mining Association Rules Between Sets of Items in
Large Databases. Proc. of the 1993 ACM SIGMOD Conf. on Management of Data (1993)

2. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules. Proc. of the 20th
Int’l Conf. on Very Large Data Bases (1994)

3. Ceri S., Meo R., Psaila G.: A New SQL-like Operator for Mining Association Rules. Proc.
of the 22nd Int’l Conference on Very Large Data Bases (1996)

4. Cheung D.W., Han J., Ng V., Wong C.Y.: Maintenance of Discovered Association Rules in
Large Databases: An Incremental Updating Technique. Proc. of the 12th ICDE (1996)

5. Han J., Fu Y., Wang W., Chiang J., Gong W., Koperski K., Li D., Lu Y., Rajan A.,
Stefanovic N., Xia B., Zaiane O.R.: DBMiner: A System for Mining Knowledge in Large
Relational Databases. Proc. of the 2nd KDD Conference (1996)

6. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery.
Communications of the ACM, Vol. 39, No. 11 (1996)

7. Imielinski T., Virmani A., Abdulghani A.: Datamine: Application programming interface
and query language for data mining. Proc. of the 2nd KDD Conference (1996)

8. Morzy T., Wojciechowski M., Zakrzewicz M.: Data Mining Support in Database
Management Systems. Proc. of the 2nd DaWaK Conference (2000)

9. Morzy T., Zakrzewicz M.: SQL-like Language for Database Mining. ADBIS’97 Symposium
(1997)

10. Nag B., Deshpande P.M., DeWitt D.J.: Using a Knowledge Cache for Interactive Discovery
of Association Rules. Proc. of the 5th KDD Conference (1999)

11.Thomas S., Bodagala S., Alsabti K., Ranka S.: An Efficient Algorithm for the Incremental
Updation of Association Rules in Large Databases. Proc. of the 3rd KDD Conference (1997)

12.Toivonen H.: Sampling Large Databases for Association Rules. Proc. of the 22nd Int’l
Conference on Very Large Data Bases (1996)

13.Wojciechowski M., Zakrzewicz M.: Itemset Materializing for Fast Mining of Association
Rules. Proc. of the 2nd ADBIS Conference (1998)

