
Sequential Index Structure for Content-Based Retrieval

Maciej Zakrzewicz

Poznan University of Technology
Institute of Computing Science

Piotrowo 3a, 60-965 Poznan , Poland
mzakrz@cs.put.poznan.pl

Abstract. Data mining applied to databases of data sequences generates a
number of sequential patterns, which often require additional processing. The
post-processing usually consists in searching the source databases for data
sequences which contain a given sequential pattern or a part of it. This type of
content-based querying is not well supported by RDBMSs, since the traditional
optimization techniques are focused on exact-match querying. In this paper, we
introduce a new bitmap-oriented index structure, which efficiently optimizes
content-based queries on dense databases of data sequences. Our experiments
show a significant improvement over traditional database accessing methods.

Keywords: sequential pattern discovery, index structures, databases

SELECT SID
FROM R R1, R R2, R R3
WHERE R1.SID=R2.SID
AND R2.SID=R3.SID
AND R1.TS<R2.TS
AND R2.TS<R3.TS
AND R1.L='A'
AND R2.L='E'
AND R3.L='F';

1 Introduction

Mining of sequential patterns, a fundamental data mining method, consists in
identifying trends in databases of data sequences (containing collections of records
over a period of time)[AS95]. A sequential pattern represents a frequently occurring
subsequence, i.e. a data sequence which is often contained in data sequences in the
database. An example of a sequential pattern that holds in a video rental database is
that customers typically rent "Star Wars", then "Empire Strikes Back", and then
"Return of the Jedi". Note that 1. these rentals need not be consecutive , and 2. during
a single visit, a customer may rent a set of videos, instead of a single one. Discovered
sequential patterns are usually used as input for upper-level data mining methods:
prediction, characterization, classification, clustering, etc.

Post-processing of discovered sequential patterns usually consists in searching the
source databases for data sequences which contain a given sequential pattern (or a
part of it). For example, when we discover an interesting sequential pattern in the
video rental database, we would probably like to find all customers, who satisfy
(contain) the pattern. A similar searching method can be used when we store
discovered sequential patterns in databases and then retrieve them by contents, e.g.
searching all sequential patterns which contain the subsequence "Star
Wars"→"Return of the Jedi". We will refer to these types of searching as to content-
based sequence retrieval.

In most cases, data sequences (and discovered sequential patterns) are stored in
relational, SQL-accessed databases. Let us consider the following example of using
the relational approach to content-based sequence retrieval. Assume that the relation
R(SID,TS,L) stores data sequences. Each tuple contains the sequence identifier (SID),
the timestamp (TS), and the item (L). Our example relation R describes three data
sequences: {A,B}→{C}→{D}, {A}→{E,C}→{F}, and {B,C,D}→{A}. Let the
searched data subsequence be: {A}→{E}→{F}. Figure 1 gives the relation R and the
SQL query, which implements the content-based sequence retrieval problem.

Fig. 1. The relation of data sequences and the content-based sequence retrieval query

SID TS L

1 1 A
1 1 B
1 2 C
1 3 D
2 1 A
2 2 E
2 2 C
2 3 F
3 1 B
3 1 C
3 1 D
3 2 A

Since in data mining applications databases tend to be very large, there is a
problem of appropriate optimizing the database access while performing content-
based sequence retrieval, e.g. by means of the above SQL query. Database research
has developed many indexing techniques, like B+ trees [Com79], bitmapped indexes
[O'Neil87], k-d trees [Bent75], R trees [Gutt84], which are used to optimize queries
based on exact matches of single tuples. However, these techniques do not
significantly improve content-based sequence retrieval queries, which deal with
partial matches of multi-tuple sequences. There are also proposals for set-based
indexing [MZ98][DP99], which is used to improve subset searching (e.g. find all
papers containing "data mining" and "data warehousing" in a keyword list). However,
these methods work for retrieval of unordered sets of items only.

In order to realize the shortcomings of the existing indexing methods, let us
consider applying B+ tree and set-based indexes to execute the query from Figure 1:
1. Using a B+ tree index, tuples containing all items of each data sequence are joined

first (by SID attribute), and then the verification is done whether they contain
given items in the given order. This approach can be fairly ineffective since a data
sequence may span across many disk block, what results in multiple scanning of
each block of the relation.

2. Using a set-based index, the sequence identifiers (SID attribute) of all sequences,
which contain the searched items in any order, are found, and then the sequences
are read from the relation (perhaps with help of a B+ tree) to verify the ordering of
their items. This approach gives much better results, as compared to a B+ tree
index, however, the significant overhead comes from reading and verifying the
sequences having incorrect ordering.

In this paper we consider content-based retrieval of data sequences from dense
databases. By dense databases we mean databases characterized by relatively small
number of items, which occur frequently in various order (e.g. web logs), and
therefore a set-based index is not efficient. We introduce a new bitmap-oriented
indexing method, which optimizes the problem of content-based sequence retrieval.
The basic idea behind our method, as compared to set-based indexes, is that the index
structure includes not only the items of a sequence, but also the ordering of the items.
In this way, we reduce the number of data sequences needlessly read from the
database, what results in shorter query execution time. We performed several
experiments, which showed the significant improvement over existing indexing
methods.

The structure of the paper is as follows. Section 2 describes the sequential index
structure and algorithms to create and to use the index. In Section 3 we present the
results of our performance experiments. Section 4 contains final conclusions.

1.1 Basic Definitions and Problem Formulation

The problem of content-based sequence retrieval can be formulated as follows.

Definition 1.1. Let L = {l1, l2, ..., lm} be a set of literals called items. Data sequence
S = <X1 X2 ... Xn> is an ordered list of sets of items such that each set of items Xi ⊆ L.
Xi is called a sequence element. All items in a sequence element are unordered.

Definition 1.2. We say that a data sequence <X1 X2 ... Xn> is contained in another
data sequence <Y1 Y2 ... Yn> if there exist integers i1 < i2 < ... < in such that X1 ⊆ Yi1, X2

⊆ Yi2, ..., Xn ⊆ Yin.
Problem formulation. Let D be a database of variable length data sequences. Let

S be a data sequence. The problem of content-based sequence retrieval consists in
finding in D all data sequences, which contain the data sequence S.

1.2 Related Work

The problem of mining frequent patterns in databases of data sequences was
introduced in [AS95]. In [SA96] the problem was generalized by adding conceptual
hierarchies on items and time constraints such as min-gap, max-gap and sliding
window. Another formulation of the problem of mining frequently occurring patterns
in data sequences was given in [MTV95], where discovered patterns may have
different types of ordering: full (serial episodes), none (parallel episodes) or partial
and had to appear within a user-defined time window. The episodes were mined over
a single data sequence.

Database indexes provided today by most database systems are B+ tree indexes to
retrieve tuples of a relation with specified values involving one or more attributes
[Com79]. Each non-leaf node contains entries of the form (v, p) where v is the
separator value which is derived from the keys of the tuples and is used to tell which
sub-tree holds the searched key, and p is the pointer to its child node. Each leaf node
contains entries of the form (k, p), where p is the pointer to the tuple corresponding to
the key k.

A set-based bitmap indexing, which is used to enable faster subset search in
relational databases was presented in [MZ98] (a special case of superimposed
coding). The key idea of the set-based bitmap index is to build binary keys, called
group bitmap keys, associated with each item set. The group bitmap key represents
contents of the item set by setting bits to '1' on positions determined from item values
(by means of modulo function). An example set-based bitmap index for three item
sets: {0, 7, 12, 13}, {2, 4}, and {10, 15, 17} is given in Figure 2. When a subset
search query seeking for item sets containing e.g. items 15 and 17 is issued, the group
bitmap key for the searched subset is computed (see Figure 3). Then, by means of a
bit-wise AND, the index is scanned for keys containing 1’s on the same positions. As
the result of the first step of the subset search procedure, the item sets identified by
set=1 and set=3 are returned. Then, in the verification step (ambiguity of modulo
function), these item sets are tested for the containment of the items 15 and 17.
Finally, the item set identified by set=3 is the result of the subset search. Notice that
this indexing method does not consider items ordering.

set item

1 0

1 7

1 12

1 13

2 2

2 4

3 10

3 15

3 17

hash keysrelation

00001

00100

00100

01000

00100

10000

00001

00001

00100

group bitmap
keys

01101

10100

00101

set-based
bitmap index

setbitmap key

101101

210100

300001

Fig.2. Set-based bitmap index

searched
subset of items

15

17

00001

00100

hash keys
group bitmap

key

00101

set-based
bitmap index

scanning
setbitmap key

101101

210100

300101

AND

setbitmap key

101101

verify item sets: 1,3

300101

Fig. 3. Set retrieval using set-based bitmap index

In [DP99], a conceptual clustering method, using entropic criterion for conceptual
clustering EC3 is used to define indexing schemes on sets of binary features. Similar
data item sets are stored in the same cluster, and similarity measure based on entropy
is used during retrieval to find a cluster containing the searched subset. The method
does not consider items ordering.

2 Sequential Index Structure

In this Section we present our new indexing method, called sequential indexing, for
optimizing content-based sequence retrieval. The sequential index structure consists
of sequences of bitmaps generated for data sequences. Each bitmap encodes all items
(similarly to a set-based bitmap index) of a portion of a data sequence as well as
ordering relations between each two of the items.

The subsection 2.1 contains preliminaries, in the subsection 2.2 we present the
index construction algorithm, the subsection 2.3 explains how to use the sequential
index structure, finally, in the subsections 2.4 and 2.5 we discuss index storage and
maintenance problems.

2.1 Preliminaries

Data sequences may contain categorical items of various data types (e.g. character
strings, numbers, dates). For sake of convenience, we convert the items to integer
values by means of an item mapping function.

Definition 2.1. An item mapping function fi(x), where x is a literal, is a function
which transforms a literal into an integer value.

Example. Given a set of literals L = {A, B, C, D, E, F}, an item mapping function
can take the following values: fi(A)=1, fi(B)=2, fi(C)=3, fi(D)=4, fi(E)=5, fi(F)=6.

Similarly, we use an order mapping function to express data sequence ordering
relations by means of integer values. Thus, we will be able to represent data sequence
items as well as data sequence ordering uniformly.

Definition 2.2. An order mapping function fo(x,y), where x and y are literals and
fo(x,y) ≠ fo(y,x), is a function which transforms a data sequence <{x}{y}> into an
integer value.

Example. For the set of literals used by Definition 2.1 example, an order mapping
function can be expressed as: fo(x,y) = 6*fi(x) + fi(y), e.g. fo(C,F) = 24.

Using the above definitions, we will be able to transform data sequences into item
sets, which are easier to manage, search and index. An item set representing a data
sequence is called an equivalent set.

Definition 2.3. An equivalent set E for a data sequence S = <X1 X2 ... Xn> is
defined as:

∪

=

∪∪∪∈∪∪∪∈
UU

yx
XXXyxXXXx nn

yxfoxfiE

precedes
:...,... 2121

)},({)}({

where: fi() is an item mapping function and fo() is an order mapping function.
Example. For the data sequence S = <{A,B}{C}{D}> and the presented item

mapping function and order mapping function, the equivalent set E is evaluated as
follows:

}2216,10,15,9,4,3,2,1,{)},({)},({)},({

)},({)},({)}({)}({)}({)}({

)},({)}({
}}}{{,}}{{,}}{{,}}{{,}}{{{,},,,{

=∪∪∪
∪∪∪∪∪∪=

=

∪

=

><><><><><∈

DCfoDBfoDAfo

CBfoCAfoDfiCfiBfiAfi

yxfoxfiE
DCDBDACBCAinyxDCBAx

UU

Observation. For any two data sequences S1 and S2, we have: S2 contains S1 if and
only if E1⊆E2, where E1 is the equivalent set for S1, and E2 is the equivalent set for S2.
In general, this property is not reversible.

The size of the equivalent set depends on the number of items in the data sequence
and on the number of ordering relations between the items. For a given number of
items in the data sequence, the equivalent set will be the smallest if there are no
ordering relations at all (i.e. S = <X>, then |E| = |X|, since E = X), and will be the
largest if S is a sequence of one-item sets (i.e. S = <X1 X2 ... Xn>, for all i we have |Xi|

= 1, then |E| = n +

2

n
).

Since the size of an equivalent set quickly increases while increasing the number of
the original sequence elements, we split data sequences into partitions, which are
small enough to process and encode.

Definition 2.4. We say that a data sequence S = <X1 X2 ... Xn> is partitioned into
data sequences S1 = <X1…Xa1>, S2 = <Xa1+1…Xa2> ,…, Sk = <Xaj+1..Xn> with level β if

for each data sequence Si the size of its equivalent set |Ei| < β and for all x,y ∈ X1 ∪ X2

∪…∪Xn, where x precedes y, we have: either <{x}{y}> is contained in Si or {x} is
contained in Si, and {y} is contained in Sj, where i<j (β should be greater than
maximal item set size).

Example. Partitioning the data sequence S = <{A,B}{C}{D}{A,F}{B}{E}> with
level 10 results in two data sequences: S1 = <{A,B}{C}{D}> and S2 =
<{A,F}{B}{E}>, since the sizes of the equivalent sets are respectively: |E1| = 9 (E1 =
{1, 2, 3, 4, 9, 15, 10, 16, 22}), and |E2| = 9 (E2 = {1, 6, 2, 5, 8, 38, 11, 41, 17}).

Observation. For a data sequence S partitioned into S1, S2, …, Sk, and a data
sequence Q, we have: S contains Q if and only if there exists a partitioning of Q into
Q1, Q2, …, Qm, such that Q1 is contained in Si1, Q2 is contained in Si2, …, Qm is
contained in Sim, and i1 < i2 < ... < im.

Our sequential index structure will consist of equivalent sets stored for all data
sequences, optionally partitioned to reduce the complexity. To reduce storage
requirements, equivalent sets will be stored in database in the form of bitmap
signatures.

Definition 2.5. The bitmap signature of a set X is an N-bit binary number created,
by means of bit-wise OR operation, from the hash keys of all data items contained in
X. The hash key of the item x∈X is an N-bit binary number defined as follows:

hash_key(X) = 2(X mod n)

Example. For the set X = {0, 7, 12, 13}, N = 5, the hash keys of the set items are
the following:

hash_key(0) = 2(0 mod 5) = 1 = 00001
hash_key(7) = 2(7 mod 5) = 4 = 00100
hash_key(12) = 2(12 mod 5) = 4 = 00100
hash_key(13) = 2(13 mod 5) = 8 = 01000

The bitmap signature of the set X is the bit-wise OR of all items' hash keys:
bitmap_signature(X)= 00001 OR 00100 OR 00100 OR 01000 = 01101

Observation. For any two sets X and Y, if X⊆Y then:

bitmap_signature(X) AND bitmap_signature(Y) = bitmap_signature(X)

where AND is a bit-wise AND operator. This property is not reversible in general
(when we find that the above formula evaluates to TRUE we still have to verify the
result traditionally).

In order to plan the length N of a bitmap signature for a given average set size,
consider the following analysis. Assuming uniform items distribution, the probability
that representation of the set X sets k bits to '1' in an N-bit bitmap signature is:

∑
−

=

−==

=
1

1
||,

||
||,||,0||

||,

,0where,
q

i
Xi

X
XqXX

Xk

f
i

q
qff

N

f
k

N

P

Example probabilistic expected value of number of bits set to '1' for a 16-bit bitmap
signatures and various set sizes is illustrated in Figure 4. We can observe that e.g. for

a set of 10 items, N should be greater than 8 (else we have all bits set to 1 and the
signature is unusable since it is always matched).

0

2

4

6

8

10

12

14

1 5 9 13 17 21 25

set size

#b
its

Fig. 4. Number of bitmap signature bits set to '1' for various set sizes (N=16)

The probability that a bitmap signature of the length N having k 1's matches another

bitmap signature of the length N having m 1's is

k

N

k

m
/ . It means that the smaller

k, the better pruning is performed during matching bitmap signatures of item sets, in
order to check their containment (so we have to verify less item sets).

2.2 Sequential index construction algorithm

The sequential index construction algorithm iteratively processes all data sequences in
the database. First, the data sequences are partitioned with the given level β. Then, for
each partition of each data sequence, the equivalent set is evaluated. In the next step,
for each equivalent set, its N-bit bitmap signature is generated and stored in the
database. The formal description of the algorithm is given below.

Input: database D of data sequences, partitioning level β,
bitmap length N

Output: sequential index for D

for each data sequence S ∈ D do begin
partition S into partitions S1, S2, …, S3 with level β
for each partition Si do begin

evaluate equivalent set Ei for Si
bitmapi = bitmap_signature(Ei)
store bitmapi in the database

end
end

Consider the following example of sequential index construction. Assume that β=10,
N=16, and the database D contains three data sequences: S1 = <{A,B}{C}
{D}{A,F}{B}{E}>, S2 = <{A}{C,E}{F}{B}{E}{A,D}>, S3 = <{B,C,D},{A}>.

First, we partition the data sequences with β=10. Notice that S3 is, in fact, not
partitioned since its equivalent set is small enough. The symbol Si,j denotes j-th
partition of the i-th data sequence.

S1,1= <{A,B}{C}{D}> (ordering relations are: A→C, B→C, A→D, B→D, C→D)
S1,2= <{A,F}{B}{E}> (ordering relations are: A→B, F→B, A→E, F→E, B→E)
S2,1= <{A}{C,E}{F}> (ordering relations are: A→E, A→C, E→F, C→F)
S2,2= <{B}{E}{A,D}> (ordering relations are: B→E, B→A, B→D, E→A, E→D)
S3,1= <{B,C,D}{A}> (ordering relations are: B→A, C→A, D→A)

Then we evaluate the equivalent sets for the partitioned data sequences. We use the
example item mapping function and order mapping function taken from the
definitions 2.1 and 2.2. The symbol Ei,j denotes the equivalent set for Si,j.

E1,1 = {1, 2, 3, 4, 9, 15, 10, 16, 22}
E1,2 = {1, 6, 2, 5, 8, 38, 11, 41, 17}
E2,1 = {1, 3, 5, 6, 11, 9, 36, 24}
E2,2 = {2, 5, 1, 4, 17, 13, 16, 31, 36}
E3,1 = {2, 3, 4, 1, 13, 19, 25}

In the next step, we generate 16-bit bitmap signatures for all equivalent sets.

bitmap_signature(E1,1) = 1000011001011111
bitmap_signature(E1,2) = 0000101101100110
bitmap_signature(E2,1) = 0000101101111010
bitmap_signature(E2,2) = 1010000000110111
bitmap_signature(E3,1) = 0010001000011110

Finally, the sequential index is stored in the database in the following form:

SID bitmap_signature
1 1000011001011111, 0000101101100110
2 0000101101111010, 1010000000110111
3 0010001000011110

2.3 Using Sequential Index for Content-Based Retrieval

During content-based sequence retrieval, the bitmap signatures for all data sequences
are scanned. For each data sequence, the test of a searched subsequence mapping is
performed (see observation of Definition 2.4). If the searched subsequence can be
successfully mapped to the data sequence partitions, then the data sequence is read
from the database. Due to the ambiguity of bitmap signature representation, additional
verification of the retrieved data sequence is required. The verification can be
performed using the traditional B+ tree method, since it consists in reading the data
sequence from the database and checking whether it contains the searched
subsequence. The formal description of the algorithm is given below. We use a
simplified notation of Q[i_start..i_end] to denote a partition <Xi_start Xi_start+1 … Xi_end>
of a sequence Q = <X1 X2 … Xn>, where 1≤i_start≤i_end≤n. The symbol & denotes
bit-wise AND operation.

Input: sequential index, searched subsequence Q
Output: identifiers of data sequences to be verified

for each sequence identifier sid do begin
j = 1
i_end = 1

repeat
i_start = i_end
evaluate equivalence set EQ for Q[i_start..i_end]
mask = bitmap_signature(EQ)
while mask & bitmap_signature(Esid,i) <> mask

and j<= number of partitions for sid do j++
if j<= number of partitions for sid then repeat
i_end++
generate equivalence set EQ for Q[i_start..i_end]
mask = bitmap_signature(EQ)

until mask & bitmap_signature(Esid,i) <> mask
or i_end = size of Q

until i_start = i_end or j > number of partitions for sid
if j <= number of partitions then return(sid)

end

Consider the following example of using sequential index to perform content-based
sequence retrieval. Assume that we look for all data sequences, which contain the
subsequence <{F}{B}{D}>. We begin with sid=1. We find that <{F}>
(0000001000000000) matches the first partition (1111101001100001). So,
we check whether <{F},{B}> (0010001000000000) also matches this partition.
Accidentally it does, but when we try <{F},{B},{D}> (1010101010000000), we
find that it does not match the first partition. Then we move to the second partition to
check whether <{D}> (00001000000000000) matches the partition
(0110011011010000). This test fails and since we have no more partitions, we
reject sid=1 (this data sequence does not contain the given subsequence).

In the next step, we check sid=2. We find that <{F}> (0000001000000000)
matches the first partition (0101111011010000). So, we check whether
<{F},{B}> (0010001000000000) also matches this partition. It does not, so we
move to the second partition and find that <{B}> (0010000000000000) matches
the partition (1110110000000101). Then we must check whether <{B},{D}>
(1010100000000000) also matches the partition. This time the check is positive
and since we have matched the whole subsequence, we return sid=2 as a part of the
result. The data sequence will be verified later.

Finally, we check sid=3. We find that <{F}> (0000001000000000) does not
match the first partition (0111100001000100). Since we have no more partitions,
we reject sid=3 (this data sequence does not contain the given subsequence).

So far, the result of our index scanning is the data sequence identified by sid=2.
We still need to read and verify, whether the sequence really contains the searched
subset. In our example it does, so the result is returned to a user.

2.4 Physical Storage

Since a sequential index is fully scanned each time content-based retrieval is
performed, it is critical to store it efficiently. We store index entries in the form of <p,
n, bitmap1, bitmap2,…, bitmapn>, where p is a pointer to a data sequence described by
the index entry, n is the number of bitmap signatures, and bitmapi is a single bitmap
signature for the data sequence. The pointer p should address the translation table,

which contains pointers to physical tuples of the relation holding the data sequences
(the structure is <n, p1, p2,.., pn>). Since we usually have a B+ tree index on a
sequence identifier attribute (to optimize joins), we can use its leaves can as a
translation table instead of consuming database space by redundant structures.
Example storage implementation for the sequential index from Subsection 2.2 is
given in Figure 5.

1000011001011111 0000101101100110 0000101101111010

1010000000110111 0010001000011110

2

...

SID TS L
1 1 A
1 1 B
1 2 C
1 3 D
1 4 A
1 4 F
1 5 B
1 6 E
2 1 A
2 2 C
2 2 E
2 3 F
2 4 B
2 5 E
2 6 A
2 6 D
3 1 B
3 1 C
3 1 D
3 2 A
...

2

1

8

8

4 ...

Sequential Index

Translation Table

Database Relation

Fig. 5. Example physical storage structure for sequential index

2.5 Update Operations

Maintenance of a sequential index is quite expensive, since 1. bitmap signatures are
not reversible, and 2. updates may influence partitioning of data sequences. For
example, when we insert a new tuple into the database, thus extending a data
sequence, we cannot determine what partition should the tuple belong to. Similarly,
when we delete a tuple, then both we cannot determine the corresponding partition,
and, even if we could do it, we do not know, whether the item being deleted was the
only item mapped to a given bit of the bitmap signature (so we could reset the bit).

In order to have a consistent state of a sequential index, we must perform the
complete index creation procedure (partitioning, evaluating equivalent sets,
generating bitmap signatures) for the data sequence being modified. However, since
this solution might reduce DBMS performance for transaction-intensive databases, we
propose the following algorithm of offline maintenance for sequential indexes:
1. Whenever a new item is added to an existing data sequence, we set to '1' all bits

in the first bitmap signature for the data sequence. It means that any subsequence
will match the first bitmap signature, and therefore we will not miss the right
one. Any false hits will be eliminated during actual verification of subsequence
containment.

2. Whenever an item is removed from an existing data sequence, we do not
perform any modifications on the bitmap signatures of the data sequence. We
may get false hits, but they will be eliminated during final verification.

Notice that using the above algorithm, the overall index performance may decrease
temporarily, but we will not get incorrect query results. Over a period of time, the

index should be rebuild either completely, or for updated data sequences only, e.g.
according to a transaction log.

A

0

100000

200000

300000

400000

500000

600000

700000

800000

2 3 4 5 6 7 8 9 10 11 12 13

subsequence size

bl
oc

ks
re

ad

B+ tree

24S

24S32Q28

24S48Q55

B

0
10

20
30

40
50
60

70
80

90
100

2 3 4 5 6 7 8 9 10

subsequence size

se
qu

en
ce

s
ac

ce
pt

ed

210
55
15

48 bits/sequence

items: 50

avg. length: 20

Fig. 6. Experimental results

3 Experimental Results

We have performed several experiments on synthetic data sets to evaluate our
sequential indexing method. The database of data sequences was generated randomly,
with uniform item distribution, and stored by Oracle8 DBMS. We used dense data
sets, i.e. the number of available items was relatively small, and therefore each item
occurred in a large number of data sequences. The data sequences contained 1-item
sets only (pessimistic approach – maximal number of ordering relations).

Figure 6A shows the number of disk blocks (including index scanning and relation
access), which were read in order to retrieve data sequences containing subsequences
of various lengths. The data set contained 50000 data sequences, having 20 items of
50 in average. The compared database accessing methods were: traditional SQL query
using B+ tree index on SID attribute (B+ tree), 24-bit set-based bitmap index (24S),
32-bit sequential index with β = 28 built on top of 24-bit set-based bitmap index
(24S32Q28), and 48-bit sequential index with β = 55 built on top of 24-bit set-based
bitmap index (24S48Q55). Our sequential index achieved a significant improvement
for the searched subsequences of length greater than 4, e.g. for the subsequence length
of 5 we were over 20 times faster than the B+ tree method and 8 times faster than the
set-based bitmap index.

We also analyzed the influence of the partitioning level β value on the sequential
index performance. Figure 6B illustrates the filtering factor (percentage of data
sequences matched) for three sequential indexes built on bitmap signatures of total
size of 48 bits, but with different partitioning. We noticed that partitioning data
sequences into a large number of partitions (small β) results in performance increase
for long subsequences, but worsens the performance for short subsequences. Using a
small number of data sequence partitions (high β) results in more "stable"
performance, but the performance is worse for long subsequences.

4 Final Conclusions

Content-based sequence retrieval is specific in the sense that it requires complicated
SQL queries and database access methods (multiple joins, inefficient optimization). In
this paper we have introduced the new indexing method, called sequential indexing,
which can replace a B+ tree indexing and set-based indexing when searched databases
of data sequences are dense. During experiments, we have found that the most effi-
cient solution is to combine a set-based index (which checks items of a data sequence)
with a sequential index (which checks the items ordering), what results in dramatic
outperforming B+ tree access methods. Application areas of the sequential indexing
method include e.g. searching web access paths, searching sequential patterns stored
in databases, discovery of sequential patterns, sequential data validation.

Bibliography

[AS95] Agrawal, R., Srikant, R., Mining Sequential Patterns, Proc. 11th Int'l Conf. Data
Engineering, 1995

[Bay98] Bayardo R. J., Efficiently Mining Long Patterns from Databases, Proc. of the ACM
SIGMOD International Conference on Management of Data, 1998

[Bent75] Bentley, J.L., Multidimensional binary search trees used for associative searching,
Comm. of the ACM 18

[Com79] Comer D., The Ubiquitous B-tree, Comput. Surv. 11, 1979
[DP99] Diamantini, C., Panti, M., A Conceptual Indexing Method for Content-Based

Retrieval, Proc. of the 15th IEEE Int'l Conf. on Data Engineering, 1999
[Gutt84] Guttman, A., R-trees: A dynamic index structure for spatial searching, Proc. of ACM

SIGMOD International Conf. on Management of Data, 1984
[GWS98]Guralnik V., Wijesekera D., Srivastava J., Pattern Directed Mining of Sequence Data,

Proc. of the 4th Int’l Conference on Knowledge Discovery and Data Mining, 1998
[MT96] Mannila H., Toivonen H., Discovering generalized episodes using minimal

occurrences, Proc. of the 2nd Int’l Conf. on Knowledge Discovery and Data Mining , 1996
[MTV95]Mannila H., Toivonen H., Verkamo A.I., Discovering frequent episodes in sequences,

Proc. of the 1st Int’l Conference on Knowledge Discovery and Data Mining , 1995
[MZ98] Morzy, T., Zakrzewicz, M., Group Bitmap Index: A Structure for Association Rules

Retrieval, Proc. of 4th International Conference on Knowledge Discovery and Data Mining,
AAAI Press, New York, 1998

[O'Neil87] O’Neil, P, Model 204 Architecture and Performance, Springer-Verlag Lecture Notes
in Computer Science 359, 2nd International Workshop on High Performance Transactions
Systems (HTPS) 1987, Asilomar, CA

[SA96] Srikant R., Agrawal R., Mining Sequential Patterns: Generalizations and Performance
Improvements, Proc. of the 5th Int’l Conf. on Extending Database Technology, 1996

