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Abstract. Data mining is a useful decision support technique, which can be 
used to find trends and regularities in warehouses of corporate data. A serious 
problem of its practical applications is long processing time required by data 
mining algorithms. Current systems consume minutes or hours to answer 
simple queries. In this paper we present the concept of materialized data mining 
views. Materialized data mining views store selected patterns discovered in a 
portion of a database, and are used for query rewriting, which transforms a data 
mining query into a query accessing a materialized view. Since the 
transformation is transparent to a user, materialized data mining views can be 
created and used like indexes. 

1 Introduction 

Data mining, also referred to as database mining or knowledge discovery in databases 
(KDD), aims at discovery of useful patterns from large databases or warehouses. 
Currently we are observing the evolution of data mining environments from 
specialized tools to multi-purpose data mining systems offering some level of 
integration with existing database management systems. From a user’s point of view 
data mining can be seen as advanced querying: a user specifies the source data set and 
the requested class of patterns, the system chooses the right data mining algorithm 
and returns discovered patterns to the user. The most serious problem concerning data 
mining queries is a long response time. Current systems consume minutes or hours to 
answer simple queries.  

Another important feature of data mining is that it is an iterative and interactive 
process. Users very often periodically perform the same data mining tasks to get the 
up-to-date information. We claim that data mining systems should provide support for 
such repetitive queries. It is desirable to store the results of a data mining query that 
will be repeated after some changes to the database because there are known 
algorithms for incremental data mining. In this paper we propose using periodically 
refreshed materialized data mining views (MDMVs) for repetitive data mining 
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queries in the same manner as materialized views are used in relational database 
management systems to store results of complex and time consuming queries. 

Benefits of using MDMVs to answer data mining queries where the query to be 
answered is the same as the query defining an existing MDMV are obvious. The que-
stion we try to answer in this paper is: can we use MDMVs to efficiently answer a 
data mining query that is not equal but only similar to the query defining some 
MDMV? We consider two data mining queries similar, if they have the same schema 
of source datasets and resulting patterns, and differ in selection predicates applied to 
the query on the source dataset and/or constraints concerning statistical strength and 
contents of patterns. 

In this paper we present the concept of MDMVs and their application in the 
discovery of frequent itemsets and association rules. Since it is straightforward to 
generate association rules from frequent itemsets, we focus on the frequent itemsets 
only. We illustrate our optimization rules with many examples expressed in MineSQL, 
which is a declarative, multi-purpose SQL-like language for interactive and iterative 
data mining in relational databases, developed by us over the last couple of years 
[8][9]. 

1.1 Basic Definitions 

Frequent itemsets. Let L={l1, l2, ..., lm} be a set of literals, called items. Let a non-
empty set of items T be called an itemset. Let D be a set of variable length itemsets, 
where each itemset T⊆L. We say that an itemset T supports an item x∈L if x is in T. 
We say that an itemset T supports an itemset X⊆L if T supports every item in the set 
X. The support of the itemset X is the percentage of T in D that support X. The 
problem of mining frequent itemsets in D consists in discovering all itemsets whose 
support is above a user-defined support threshold.  
 
Association rules. An association rule is an implication of the form X→Y, where 
X⊂L, Y⊂L, X∩Y=∅. Each rule has associated measures of its statistical significance 
and strength, called support and confidence. The rule X→Y holds in the set D with 
support s if s% of itemsets in D support X∪Y. The rule X→Y has confidence c if c% 
of itemsets in D that support X also support Y. The problem of mining association 
rules in D consists in discovering all associations rules whose support and confidence 
are above user-defined support thresholds for support and confidence respectively.  

1.2 Data Mining Queries 

We have proposed a declarative language, called MineSQL, for expressing data 
mining problems by means of data mining queries. MineSQL is a SQL-based interface 
between a client application and a data mining system. It plays similar role to data 
mining applications as SQL does to traditional database applications. MineSQL is 
declarative - the client application is separated from the data mining algorithm being 
used. Any modifications and improvements done to the algorithm do not influence the 
applications. MineSQL follows the syntax philosophy of SQL language – data mining 



queries can be combined with SQL queries, i.e. SQL results can be mined and 
MineSQL results can be queried. Thus, existing database applications can be easily 
modified to use data mining methods. In this section we present elements of MineSQL 
that are used later in the paper, where MDMVs and their usage are discussed. The 
detailed syntax of MineSQL can be found in [8]. 

MineSQL language defines a set of new SQL data types, which are used to store 
and manage association rules and itemsets. The SET OF data types family (SET OF 
NUMBER, SET OF CHAR, etc.) is used to represent sets of items, e.g. a shopping cart 
contents. In order to convert single item values into a SET OF value, we use a new 
SQL group function called SET.  

The ITEMSET OF data types family is used to represent frequent itemsets. For an 
itemset its support is stored together with the set of items it contains. We define a set 
of SQL functions and operators that operate on rules: SIZE(x) returns the number of 
items in the itemset x, s CONTAINS q returns TRUE if the itemset s contains the 
set q, SUPPORT(x) returns support of the itemset x. 

The RULE OF data types family is used to represent association rules, containing 
body, head, support and confidence values. We define a set of SQL functions and 
operators that operate on rules: BODY(x) returns the SET OF value representing the 
body of the rule x, HEAD(x) returns the SET OF value representing the head of the 
rule x, SUPPORT(x) returns support of the rule x, CONFIDENCE(x) returns 
confidence of the rule x. 

The central statement of the MineSQL language is MINE. MINE is used to discover 
frequent itemsets or association rules from the database. MINE also specifies a set of 
predicates to be satisfied by the returned rules or patterns.  

The following MINE statement uses the PURCHASED_ITEMS table to discover all 
frequent itemsets, whose support is greater than 0.1. We display the itemsets and their 
supports. 
 
MINE ITEMSET, SUPPORT(ITEMSET) 
FOR X FROM (SELECT SET(ITEM) AS X 
            FROM PURCHASED_ITEMS GROUP BY T_ID) 
WHERE SUPPORT(ITEMSET)>0.1; 

1.3 Related Work 

The problem of mining association rules was first introduced in [1] and an algorithm 
called AIS was proposed. In [2], two new algorithms were presented, called Apriori 
and AprioriTid that are fundamentally different from the previous ones. The 
algorithms achieved significant improvements over AIS and became the core of many 
new algorithms for mining association rules. Apriori and its variants first generate all 
frequent itemsets (sets of items appearing together in a number of database records 
meeting the user-specified support threshold) and then use them to generate rules. 
Apriori and its variants rely on the property that an itemset can only be frequent if all 
of its subsets are frequent. It leads to a level-wise procedure. First, all possible 1-
itemsets (itemsets containing 1 item) are counted in the database to determine 
frequent 1-itemsets. Then, frequent 1-itemsets are combined to form potentially 
frequent 2-itemsets, called candidate 2-itemsets. Candidate 2-itemsets are counted in 



the database to determine frequent 2-itemsets. The procedure is continued by 
combining the frequent 2-itemsets to form candidate 3-itemsets and so forth. A 
disadvantage of the algorithm is that it requires K or K+1 passes over the database to 
discover all frequent itemsets, where K is the size of the greatest frequent itemset 
found.  

In [4], an algorithm called FUP (Fast Update Algorithm) was proposed for finding 
the frequent itemsets in the expanded database using the old frequent itemsets. The 
major idea of FUP algorithm is to reuse the information of the old frequent itemsets 
and to integrate the support information of the new frequent itemsets in order to 
reduce the pool of candidate itemsets to be re-examined. Another approach to 
incremental mining of frequent itemsets was presented in [11]. The algorithm 
introduced there required only one database pass and was applicable not only for 
expanded but also for reduced database. Along with the itemsets, a negative border 
[12] was maintained. 

In [10] the issue of interactive mining of association rules was addressed and the 
concept of knowledge cache was introduced. The cache was designed to hold frequent 
itemsets that were discovered while processing other queries. Several cache 
management schemas were proposed and their integration with the Apriori algorithm 
was analyzed. An important contribution was an algorithm which used itemsets 
discovered for higher support thresholds in the discovery process for the same task, 
but with a lower support threshold. 

The idea of precomputing frequent itemsets in a partitioned database and using 
them while discovering association rules in the whole database or parts of it was 
discussed in [13]. The itemsets were materialized and store in a compact form. The 
proposed method exploited the property that an itemset can be frequent in the union 
of a number of partitions if and only if it is frequent in at least one of the partitions. 
Thus itemsets that were frequent in at least one of the partitions of the mined dataset, 
formed the set of candidates for one verifying database pass. 

The notion of data mining queries (or KDD queries) was introduced in [6]. The 
need for Knowledge and Data Management Systems (KDDMS) as second generation 
data mining tools was expressed. The ideas of application programming interfaces 
and data mining query optimizers were also mentioned. Several data mining query 
languages that are extensions of SQL were proposed [3][5][7][8][9].  

2 Data Mining Views 

Relational databases provide users with a possibility of creating views and 
materialized views. A view is a virtual table presenting the results of the SQL query 
hidden in the definition of the view. Views are used mainly to simplify access to 
frequently used data sets that are results of complex queries. When a user selects data 
from a view, its defining query has to be executed but the user does not have to be 
familiar with its syntax.  

Since data mining tasks are repetitive in nature and the syntax of data mining 
queries may be complicated, we propose to extend the usage of views to handle both 



SQL queries and MineSQL queries. The following statement creates the data mining 
view presenting the results of the data mining task discussed earlier. 

 
CREATE VIEW BASKET_ITEMSETS 
AS MINE ITEMSET 
FOR X FROM (SELECT SET(ITEM) AS X FROM PURCHASED_ITEMS GROUP BY T_ID) 
WHERE SUPPORT(ITEMSET)>0.1; 
 

In the defining statement of a data mining view, there are two classes of constraints: 
database constraints and mining constraints. Database constraints are located within 
the SELECT statement in the FROM clause of the MINE statement. Database 
constraints are used to apply selection conditions on the source dataset that is being 
mined. Mining constraints are located in the WHERE clause of the MINE statement 
and are used to specify selection conditions on the set of patterns to be discovered. 

An important advantage of data mining views is separation of applications 
processing results of data mining queries from predicates defining parameters of data 
mining algorithms. If applications access frequent patterns by means of data mining 
views, they do not have to be changed when only selection predicates (database or 
mining predicates) are changed in a data mining query. In such case only views have 
to be modified. 

Any SQL query concerning the view presented above involves performing the data 
mining task according to the data mining query that defines the view. This guarantees 
access to up-to-date patterns but leads to long response times, since data mining 
algorithms are time consuming.  

3 Materialized Data Mining Views 

In database systems it is possible to create materialized views that materialize the 
results of the defining query to shorten response times. Of course, data presented by a 
materialized view may become invalid as the source data changes. One of the 
solutions minimizing effects of this problem is periodic refreshing of materialized 
views. In fact, in the area of data mining, changes to the source database should not be 
considered to be a serious problem because data mining tasks are usually performed 
on data warehouses rather than on operational databases. In data warehouses, changes 
are applied in bulks and materialized data mining views should be refreshed only after 
a series of changes, together with other views existing in the data warehouse. 

We introduce materialized data mining views (MDMVs) with the option of 
automatic periodic refreshing. A materialized data mining view is a database object 
containing patterns (association rules or frequent itemsets) discovered as a result of a 
data mining query. It contains rules and patterns that were valid at a certain point of 
time. MDMVs can be used for further selective analysis of discovered patterns with 
no need to re-run mining algorithms. They can be automatically refreshed according 
to a user-defined time interval. This might be useful when a user is interested in a set 
of rules or itemsets, whose specification does not change in time, but he or she always 
wants to have access to relatively recent information.  



The following statement creates a MDMV containing all frequent itemsets with 
support greater than 0.1, discovered in the set of transactions from 
PURCHASED_ITEMS table. The view is to be refreshed once a week. 

 
CREATE MATERIALIZED VIEW BASKET_ITEMSETS 
REFRESH 7 AS MINE ITEMSET 
FOR X FROM (SELECT SET(ITEM) AS X FROM PURCHASED_ITEMS GROUP BY T_ID) 
WHERE SUPPORT(ITEMSET)>0.1; 

 

In most cases when a MDMV is being refreshed, it can be refreshed efficiently with 
one of the algorithms for incremental mining. Moreover, it is desirable to store 
information about the time of last changes applied to the source objects, in order to 
detect situations when refreshing is not necessary, since the source dataset has not 
changed. 

4 Data Mining Query Rewriting with Materialized Data Mining 
 Views 

MDMVs can be also used to reduce execution time of data mining queries, which are 
not identical to those, on which the views were built. Consider the following example: 
we are given a MDMV defined over the following data mining query. 

 
CREATE MATERIALIZED VIEW V1 
AS MINE ITEMSET 
FOR ITEMS FROM (SELECT SET(ITEM) AS ITEMS 
                FROM PURCHASED_ITEMS GROUP BY T_ID) 
WHERE SUPPORT(ITEMSET)>0.2; 

 

Assume that a user wants to discover frequent itemsets with the following data mining 
query. 
 
MINE ITEMSET 
FOR ITEMS FROM (SELECT SET(ITEM) AS ITEMS 
                FROM PURCHASED_ITEMS GROUP BY T_ID) 
WHERE SUPPORT(ITEMSET)>0.2 
AND ITEMSET CONTAINS TO_SET('A,D'); 
 

Notice that in order to execute the query, we can simply filter the actual contents of 
the materialized data mining view V1, without running a data mining algorithm. Thus, 
MDMVs can play a similar role to data mining queries, as indexes or materialized 
views do to database queries. Application developers can create MDMVs to 
transparently decrease execution times of their applications' data mining queries.  

We need formal methods for determining data mining query execution plans, 
which use MDMVs to reduce time complexity. First, we define four relations, which 
may occur between two data mining queries, DMQ1 and DMQ2. We say that: 
 
1. DMQ1 extends database constraints of DMQ2, if DMQ1 does one of the following: 
- appends a WHERE or HAVING clause of database constraints of DMQ2 

- appends an additional ANDed condition to a WHERE or HAVING clause of database 
constraints of DMQ2 



- removes an ORed condition from a WHERE or HAVING clause of database 
constraints of DMQ2 
Example. The following data mining query DMQ1 extends database constraints of the 
data mining query DMQ2. 

 

   DMQ1: 
MINE ITEMSET 
FOR ITEMS 
FROM (SELECT SET(ITEM) AS ITEMS 
   FROM PURCHASED_ITEMS 
   WHERE ITEM!='D' AND T_ID>100 
   GROUP BY T_ID) 
WHERE SUPPORT(ITEMSET)>0.2; 
 

DMQ2: 
MINE ITEMSET 
FOR ITEMS 
FROM (SELECT SET(ITEM) AS ITEMS 
    FROM PURCHASED_ITEMS 
    WHERE ITEM!='D' 
    GROUP BY T_ID) 
WHERE SUPPORT(ITEMSET)>0.2; 

Intuitively, extension of database constraints means narrowing the mined data set. 
 

2. DMQ1 reduces database constraints of DMQ2, if DMQ1 does one of the following: 
- removes a WHERE or HAVING clause of database constraints of DMQ2 

- appends an additional ORed condition to a WHERE or HAVING clause of database 
constraints of DMQ2 
- removes an ANDed condition from a WHERE or HAVING clause of database 
constraints of DMQ2 
Example. The following data mining query DMQ1 reduces database constraints of the 
data mining query DMQ2. 

 

DMQ1: 
MINE ITEMSET 
FOR ITEMS 
FROM (SELECT SET(ITEM) AS ITEMS 
    FROM PURCHASED_ITEMS 
    GROUP BY T_ID) 
WHERE SUPPORT(ITEMSET)>0.2; 
 

DMQ2: 
MINE ITEMSET 
FOR ITEMS 
FROM (SELECT SET(ITEM) AS ITEMS 
    FROM PURCHASED_ITEMS 
    GROUP BY T_ID 
    HAVING COUNT(*)>10) 
WHERE SUPPORT(ITEMSET)>0.2; 

Intuitively, reduction of database constraints means extending the mined data set. 
 

3. DMQ1 extends mining constraints of DMQ2, if DMQ1 does one of the following: 
- replaces SUPPORT(ITEMSET)>x with SUPPORT(ITEMSET)>y in DMQ2, 
where x<y 
- replaces SUPPORT(ITEMSET)<x with SUPPORT(ITEMSET)<y in DMQ2, 
where x>y 
- replaces ITEMSET CONTAINS X with ITEMSET CONTAINS Y in DMQ2, 
where X⊂Y 
- replaces ITEMSET NOT CONTAINS X with ITEMSET NOT CONTAINS Y in 
DMQ2, where Y⊂X 
- replaces SIZE(ITEMSET)>x with SIZE(ITEMSET)>y in DMQ2, where x<y 
- replaces SIZE(ITEMSET)<x with SIZE(ITEMSET)<y in DMQ2, where x>y 
- appends a WHERE or HAVING clause of mining predicates of DMQ2 

- appends an additional ANDed condition to a WHERE or HAVING clause of mining 
constraints of DMQ2 
- removes an ORed condition from a WHERE or HAVING clause of mining 
constraints of DMQ2 



Example. The following data mining query DMQ1 extends mining constraints of the 
data mining query DMQ2. 
 

DMQ1: 
MINE ITEMSET 
FOR ITEMS 
FROM (SELECT SET(ITEM) AS ITEMS 
    FROM PURCHASED_ITEMS 
    GROUP BY T_ID) 
WHERE SUPPORT(ITEMSET)>0.4; 

DMQ2: 
MINE ITEMSET 
FOR ITEMS 
FROM (SELECT SET(ITEM) AS ITEMS 
    FROM PURCHASED_ITEMS 
    GROUP BY T_ID) 
WHERE SUPPORT(ITEMSET)>0.2; 

Intuitively, extension of mining constraints means narrowing the resulting set of 
discovered patterns. 

 
4. DMQ1 reduces mining constraints of DMQ2, if DMQ1 does one of the following: 
- replaces SUPPORT(ITEMSET)>x with SUPPORT(ITEMSET)>y in DMQ2, 
where x>y 
- replaces SUPPORT(ITEMSET)<x with SUPPORT(ITEMSET)<y in DMQ2, 
where x<y 
- replaces ITEMSET CONTAINS X with ITEMSET CONTAINS Y in DMQ2, 
where Y⊂X 
- replaces ITEMSET NOT CONTAINS X with ITEMSET NOT CONTAINS Y in 
DMQ2, where X⊂Y 
- replaces SIZE(ITEMSET)>x with SIZE(ITEMSET)>y in DMQ2, where x>y 
- replaces SIZE(ITEMSET)<x with SIZE(ITEMSET)<y in DMQ2, where x<y 
- removes a WHERE or HAVING clause from mining constraints of DMQ2 

- appends an additional ORed condition to a WHERE or HAVING clause of mining 
constraints of DMQ2 
- removes an ANDed condition from a WHERE or HAVING clause of mining 
constraints of DMQ2 
Example. The following data mining query DMQ1 reduces mining constraints of the 
data mining query DMQ2. 
 
DMQ1: 
MINE ITEMSET 
FOR ITEMS 
FROM (SELECT SET(ITEM) AS ITEMS 
    FROM PURCHASED_ITEMS 
    GROUP BY T_ID) 
WHERE SUPPORT(ITEMSET)>0.4; 

DMQ2: 
MINE ITEMSET 
FOR ITEMS 
FROM (SELECT SET(ITEM) AS ITEMS 
    FROM PURCHASED_ITEMS 
    GROUP BY T_ID) 
WHERE SUPPORT(ITEMSET)>0.2; 

Intuitively, reduction of mining constraints means expanding the resulting set of 
discovered patterns. 
 
We also define four different mining methods, which will be used to execute data 
mining queries over MDMVs: full mining, incremental mining, complementary 
mining, and verifying mining. Full mining (FM) refers to executing a complete 
algorithm for discovering frequent itemsets (e.g. [2]). This method is used if MDMV 
contents is unusable to execute the data mining query. Incremental mining (IM) refers 
to discovering frequent itemsets in an incremented data set (e.g. [4]). It can be used 
for data mining queries which reduce database constraints. Complementary mining 



(CM) refers to discovering frequent itemsets based on currently materialized itemsets, 
which will remain frequent (e.g. [10]). This method can be used for data mining 
queries which reduce mining constraints. Finally, we have verifying mining (VM), 
that simply consists in pruning those materialized itemsets, which do not satisfy 
mining constraints. It is used for data mining queries, which extend mining 
constraints. 

If two relations occur between a data mining query and a data mining query on 
which a MDMVis based, then we use the compatibility table (see Table 1) to decide 
what mining method to use. 

Table 1. Compatibility table for using materialized data mining views 

 reduction of database 
constraints 

extension of database 
constraints 

- 

reduction of mining constraints CM, IM FM CM 
extension of mining constraints VM, IM FM VM 

- IM FM - 
 

Example. We are given the following data mining query DMQ1 and the materialized 
data mining view MDMV1. 

 
DMQ1: 
MINE ITEMSET 
FOR ITEMS 
FROM (SELECT SET(ITEM) AS ITEMS 
    FROM PURCHASED_ITEMS 
    GROUP BY T_ID) 
WHERE SUPPORT(ITEMSET)>0.4; 

MDMV1: 
MINE ITEMSET 
FOR ITEMS 
FROM (SELECT SET(ITEM) AS ITEMS 
    FROM PURCHASED_ITEMS 
    GROUP BY T_ID 
    HAVING COUNT(*)>10) 
WHERE SUPPORT(ITEMSET)>0.2; 

 

Since DMQ1 extends mining constraints (higher minimum support) and reduces 
database constraints (removed HAVING clause) of the data mining query of MDMV1, 
we perform verifying mining (VM), and then incremental mining (IM). The verifying 
mining prunes all materialized itemsets, whose support value is not above 0.4, while 
the incremental mining discovers frequent itemsets using the information on frequent 
itemsets discovered in a subset of the mined data set. It was proven in the literature 
that the execution time of the above mining algorithms will be shorter than when 
performing full mining. 
Example. We are given the following data mining query DMQ1 and the materialized 
data mining view MDMV1. 

 

DMQ1: 
MINE ITEMSET 
FOR ITEMS 
FROM (SELECT SET(ITEM) AS ITEMS 
    FROM PURCHASED_ITEMS 
    GROUP BY T_ID) 
WHERE SUPPORT(ITEMSET)>0.3 
AND ITEMSET CONTAINS TO_SET('A,B'); 

MDMV1: 
MINE ITEMSET 
FOR ITEMS 
FROM (SELECT SET(ITEM) AS ITEMS 
    FROM PURCHASED_ITEMS 
    GROUP BY T_ID) 
WHERE SUPPORT(ITEMSET)>0.2; 

Since DMQ1 extends mining constraints (higher minimum support as well as 
additional ANDed condition) of the data mining query of MDMV1, we perform 
verifying mining (VM). The verifying mining prunes all materialized itemsets, whose 
support value is not above 0.3 or which do not contain the subset {A,B}. 



5 Conclusions and Future Work 

In this paper we have presented the concept of materialized data mining views. We 
have proposed several rules for optimization of data mining queries in environments, 
where MDMVs, containing results of other data mining queries are available. These 
rules can serve as a basis for rule-based data mining query optimizers. An important 
advantage of the solutions we propose is that the algorithms required to implement 
our optimization framework have already been introduced and verified. 

In the future we plan to address the problem of cost-based data mining query 
optimization, especially concentrating on situations when there are several MDMVs 
that can be used to optimize the processing of a given data mining query. 

Another topic that we plan to discuss is concurrent refreshing of several MDMVs. 
We believe that in such case, sometimes it might be desirable to combine mining 
tasks associated with several MDMVs to optimize the global performance of the 
refresh operation. 

In the paper we focused on discovery of frequent itemsets and association rules. In 
the future we plan to analyze possibilities of using data mining views for optimizing 
queries concerning other data mining tasks such as discovery of sequential patterns. 
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